Microalgae Scenedesmus sp. as a Potential Inoculum in a CO2 Capture Device Against Changes in Environmental Temperature
Abstract
1. Introduction
2. Materials and Methods
2.1. Microalgal Strain and Cultivation
2.2. Photobioreactor and Working Conditions
2.3. Analytical Methodology
2.4. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sanz-Pérez, E.S.; Murdock, C.R.; Didas, S.A.; Jones, C.W. Direct capture of CO2 from ambient air. Chem. Rev. 2016, 116, 11840–11876. [Google Scholar] [CrossRef] [PubMed]
- Thiedemann, T.M.; Wark, M. A compact review of current technologies for carbon capture as well as storing and utilizing the captured CO2. Processes 2025, 13, 283. [Google Scholar] [CrossRef]
- Bondarenko, A.V.; Islamov, S.R.; Ignatyev, K.V.; Mardashov, D.V. Laboratory studies of polymer compositions for well-kill under increased fracturing. Perm J. Pet. Min. Eng. 2020, 20, 37–48. [Google Scholar] [CrossRef]
- Belousov, A.; Lushpeev, V.; Sokolov, A.; Sultanbekov, R.; Tyan, Y.; Ovchinnikov, E.; Shvets, A.; Bushuev, V.; Islamov, S. Experimental research of the possibility of applying the Hartmann–Sprenger effect to regulate the pressure of natural gas in non-stationary conditions. Processes 2025, 13, 1189. [Google Scholar] [CrossRef]
- Cailly, B.; Le Thiez, P.; Egermann, P.; Audibert, A.; Vidal-Gilbert, S.; Longaygue, X. Geological storage of CO2: A state-of-the-art of injection processes and technologies. Oil Gas Sci. Technol.—Rev. IFP 2005, 60, 517–525. [Google Scholar] [CrossRef]
- López-Pacheco, I.Y.; Castillo-Vacas, E.I.; Castañeda-Hernández, L.; Gradiz-Menjivar, A.; Rodas-Zuluaga, L.I.; Castillo-Zacarías, C.; Sosa-Hernández, J.E.; Barceló, D.; Iqbal, H.M.N.; Parra-Saldívar, R. CO2 biocapture by Scenedesmus sp. grown in industrial wastewater. Sci. Total Environ. 2021, 790, 148222. [Google Scholar] [CrossRef]
- Zhao, S.; Feng, W.; Li, J.; Zhang, X.; Liu, L.; Li, H. Effects of bubble cutting dynamic behaviors on microalgal growth in bubble column photobioreactor with a novel aeration device. Front. Bioeng. Biotechnol. 2023, 11, 1225187. [Google Scholar] [CrossRef]
- Mohsenpour, S.F.; Hennige, S.; Willoughby, N.; Adeloye, A.; Gutierrez, T. Integrating micro-algae into wastewater treatment: A review. Sci. Total Environ. 2021, 752, 142168. [Google Scholar] [CrossRef]
- Hernández-Fernández, A.; Iniesta-López, E.; Hernández Baños, A.I.; Garrido, Y.; Sánchez Zurano, A.; Hernández-Fernández, F.J.; De los Ríos, A.P. Optimization of recovery of nutrients from pig manure slurry through combined microbial fuel cell and microalgae treatment. Processes 2024, 12, 1989. [Google Scholar] [CrossRef]
- Yan, N.; Fan, C.; Chen, Y.; Hu, Z. The potential for microalgae as bioreactors to produce pharmaceuticals. Int. J. Mol. Sci. 2016, 17, 962. [Google Scholar] [CrossRef] [PubMed]
- Bhalamurugan, G.L.; Valerie, O.; Mark, L. Valuable bioproducts obtained from microalgal biomass and their commercial applications: A review. Environ. Eng. Res. 2018, 23, 229–241. [Google Scholar] [CrossRef]
- Reddy, S.D.M.; Deepika, N.; Dropathi, M.R.; Vishwanutha, S.; Daaman, J.D.; Reddy, C.N.; Yadavalli, R. Chapter 4—Factors affecting microalgal biomass productivity in photobioreactors. In Current Developments in Biotechnology and Bioengineering; Sirohi, R., Pandey, A., Sim, S., Chang, J.-S., Lee, D.-J., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 59–88. [Google Scholar] [CrossRef]
- Sánchez, J.F.; Fernández-Sevilla, J.M.; Acién, F.G.; Cerón, M.C.; Pérez-Parra, J.; Molina-Grima, E. Biomass and lutein productivity of Scenedesmus almeriensis: Influence of irradiance, dilution rate and temperature. Appl. Microbiol. Biotechnol. 2008, 79, 719–729. [Google Scholar] [CrossRef]
- Li, X.; Hu, H.-y.; Zhang, Y.-p. Growth and lipid accumulation properties of a freshwater microalga Scenedesmus sp. under different cultivation temperature. Bioresour. Technol. 2011, 102, 3098–3102. [Google Scholar] [CrossRef]
- Aqualgae. Culture Media for Microalgae. Available online: https://aqualgae.com/portfolio/culture-media-for-microalgae/ (accessed on 21 July 2025).
- APHA American Public Health Association. Standard Methods for the Examination of Water and Wastewater, 20th ed; American Public Health Association/American Water Works Association/Water Environment Federation: Washington, DC, USA, 1998. [Google Scholar]
- Zhang, M.; Gu, L.; Zheng, P.; Chen, Z.; Dou, X.; Qin, Q.; Cai, X. Improvement of cell counting method for Neubauer counting chamber. J. Clin. Lab. Anal. 2020, 34, e23024. [Google Scholar] [CrossRef]
- Molina Grima, E.; Fernández, F.G.A.; García Camacho, F.; Chisti, Y. Photobioreactors: Light regime, mass transfer, and scale-up. J. Biotech. 1999, 70, 231–247. [Google Scholar] [CrossRef]
- Goldman, J.C.; Brewer, P.G. Effect of nitrogen source and growth rate on phytoplankton-mediated changes in alkalinity. Limnol. Oceanogr. 1980, 25, 352–357. [Google Scholar] [CrossRef]
- Hinga, K.R. Effects of pH on coastal marine phytoplankton. Mar. Ecol. Prog. Ser. 2002, 238, 281–300. [Google Scholar] [CrossRef]
- Foladori, P.; Petrini, S.; Andreottola, G. Evolution of real municipal wastewater treatment in photobioreactors and microalgae-bacteria consortia using real-time parameters. Chem. Eng. J. 2018, 345, 507–516. [Google Scholar] [CrossRef]
- Soede, C.J.; Hegewald, E. Scenedesmus. In Micro-Algal Biotechnology; Borowitzka, M.A., Borowitzka, L.J., Eds.; Cambridge University Press: Cambridge, UK, 1988; pp. 59–84. [Google Scholar]
- Martínez, M.E.; Jiménez, J.M.; El Yousfi, F. Influence of phosphorus concentration and temperature on growth and phosphorus uptake by the microalga Scenedesmus obliquus. Bioresour. Technol. 1999, 67, 233–240. [Google Scholar] [CrossRef]
- Ras, M.; Steyer, J.-P.; Bernard, O. Temperature effect on microalgae: A crucial factor for outdoor production. Rev. Environ. Sci. Bio/Technol. 2013, 12, 153–164. [Google Scholar] [CrossRef]
- Ma, C.; Wen, H.; Xing, D.; Pei, X.; Zhu, J.; Ren, N.; Liu, B. Molasses wastewater treatment and lipid production at low temperature conditions by a microalgal mutant Scenedesmus sp. Z-4. Biotechnol. Biofuels Bioprod. 2017, 10, 111. [Google Scholar] [CrossRef]
Trial | Time (day) | pH | EC (µS/cm) | ORP (mV) |
---|---|---|---|---|
Spring | 0 | 7.6 | 1166 | 353 |
6 | 10.6 | 1137 | 74 | |
13 | 10.7 | 1117 | 79 | |
27 | 10.1 | 972 | 89 | |
34 | 10.3 | 944 | 78 | |
40 | 10.2 | 915 | 74 | |
49 | 9.8 | 945 | 82 | |
55 | 9.8 | 896 | 85 | |
61 | 9.6 | 937 | 88 | |
69 | 9.8 | 886 | 52 | |
Summer | 0 | 7.42 | 851 | 124.6 |
7 | 10.27 | 848 | 57.4 | |
14 | 10.15 | 803 | 76.8 | |
20 | 10.09 | 820 | 79.5 | |
28 | 10.4 | 824 | 53.6 | |
35 | 10.45 | 814 | 55.2 | |
43 | 10.29 | 841 | 84.5 | |
50 | 10.35 | 745 | 80.7 | |
55 | 10.15 | 724 | 80.2 | |
63 | 9.74 | 714 | 86.9 | |
69 | 10.13 | 733 | 54.4 | |
75 | 9.8 | 717 | 83.1 | |
82 | 9.92 | 770 | 96.5 | |
Winter | 0 | 7.36 | 1446 | 146.5 |
7 | 7.25 | 1658 | 156.0 | |
15 | 7.37 | 1607 | 146.8 | |
29 | 7.33 | 1570 | 149.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garrido, Y.; Quesada-Medina, J.; Sánchez, J.D.; Sánchez-Zurano, A.; Iniesta-López, E.; Hernández-Fernández, A.; Pérez de los Ríos, A.; Hernández-Fernández, F.J. Microalgae Scenedesmus sp. as a Potential Inoculum in a CO2 Capture Device Against Changes in Environmental Temperature. Processes 2025, 13, 2479. https://doi.org/10.3390/pr13082479
Garrido Y, Quesada-Medina J, Sánchez JD, Sánchez-Zurano A, Iniesta-López E, Hernández-Fernández A, Pérez de los Ríos A, Hernández-Fernández FJ. Microalgae Scenedesmus sp. as a Potential Inoculum in a CO2 Capture Device Against Changes in Environmental Temperature. Processes. 2025; 13(8):2479. https://doi.org/10.3390/pr13082479
Chicago/Turabian StyleGarrido, Yolanda, Joaquín Quesada-Medina, José David Sánchez, Ana Sánchez-Zurano, Eduardo Iniesta-López, Adrián Hernández-Fernández, Antonia Pérez de los Ríos, and Francisco José Hernández-Fernández. 2025. "Microalgae Scenedesmus sp. as a Potential Inoculum in a CO2 Capture Device Against Changes in Environmental Temperature" Processes 13, no. 8: 2479. https://doi.org/10.3390/pr13082479
APA StyleGarrido, Y., Quesada-Medina, J., Sánchez, J. D., Sánchez-Zurano, A., Iniesta-López, E., Hernández-Fernández, A., Pérez de los Ríos, A., & Hernández-Fernández, F. J. (2025). Microalgae Scenedesmus sp. as a Potential Inoculum in a CO2 Capture Device Against Changes in Environmental Temperature. Processes, 13(8), 2479. https://doi.org/10.3390/pr13082479