Investigating Helium-Induced Thermal Conductivity Degradation in Fusion-Relevant Copper: A Molecular Dynamics Approach
Abstract
1. Introduction
2. Simulation Methodology
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalinin, G.; Barabash, V.; Cardella, A.; Dietz, J.; Ioki, K.; Matera, R.; Santoro, R.T.; Tivey, R. Assessment and Selection of Materials for ITER In-Vessel Components. J. Nucl. Mater. 2000, 283, 10–19. [Google Scholar] [CrossRef]
- Federici, G.; Biel, W.; Gilbert, M.R.; Kemp, R.; Taylor, N.; Wenninger, R. European DEMO Design Strategy and Consequences for Materials. Nucl. Fusion 2017, 57, 092002. [Google Scholar] [CrossRef]
- Mota, F.; Palermo, I.; Laces, S.; Molla, J.; Ibarra, A. Potential Irradiation of Cu Alloys and Tungsten Samples in DONES. Nucl. Fusion 2017, 57, 126056. [Google Scholar] [CrossRef]
- Bolt, H.; Barabash, V.; Krauss, W.; Linke, J.; Neu, R.; Suzuki, S.; Yoshida, N.; Asdex, U. Materials for the Plasma-Facing Components of Fusion Reactors. J. Nucl. Mater. 2004, 329, 66–73. [Google Scholar] [CrossRef]
- Raffray, A.R.; Nygren, R.; Whyte, D.G.; Abdel-Khalik, S.; Doerner, R.; Escourbiac, F.; Evans, T.; Goldston, R.J.; Hoelzer, D.T.; Konishi, S.; et al. High Heat Flux Components—Readiness to Proceed from near Term Fusion Systems to Power Plants. Fusion Eng. Des. 2010, 85, 93–108. [Google Scholar] [CrossRef]
- Liu, T.; Ge, X.; Chen, F.; Jiang, Y.; Huang, H. An Experimental Study on Corrosion Resistance of Ti35 Alloy and Its High-Fluence Hydrogen Bombardment Behavior. J. Phys. Chem. Solids 2025, 201, 112646. [Google Scholar] [CrossRef]
- Li, J.; Wan, Y. Present State of Chinese Magnetic Fusion Development and Future Plans. J. Fusion Energ. 2019, 38, 113–124. [Google Scholar] [CrossRef]
- Wan, Y.; Li, J.; Liu, Y.; Wang, X.; Chan, V.; Chen, C.; Duan, X.; Fu, P.; Gao, X.; Feng, K.; et al. Overview of the Present Progress and Activities on the CFETR. Nucl. Fusion 2017, 57, 102009. [Google Scholar] [CrossRef]
- Zinkle, S.J.; Snead, L.L. Designing Radiation Resistance in Materials for Fusion Energy. Annu. Rev. Mater. Res. 2014, 44, 241–267. [Google Scholar] [CrossRef]
- Huang, H.; Ge, X.; Yu, X.; Jiang, Y.; Peng, Q. Atomistic Studies of Helium Trapping and Diffusion at Ni–Graphene Interfaces. Eur. Phys. J. Plus 2025, 140, 497. [Google Scholar] [CrossRef]
- Ye, Y.; Ma, L.; Tang, T.; Liu, T.; Chen, F.; Ge, X.; Jiang, Y.; Yu, X.; Huang, H. Characterization of Microstructure and Properties of Ti35 Alloy and Its High-Fluence Hydrogen Irradiation-Induced Surface Exfoliation. Eur. Phys. J. Plus 2024, 139, 822. [Google Scholar] [CrossRef]
- Jian, W.-R.; Xu, S.; Su, Y.; Beyerlein, I.J. Energetically Favorable Dislocation/Nanobubble Bypass Mechanism in Irradiation Conditions. Acta Mater. 2022, 230, 117849. [Google Scholar] [CrossRef]
- Fabritsiev, S.A.; Zinkle, S.J.; Singh, B.N. Evaluation of Copper Alloys for Fusion Reactor Divertor and First Wall Components. J. Nucl. Mater. 1996, 233, 127–137. [Google Scholar] [CrossRef]
- Zhang, J. Molecular Dynamics Study of Effects of Vacancy on Phonon Heat Conductivity of Copper; Cranfield University: Cranfield, UK, 2015. [Google Scholar]
- Ye, X.B.; He, Z.H.; Pan, B.C. The Thermal Conductivity of Defected Copper at Finite Temperatures. J. Mater. Sci. 2020, 55, 4453–4463. [Google Scholar] [CrossRef]
- Fabritsiev, S.A.; Pokrovsky, A.S. The Effect of Neutron Irradiation on the Electrical Resistivity of High-Strength Copper Alloys. J. Nucl. Mater. 1997, 249, 239–249. [Google Scholar] [CrossRef]
- Fabritsiev, S.A.; Pokrovsky, A.S. Effect of High Doses of Neutron Irradiation on Physico-Mechanical Properties of Copper Alloys for ITER Applications. Fusion Eng. Des. 2005, 73, 19–34. [Google Scholar] [CrossRef]
- Zhou, Y.; Anglin, B.; Strachan, A. Phonon Thermal Conductivity in Nanolaminated Composite Metals via Molecular Dynamics. J. Chem. Phys. 2007, 127, 184702. [Google Scholar] [CrossRef]
- Huang, H.; Tang, X.; Xie, K.; Peng, Q. Enhanced Self-Healing of Irradiation Defects near a Ni–Graphene Interface by Damaged Graphene: Insights from Atomistic Modeling. J. Phys. Chem. Solids 2021, 151, 109909. [Google Scholar] [CrossRef]
- Wang, Q.; Gui, N.; Huang, X.; Yang, X.; Tu, J.; Jiang, S. The Effect of Temperature and Cascade Collision on Thermal Conductivity of 3C-SiC: A Molecular Dynamics Study. Int. J. Heat Mass Transf. 2021, 180, 121822. [Google Scholar] [CrossRef]
- Ma, L.; Liu, T.; Cai, B.; Liu, Z.; Zhang, G.; Li, J.; Li, H.; Huang, H. Molecular Dynamics Studies of Primary Irradiation Damage in A-type Ti35 Alloy. Phys. Status Solidi B 2023, 260, 2200560. [Google Scholar] [CrossRef]
- Si, S.; Wang, J.; Li, J.; Li, W.; Cong, H.; Liu, J.; Tang, J.; Jiang, C.; Xia, R.; Xiao, X. Enhancing Resistance to Radiation Hardening and Radiation Thermal Conductivity Degradation by Tungsten/Graphene Interface Engineering. J. Nucl. Mater. 2020, 539, 152348. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Y.; Sun, J.; Qin, M.; Stirner, T. Lattice Thermal Conductivity of Defected Tungsten Evaluated by Equilibrium Molecular Dynamics Simulation. Mater. Today Commun. 2023, 36, 106495. [Google Scholar] [CrossRef]
- Petersson, C.L.M.; Fredriksson, A.; Melin, S.; Ahadi, A.; Hansson, P. A Molecular Dynamics Study on the Influence of Vacancies and Interstitial Helium on Mechanical Properties of Tungsten. J. Nucl. Mater. 2023, 580, 154378. [Google Scholar] [CrossRef]
- Sharma, S.S.; Parashar, A. Effect of Helium on Thermal Transport Properties in Single- and Bi-Crystals of Ni: A Study Based on Molecular Dynamics. J. Phys. D Appl. Phys. 2024, 57, 055304. [Google Scholar] [CrossRef]
- Tyler, S.K.; Goodhew, P.J. The Growth of Helium Bubbles in Niobium and Nb-1% Zr. J. Nucl. Mater. 1978, 74, 27–33. [Google Scholar] [CrossRef]
- Wei, Q.; Li, N.; Sun, K.; Wang, L.M. The Shape of Bubbles in He-Implanted Cu and Au. Scr. Mater. 2010, 63, 430–433. [Google Scholar] [CrossRef]
- Li, S.-H.; Li, J.-T.; Han, W.-Z. Radiation-Induced Helium Bubbles in Metals. Materials 2019, 12, 1036. [Google Scholar] [CrossRef]
- Liu, T. Primary Irradiation Damage in Ni–Graphene Nanocomposites with Pre-Existing Hydrogen: Insights from Atomistic Simulations. Eur. Phys. J. Plus 2024, 139, 22. [Google Scholar] [CrossRef]
- Shargh, A.K.; Bosić, O.; Abdolrahim, N. Mechanisms of Helium Nanobubble Growth and Defect Interactions in Irradiated Copper: A Molecular Dynamics Study. J. Nucl. Mater. 2023, 574, 154199. [Google Scholar] [CrossRef]
- Hu, L.; Wirth, B.D.; Maroudas, D. Thermal Conductivity of Tungsten: Effects of Plasma-Related Structural Defects from Molecular-Dynamics Simulations. Appl. Phys. Lett. 2017, 111, 081902. [Google Scholar] [CrossRef]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and Analysis of Atomistic Simulation Data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2010, 18, 015012. [Google Scholar] [CrossRef]
- Kashinath, A.; Demkowicz, M.J. A Predictive Interatomic Potential for He in Cu and Nb. Model. Simul. Mater. Sci. Eng. 2011, 19, 035007. [Google Scholar] [CrossRef]
- Sæther, S.; Erichsen, M.F.; Xiao, S.; Zhang, Z.; Lervik, A.; He, J. Phonon Thermal Transport in Copper: The Effect of Size, Crystal Orientation, and Grain Boundaries. AIP Adv. 2022, 12, 065301. [Google Scholar] [CrossRef]
- Evteev, A.V.; Momenzadeh, L.; Levchenko, E.V.; Belova, I.V.; Murch, G.E. Molecular Dynamics Prediction of Phonon-Mediated Thermal Conductivity of f.c.c. Cu. Philos. Mag. 2014, 94, 731–751. [Google Scholar] [CrossRef]
- Zhang, H.; Sun, J.; Wang, Y.; Stirner, T.; Hamid, A.Y.; Sang, C. Study of lattice thermal conductivity of tungsten containing bubbles by molecular dynamics simulation. Fusion Eng. Des. 2020, 161, 112004. [Google Scholar] [CrossRef]
- Ding, Y.; Wu, X.; Zhan, J.; Chen, Z.; Mao, S.; Ye, M. Simulation study of effects of grain boundary and helium bubble on lattice thermal resistance of tungsten. Fusion Eng. Des. 2021, 168, 112682. [Google Scholar] [CrossRef]
- Huang, H.; Zhong, Y.; Cai, B.; Wang, J.; Liu, Z.; Peng, Q. Size- and Temperature-Dependent Thermal Transport across a Cu−diamond Interface: Non-Equilibrium Molecular Dynamics Simulations. Surf. Interfaces 2023, 37, 102736. [Google Scholar] [CrossRef]
- Lima, H.S.; Tsallis, C. Ising Chain: Thermal Conductivity and First-Principle Validation of Fourier’s Law. Physical A 2023, 628, 129161. [Google Scholar] [CrossRef]
- Zou, H.; Feng, Y.; Qiu, L. Excellent Heat Transfer Enhancement of CNT-Metal Interface by Loading Carbyne and Metal Nanowire into CNT. Int. J. Heat Mass Transf. 2022, 186, 122533. [Google Scholar] [CrossRef]
- Al Hossain, J.; Kim, B. Scale Effects in the Nanoscale Heat Transfer of Molecular Interfaces with Different Lattice Orientations. AIP Adv. 2021, 11, 125311. [Google Scholar] [CrossRef]
- Qiu, L.; Li, F.; Zhu, N.; Feng, Y.; Zhang, X.; Zhang, X. Broad Low-Frequency Phonon Resonance for Increased across-Tube Heat Transport. Phys. Rev. B 2022, 105, 165406. [Google Scholar] [CrossRef]
- Bi, S.; Zhao, T.; Tuo, J.; Wang, X.; Sun, Y.; Zhang, Y. Molecular Dynamics Simulation of the Thermal Conductivity and Dielectric Properties of PI/FG Composites. Surf. Interfaces 2025, 56, 105569. [Google Scholar] [CrossRef]
- Liu, F.; Liu, Y.; Jiang, X.Z.; Xia, J. Exploring Thermophysical Properties of CoCrFeNiCu High Entropy Alloy via Molecular Dynamics Simulations. Heliyon 2024, 10, e36064. [Google Scholar] [CrossRef]
- Chen, N.; Yang, K.; Wang, Z.; Zhong, B.; Wang, J.; Song, J.; Li, Q.; Ni, J.; Sun, F.; Liu, Y.; et al. Quantifying Interfacial Bonding Using Thermal Boundary Conductance at Cubic Boron Nitride/Copper Interfaces with a Large Mismatch of Phonon Density of States. ACS Appl. Mater. Inter. 2023, 15, 34132–34144. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Xu, J.; Ruan, X.; Bao, H. Defect Scattering Can Lead to Enhanced Phonon Transport at Nanoscale. Nat. Commun. 2024, 15, 3304. [Google Scholar] [CrossRef] [PubMed]
- Saxena, V.K.; Saxena, S.C. Measurement of the Thermal Conductivity of Helium Using a Hot-Wire Type of Thermal Diffusion Column. J. Phys. D Appl. Phys. 1968, 1, 1341–1351. [Google Scholar] [CrossRef]
- Lee, C.-W.; Chernatynskiy, A.; Shukla, P.; Stoller, R.E.; Sinnott, S.B.; Phillpot, S.R. Effect of Pores and He Bubbles on the Thermal Transport Properties of UO2 by Molecular Dynamics Simulation. J. Nucl. Mater. 2015, 456, 253–259. [Google Scholar] [CrossRef]
- Zhang, C.W.; Zhou, H.; Zeng, Y.; Zheng, L.; Zhan, Y.L.; Bi, K.D. A Reduction of Thermal Conductivity of Non-Periodic Si/Ge Superlattice Nanowire: Molecular Dynamics Simulation. Int. J. Heat Mass Transf. 2019, 132, 681–688. [Google Scholar] [CrossRef]
- Estreicher, S.K.; Gibbons, T.M.; Kang, B.; Bebek, M.B. Phonons and Defects in Semiconductors and Nanostructures: Phonon Trapping, Phonon Scattering, and Heat Flow at Heterojunctions. J. Appl. Phys. 2014, 115, 012012. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Wang, H.; Huang, H. Investigating Helium-Induced Thermal Conductivity Degradation in Fusion-Relevant Copper: A Molecular Dynamics Approach. Materials 2025, 18, 3702. https://doi.org/10.3390/ma18153702
Yu X, Wang H, Huang H. Investigating Helium-Induced Thermal Conductivity Degradation in Fusion-Relevant Copper: A Molecular Dynamics Approach. Materials. 2025; 18(15):3702. https://doi.org/10.3390/ma18153702
Chicago/Turabian StyleYu, Xu, Hanlong Wang, and Hai Huang. 2025. "Investigating Helium-Induced Thermal Conductivity Degradation in Fusion-Relevant Copper: A Molecular Dynamics Approach" Materials 18, no. 15: 3702. https://doi.org/10.3390/ma18153702
APA StyleYu, X., Wang, H., & Huang, H. (2025). Investigating Helium-Induced Thermal Conductivity Degradation in Fusion-Relevant Copper: A Molecular Dynamics Approach. Materials, 18(15), 3702. https://doi.org/10.3390/ma18153702