Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (12,475)

Search Parameters:
Keywords = heat conductivity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1272 KB  
Article
Technoeconomic and Life Cycle Analysis of a Novel Catalyzed Process for Producing Ethylene from Waste Plastic
by Xiaoyan Wang, Md. Emdadul Haque, Chunlin Luo, Jianli Hu and Srinivas Palanki
Processes 2026, 14(2), 333; https://doi.org/10.3390/pr14020333 (registering DOI) - 17 Jan 2026
Abstract
Polyethylene is the most used plastic in the world, and over 90% of this plastic is ultimately disposed of in landfills or released into the environment, leading to severe ecological implications. In this research, the technoeconomic feasibility of upcycling low-density polyethylene (LDPE) to [...] Read more.
Polyethylene is the most used plastic in the world, and over 90% of this plastic is ultimately disposed of in landfills or released into the environment, leading to severe ecological implications. In this research, the technoeconomic feasibility of upcycling low-density polyethylene (LDPE) to produce ethylene is studied. The catalytic conversion of LDPE to ethylene is considered in microwave heating mode and Joule heating mode. Experimental data is obtained under conditions where most of the upcycled products are in the gas phase. A flowsheet is developed that produces industrial quantities of ethylene for both heating modes. A technoeconomic analysis and a life cycle analysis are conducted and compared with the traditional ethane cracking process for producing ethylene. Simulation results indicate that the upcycling system exhibits a lower capital expenditure and a comparable operating expenditure relative to conventional ethane steam cracking while generating additional valuable co-products, such as propylene and aromatic hydrocarbons, leading to a higher net present value potential. Sensitivity analyses reveal that the electricity price has the most significant impact on both the net present value and levelized cost of production, followed by the low-density polyethylene feedstock cost. Life-cycle assessment reveals a substantial reduction in greenhouse-gas emissions in the upcycled process compared to the fossil-based ethane steam-cracking route, primarily due to the use of renewable electricity, the lower reaction temperature that reduces utility demand, and the use of plastic waste as the feedstock. Overall, the proposed process demonstrates strong potential for the sustainable production of ethylene from waste LDPE. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

26 pages, 4184 KB  
Article
Numerical Investigation of Heat Transfer and Flow Characteristics of Nano-Organic Working Fluid in a Smooth Tube
by Shilong Tian, Yinfang Jiang, Yuzhe Wu, Zhinan Liu, Hongyan Shang, Xingxing Wang and Yongqiang Feng
Energies 2026, 19(2), 469; https://doi.org/10.3390/en19020469 (registering DOI) - 17 Jan 2026
Abstract
The heat transfer and flow characteristics of TiO2/R123 nano-organic working fluid are investigated and compared with that of R123. A three-dimensional numerical model of the smooth circular tube with a diameter of 10 mm and a length of 1 m is [...] Read more.
The heat transfer and flow characteristics of TiO2/R123 nano-organic working fluid are investigated and compared with that of R123. A three-dimensional numerical model of the smooth circular tube with a diameter of 10 mm and a length of 1 m is established, and the thermodynamic properties of the nano-organic working fluids are rectified with the volume of fluid model. The grid independence validation is conducted, and the simulation results from three models (the k-ε model, the realizable k-ε model, and the Reynolds Stress Model) are evaluated against experimental data. When using the TiO2/R123 nano-organic working fluid, the error between the simulation and experimental results is 6.1%. The flow field distribution is examined, and the effect of mass flux on heat transfer coefficient and pressure drop is discussed. Results demonstrated that the inclusion of TiO2 nanoparticles significantly enhances heat transfer performance. At a 0.1 wt% nanoparticle concentration, the heat transfer coefficient increases by 23.2%, reaching a range of 1430.11 to 2647.25 W/(m2·K), compared to pure R123. However, this improvement in heat transfer performance is accompanied by an increase in flow resistance, with the flow resistance coefficient rising from 0.0353 to 0.0571. Additionally, pressure drops increase by up to 18.7%. Full article
19 pages, 4137 KB  
Article
Influence of Binder Reactivity and Grain Size Fraction on the Technological, Mechanical, and Thermophysical Properties of Core Moulding Sands
by Grzegorz Piwowarski, Faustyna Woźniak and Artur Bobrowski
Materials 2026, 19(2), 361; https://doi.org/10.3390/ma19020361 (registering DOI) - 16 Jan 2026
Abstract
The properties of chemically bonded core sands strongly depend on the reactivity of phenol-formaldehyde resole binders and on the granulometry of the sand matrix. This study presents an evaluation of the mechanical, technological, thermomechanical, and thermophysical properties of core sands prepared using two [...] Read more.
The properties of chemically bonded core sands strongly depend on the reactivity of phenol-formaldehyde resole binders and on the granulometry of the sand matrix. This study presents an evaluation of the mechanical, technological, thermomechanical, and thermophysical properties of core sands prepared using two resole binders with different reactivity levels (Resin 1—lower reactivity; Resin 2—higher reactivity) and two fractions of quartz sand (BK 40 and BK 45). The investigations included the kinetics of strength development (1–48 h), friability, permeability, thermal deformation (DMA), and the determination of thermophysical coefficients (λ2, a2, b2) based on temperature field registration during the solidification of a copper plate. The results indicate that sands containing the higher-reactivity binder exhibit a faster early strength increase (≈0.42–0.45 MPa after 1–3 h), whereas sands bonded with the lower-reactivity resin reach higher tensile strength after 24–48 h (≈0.58–0.62 MPa). Specimens based on BK 45 quartz sand achieved higher tensile strength; however, the finer grain fraction resulted in increased friability (up to ≈3.97%) and a reduction in permeability by 30–40%. DMA analysis confirmed that sands based on BK 40 exhibit delayed and more stable thermal deformation. Thermophysical parameters revealed that BK 45 provides significantly higher thermal insulation, extending the solidification time of the Cu plate from 71–73 s to 89–92 s compared with BK 40. Overall, the results indicate that the combination of BK 40 quartz sand and a lower-reactivity resin offers an optimal balance between thermal conductivity and thermal stability, promoting improved technological performance in casting processes. The determined thermophysical coefficients can be directly applied as input data for foundry process simulations. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Graphical abstract

29 pages, 9144 KB  
Article
PhysGraphIR: Adaptive Physics-Informed Graph Learning for Infrared Thermal Field Prediction in Meter Boxes with Residual Sampling and Knowledge Distillation
by Hao Li, Siwei Li, Xiuli Yu and Xinze He
Electronics 2026, 15(2), 410; https://doi.org/10.3390/electronics15020410 (registering DOI) - 16 Jan 2026
Abstract
Infrared thermal field (ITF) prediction for meter boxes is crucial for the early warning of power system faults, yet this method faces three major challenges: data sparsity, complex geometry, and resource constraints in edge computing. Existing physics-informed neural network-graph neural network (PINN-GNN) approaches [...] Read more.
Infrared thermal field (ITF) prediction for meter boxes is crucial for the early warning of power system faults, yet this method faces three major challenges: data sparsity, complex geometry, and resource constraints in edge computing. Existing physics-informed neural network-graph neural network (PINN-GNN) approaches suffer from redundant physics residual calculations (over 70% of flat regions contain little information) and poor model generalization (requiring retraining for new box types), making them inefficient for deployment on edge devices. This paper proposes the PhysGraphIR framework, which employs an Adaptive Residual Sampling (ARS) mechanism to dynamically identify hotspot region nodes through a physics-aware gating network, calculating physics residuals only at critical nodes to reduce computational overhead by over 80%. In this study, a `hotspot region’ is explicitly defined as a localized area exhibiting significant temperature elevation relative to the background—typically concentrated around electrical connection terminals or wire entrances—which is critical for identifying potential thermal faults under sparse data conditions. Additionally, it utilizes a Physics Knowledge Distillation Graph Neural Network (Physics-KD GNN) to decouple physics learning from geometric learning, transferring universal heat conduction knowledge to specific meter box geometries through a teacher–student architecture. Experimental results demonstrate that on both synthetic and real-world meter box datasets, PhysGraphIR achieves a hotspot region mean absolute error (MAE) of 11.8 °C under 60% infrared data missing conditions, representing a 22% improvement over traditional PINN-GNN. The training speed is accelerated by 3.1 times, requiring only five infrared samples to adapt to new box types. The experiments prove that this method significantly enhances prediction accuracy and computational efficiency under sparse infrared data while maintaining physical consistency, providing a feasible solution for edge intelligence in power systems. Full article
15 pages, 1282 KB  
Article
A 1-Tetradecanol-1, 10-Decanediol Binary Eutectic Mixture/Expanded Graphite Composite Phase Change Materials for Thermal Energy Storage
by Jun Yi, Rongjun Hu, Gaofei Zhan, Qiu Zeng, Jiyong Zou, Yu Xie and Shengyong You
Materials 2026, 19(2), 371; https://doi.org/10.3390/ma19020371 - 16 Jan 2026
Abstract
Organic phase change materials show potential for thermal energy storage, but their scalable implementation is limited by fixed phase change temperatures, molten leakage, and low thermal conductivity. To address the temperature constraint, a binary eutectic system of 1-tetradecanol and 1,10-decanediol is prepared, expanding [...] Read more.
Organic phase change materials show potential for thermal energy storage, but their scalable implementation is limited by fixed phase change temperatures, molten leakage, and low thermal conductivity. To address the temperature constraint, a binary eutectic system of 1-tetradecanol and 1,10-decanediol is prepared, expanding the operational temperature range for building thermal management. Compositing the eutectic with expanded graphite yields a composite material that exhibits a low leakage and a markedly improved thermal conductivity of 4.642 W/(m·K), which is approximately 12 times that of the pure eutectic. The composite maintains distinct phase transition properties, with melting and solidification temperatures of 37.77 °C and 29.38 °C and corresponding latent heats of 218.80 J/g and 216.66 J/g. It also demonstrates a good cycling stability, retaining over 87% of the original latent heat after 2000 thermal cycles. While these findings remain valid under controlled conditions, further studies are required to evaluate their practical feasibility and long-term durability in real-world scenarios. This work establishes a systematic approach for fabricating composite phase change materials and provides a promising candidate for building thermal management applications. Full article
(This article belongs to the Section Advanced Composites)
34 pages, 23520 KB  
Article
Topology Optimisation of Heat Sinks Embedded with Phase-Change Material for Minimising Temperature Oscillations
by Mark Bjerre Müller Christensen and Joe Alexandersen
Computation 2026, 14(1), 23; https://doi.org/10.3390/computation14010023 (registering DOI) - 16 Jan 2026
Abstract
This study presents a gradient-based topology optimisation framework for heat sinks embedded with phase-change material (PCM) that targets the mitigation of temperature oscillations under cyclic thermal loads. The approach couples transient thermal diffusion modelling in FEniCS with automatic adjoint sensitivities and GCMMA, and [...] Read more.
This study presents a gradient-based topology optimisation framework for heat sinks embedded with phase-change material (PCM) that targets the mitigation of temperature oscillations under cyclic thermal loads. The approach couples transient thermal diffusion modelling in FEniCS with automatic adjoint sensitivities and GCMMA, and uses a simple analytical homogenisation to parametrise a composite of PCM and conductive material. With latent-heat buffering using PCM, the optimised layouts reduce the temperature variance by 41% when the full time history is used and by 32% when only the quasi-steady-state cycle is used. To improve physical manufacturability, explicit penalisation yields near-discrete designs with only ∼10% performance loss, preserving most oscillation reduction benefits. The results demonstrate that adjoint-driven PCM topology optimisation can systematically suppress thermal oscillations. Full article
(This article belongs to the Special Issue Advanced Topology Optimization: Methods and Applications)
Show Figures

Graphical abstract

24 pages, 1911 KB  
Article
Non-Destructive Detection of Heat Stress in Tobacco Plants Using Visible-Near-Infrared Spectroscopy and Aquaphotomics Approach
by Daniela Moyankova, Petya Stoykova, Antoniya Petrova, Nikolai K. Christov, Petya Veleva, Gergana Savova and Stefka Atanassova
AgriEngineering 2026, 8(1), 33; https://doi.org/10.3390/agriengineering8010033 - 16 Jan 2026
Abstract
Non-destructive estimation of high-temperature stress effects on tobacco plants is crucial for both scientific research and practical applications. Normalized difference vegetation index (NDVI), chlorophyll index, and spectra in the range of 900–1700 nm of Burley, Oriental, and Virginia tobacco plants under control and [...] Read more.
Non-destructive estimation of high-temperature stress effects on tobacco plants is crucial for both scientific research and practical applications. Normalized difference vegetation index (NDVI), chlorophyll index, and spectra in the range of 900–1700 nm of Burley, Oriental, and Virginia tobacco plants under control and high-temperature stress conditions were measured using portable instruments. NDVI and chlorophyll index measurements indicate that young leaves of all tobacco types are tolerant to high temperatures. In contrast, the older leaves (the fifth leaf) showed increased sensitivity to heat stress. The chlorophyll content of these leaves decreased by 40 to 60% after five days of stress, and by the seventh day, the reduction reached 80% or more in all plants. The vegetative index of the fifth leaf also decreased on the seventh day of stress in all tobacco types. Differences in near-infrared spectra were observed between control, stressed, and recovered plants, as well as among different stress days, and among tobacco lines. The most significant differences were in the 1300–1500 nm range. The first characterization of heat-induced changes in the molecular structure of water in tobacco leaves using an aquaphotomics approach was conducted. Models for determining days of high-temperature treatment based on near-infrared spectra achieved a standard error of cross-validation (SECV) from 0.49 to 0.62 days. The total accuracy of the Soft Independent Modeling of Class Analogy (SIMCA) classification models of control, stressed, and recovered plants ranged from 91.0 to 93.6% using leaves’ spectra of the first five days of high-temperature stress, and from 90.7 to 97.7% using spectra of only the fifth leaf. Similar accuracy was obtained using Partial Least Squares–Discriminant Analysis (PLS-DA). Near-infrared spectroscopy and aquaphotomics can be used as a fast and non-destructive approach for early detection of stress and additional tools for investigating high-temperature tolerance in tobacco plants. Full article
Show Figures

Figure 1

16 pages, 3945 KB  
Article
Analysis of Multi-Physics Thermal Response Characteristics of Anchor Rod and Sealant Systems Under Fire Scenarios
by Kui Tian, Rui Rao, Yu Zeng, Sihang Chen and Qingyuan Xu
Buildings 2026, 16(2), 383; https://doi.org/10.3390/buildings16020383 - 16 Jan 2026
Abstract
During on-site welding operations, the sealant coated on anchor bolt surfaces can be ignited by hot particles or localized sparks, potentially triggering a fire hazard. This combustion process involves a complex multi-physics coupling among sealant combustion, convective and radiative heat transfer, and three-dimensional [...] Read more.
During on-site welding operations, the sealant coated on anchor bolt surfaces can be ignited by hot particles or localized sparks, potentially triggering a fire hazard. This combustion process involves a complex multi-physics coupling among sealant combustion, convective and radiative heat transfer, and three-dimensional heat conduction in solids. To resolve this coupling, a simulation strategy is proposed that correspondingly integrates the Fire Dynamics Simulator (FDS, version 6.7.6) for modeling combustion and radiation with ABAQUS (2024) for simulating conductive heat transfer in solids. The proposed method is validated against experimental measurements, showing close agreement in temperature evolution. It also demonstrates robustness across varying geometric scales, thereby confirming its reliability for predicting thermal response. Using this validated method, simulations are performed to analyze the fire behavior of an anchor rod-sealant system. Results show that the burning sealant can raise anchor rod temperatures above 900 °C and lead to rapid flame spread between adjacent rods. Furthermore, a sensitivity analysis of thermophysical parameters identifies critical thresholds for fire safety optimization: sealants with an ignition temperature > 280 °C and thermal conductivity ≥ 0.26 W/(m·K) demonstrate effective self-extinguishing properties, while specific heat capacity can retard flame growth. These findings provide a robust numerical framework and quantitative guidelines for the fire-safe design of bridge anchorage systems. Full article
(This article belongs to the Special Issue Advances in Steel and Composite Structures)
Show Figures

Figure 1

17 pages, 9342 KB  
Article
Genome-Wide Characterization of the Fantastic Four Gene Family Identifies TaFAF-5D.5 Associated with Growth Habit Variation in Wheat
by Junlong Jiang, Zehao Hou, Shuping Wang, Yingxin Zhang, Yuting Li and Zhengwu Fang
Agronomy 2026, 16(2), 221; https://doi.org/10.3390/agronomy16020221 - 16 Jan 2026
Abstract
The Fantastic Four gene family encodes small, plant-specific regulatory proteins involved in developmental control; however, their roles in wheat remain poorly understood. In this study, we conducted a comprehensive genome-wide analysis of the Fantastic Four gene family in wheat. A total of 42 [...] Read more.
The Fantastic Four gene family encodes small, plant-specific regulatory proteins involved in developmental control; however, their roles in wheat remain poorly understood. In this study, we conducted a comprehensive genome-wide analysis of the Fantastic Four gene family in wheat. A total of 42 TaFAF genes were identified and systematically characterized in terms of their chromosomal distribution, phylogenetic relationships, gene structures, conserved motifs, and promoter cis-regulatory elements. Phylogenetic analysis classified TaFAF genes into four distinct clades, which exhibit high structural conservation but show divergent motif compositions. Expression profiling revealed tissue-specific expression patterns and suggested that a subset of TaFAF genes responded transcriptionally to heat stress in a genotype-dependent manner. Subcellular localization assays showed that representative Fantastic Four proteins were localized in the cytoplasm. Protein–protein interaction analyses indicated that TaFAF-1A.1 and TaFAF-5D.5 physically interact with the key flowering regulator TaFT1. Furthermore, haplotype analysis of TaFAF-5D.5 across 145 wheat accessions revealed a significant association with wheat growth habit, with a favorable haplotype preferentially enriched in winter wheat. Together, these results provide insights into the evolutionary diversification and functional relevance of the Fantastic Four genes and identify TaFAF-5D.5 as a candidate gene potentially associated with developmental adaptation and heat stress responses in wheat. Full article
(This article belongs to the Section Crop Breeding and Genetics)
Show Figures

Figure 1

23 pages, 3212 KB  
Article
On the Heat Transfer Process in a System of Two Convex Bodies Separated by a Vacuum—Mathematical Description and Solution Construction
by Rogério Pazetto Saldanha da Gama, Rogério Martins Saldanha da Gama and Maria Laura Martins-Costa
Thermo 2026, 6(1), 6; https://doi.org/10.3390/thermo6010006 - 16 Jan 2026
Abstract
This work presents a straightforward procedure for constructing the solution to the steady-state energy-transfer process in a system of two convex, opaque, gray bodies, with the aim of determining the temperature distribution within these bodies when separated by a vacuum. The methodology proposed [...] Read more.
This work presents a straightforward procedure for constructing the solution to the steady-state energy-transfer process in a system of two convex, opaque, gray bodies, with the aim of determining the temperature distribution within these bodies when separated by a vacuum. The methodology proposed in this work combines a sequence of elements that are functions obtained from the solution of uncomplicated, well-known linear, uncoupled heat transfer problems, thereby enabling solutions to be obtained using tools found in basic engineering textbooks. Specifically, these well-known problems resemble classical conduction-convection heat transfer problems, in which the boundary condition is described by the noteworthy Newton’s law of cooling. The limit of sequences of elements that are solutions to straightforward linear problems corresponds to the original, complex, coupled nonlinear problem. The convergence of these sequences is mathematically proven. The phenomenon (considered in this work) encompasses those involving black bodies. Since each element of the sequence arises from a well-known linear problem, numerical approximations can be used to obtain it, yielding a simple and powerful tool for simulations. Some presented results highlight the importance of considering thermal interaction between the two bodies, even in the absence of physical contact. In particular, the alterations in the temperature distributions of two separate gray bodies are explicitly shown to result from their thermal interaction. Full article
Show Figures

Figure 1

17 pages, 3913 KB  
Article
Phase Diagrams and Thermal Properties of Fatty Acid Ternary Eutectic Mixtures for Latent Heat Thermal Energy
by Dongyi Zhou, Fanchen Zhou, Jiawei Yuan, Zhifu Liu and Yicai Liu
Materials 2026, 19(2), 356; https://doi.org/10.3390/ma19020356 - 16 Jan 2026
Abstract
This study utilized capric acid (CA), lauric acid (LA), myristic acid (MA), palmitic acid (PA), and stearic acid (SA) as alternative feedstocks to conduct theoretical analyses on ten fatty acid-based ternary eutectic systems. By leveraging the Schrader equation, phase diagrams for each system [...] Read more.
This study utilized capric acid (CA), lauric acid (LA), myristic acid (MA), palmitic acid (PA), and stearic acid (SA) as alternative feedstocks to conduct theoretical analyses on ten fatty acid-based ternary eutectic systems. By leveraging the Schrader equation, phase diagrams for each system were constructed, and their theoretical eutectic points were calculated. The CA-LA-MA (capric acid–lauric acid–myristic acid) ternary system was selected as a representative for experimental fabrication: differential scanning calorimetry (DSC) was employed to characterize its thermal properties, while Fourier transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA) were used to assess its functional group composition and thermal stability, respectively. Theoretical calculations indicate that the ten ternary eutectic systems exhibit melting temperatures ranging from 17.11 °C to 37.61 °C, with phase change latent heats spanning 167.8 J·g−1 to 189.6 J·g−1. For the CA-LA-MA system, experimental DSC results confirm that its eutectic melting temperature is 16.0 °C (accompanied by a phase change latent heat of 177.0 J·g−1, with minor deviations from theoretical predictions attributed to reagent impurities and operational errors). TGA characterization further reveals that the CA-LA-MA mixture has an initial weight loss temperature (corresponding to ~1% mass loss) of 115.6 °C and an extrapolated onset weight loss temperature of 164.8 °C, confirming reliable thermal stability below 100 °C—consistent with its low-temperature application design. These results validate the consistency between theoretical predictions and experimental data, and demonstrate that fatty acid-based ternary eutectic mixtures are promising candidates for low-temperature thermal energy storage applications. Full article
Show Figures

Graphical abstract

22 pages, 1803 KB  
Article
Optimizing Al2O3 Ceramic Membrane Heat Exchangers for Enhanced Waste Heat Recovery in MEA-Based CO2 Capture
by Qiufang Cui, Ziyan Ke, Jinman Zhu, Shuai Liu and Shuiping Yan
Membranes 2026, 16(1), 43; https://doi.org/10.3390/membranes16010043 - 16 Jan 2026
Abstract
High regeneration energy demand remains a critical barrier to the large-scale deployment of ethanolamine-based (MEA-based) CO2 capture. This study adopts an Al2O3 ceramic-membrane heat exchanger (CMHE) to recover both sensible and latent heat from the stripped gas. Experiments confirm [...] Read more.
High regeneration energy demand remains a critical barrier to the large-scale deployment of ethanolamine-based (MEA-based) CO2 capture. This study adopts an Al2O3 ceramic-membrane heat exchanger (CMHE) to recover both sensible and latent heat from the stripped gas. Experiments confirm that heat and mass transfer within the CMHE follow a coupled mechanism in which capillary condensation governs trans-membrane water transport, while heat conduction through the ceramic membrane dominates heat transfer, which accounts for more than 80%. Guided by this mechanism, systematic structural optimization was conducted. Alumina was identified as the optimal heat exchanger material due to its combined porosity, thermal conductivity, and corrosion resistance. Among the tested pore sizes, CMHE-4 produces the strongest capillary-condensation enhancement, yielding a heat recovery flux (q value) of up to 38.8 MJ/(m2 h), which is 4.3% and 304% higher than those of the stainless steel heat exchanger and plastic heat exchanger, respectively. In addition, Length-dependent analyses reveal an inherent trade-off: shorter modules achieved higher q (e.g., 14–42% greater for 200-mm vs. 300-mm CMHE-4), whereas longer modules provide greater total recovered heat (Q). Scale-up experiments demonstrated pronounced non-linear performance amplification, with a 4 times area increase boosting q by only 1.26 times under constant pressure. The techno-economic assessment indicates a simple payback period of ~2.5 months and a significant reduction in net capture cost. Overall, this work establishes key design parameters, validates the governing transport mechanism, and provides a practical, economically grounded framework for implementing high-efficiency CMHEs in MEA-based CO2 capture. Full article
Show Figures

Graphical abstract

10 pages, 2128 KB  
Proceeding Paper
Artificial Neural Network Model for Predicting the Characteristics of a Solar Vacuum Tube System for Domestic Hot Water Heating
by Mariyana Sestrimska, Nikolay Komitov and Margarita Terziyska
Eng. Proc. 2026, 122(1), 10; https://doi.org/10.3390/engproc2026122010 - 15 Jan 2026
Abstract
The use of different energy sources for heating and year-round domestic water heating is driven by the European Union’s increasingly strict environmental and climate requirements. For this reason, consumers are seeking alternatives and show growing interest in implementing installations that utilize solar energy. [...] Read more.
The use of different energy sources for heating and year-round domestic water heating is driven by the European Union’s increasingly strict environmental and climate requirements. For this reason, consumers are seeking alternatives and show growing interest in implementing installations that utilize solar energy. Modern households typically employ at least two different energy sources for this purpose. In practice, these are hybrid installations that, depending on the season, can operate with one, two, or more energy sources. The system examined in this paper is of this type, comprising a pellet boiler, solar vacuum tubes, and electric heaters. Managing such a system is complex, and based on the conducted studies, process optimization can be pursued. This report presents an artificial neural network (ANN) model developed to predict the behavior of a real solar installation for domestic hot water heating during the summer season. This study aims, through the obtained model, to forecast the system’s performance during transitional periods such as autumn and spring, thereby enabling more efficient control. Full article
Show Figures

Figure 1

49 pages, 1789 KB  
Review
Pathways to Net Zero and Climate Resilience in Existing Australian Office Buildings: A Systematic Review
by Darren Kelly, Akhtar Kalam and Shasha Wang
Buildings 2026, 16(2), 373; https://doi.org/10.3390/buildings16020373 - 15 Jan 2026
Abstract
Existing office buildings in Australia contribute to 24% of the nation’s electricity consumption and 10% of greenhouse gas emissions, with energy use projected to rise by 84%. Meeting the 2050 sustainability target and United Nations (UN) 17 Sustainable Development Goals (SDGs) requires improving [...] Read more.
Existing office buildings in Australia contribute to 24% of the nation’s electricity consumption and 10% of greenhouse gas emissions, with energy use projected to rise by 84%. Meeting the 2050 sustainability target and United Nations (UN) 17 Sustainable Development Goals (SDGs) requires improving sustainability within existing office buildings. This systematic review examines net zero energy and climate resilience strategies in these buildings by analysing 74 studies from scholarly literature, government reports, and industry publications. The literature search was conducted across Scopus, Google Scholar, and Web of Science databases, with the final search in early 2025. Studies were selected based on keywords and research parameters. A narrative synthesis identified key technologies, evaluating the integration of net zero principles with climate resilience to enhance energy efficiency through HVAC modifications. Technologies like heat pumps, energy recovery ventilators, thermal energy storage, and phase change materials (PCMs) have been identified as crucial in reducing HVAC energy usage intensity (EUI). Lighting control and plug load management advancements are examined for reducing electricity demand. This review highlights the gap between academic research and practical applications, emphasising the need for comprehensive field studies to provide long-term performance data. Current regulatory frameworks influencing the net zero transition are discussed, with recommendations for policy actions and future research. This study links net zero performance with climate adaptation objectives for existing office buildings and provides recommendations for future research, retrofit planning, and policy development. Full article
(This article belongs to the Special Issue Climate Resilient Buildings: 2nd Edition)
22 pages, 5885 KB  
Article
Performance Analysis of Phase Change Material Walls and Different Window-to-Wall Ratios in Elderly Care Home Buildings Under Hot-Summer and Cold-Winter Climate
by Wuying Chen, Bao Xie and Lu Nie
Buildings 2026, 16(2), 367; https://doi.org/10.3390/buildings16020367 - 15 Jan 2026
Viewed by 25
Abstract
In regions with hot summers and cold winters, elderly care buildings face the dual challenges of high energy consumption and stringent thermal comfort requirements. Using Nanchang as a case study, this research presents an optimization approach that integrates phase change material (PCM) walls [...] Read more.
In regions with hot summers and cold winters, elderly care buildings face the dual challenges of high energy consumption and stringent thermal comfort requirements. Using Nanchang as a case study, this research presents an optimization approach that integrates phase change material (PCM) walls with the window-to-wall ratio (WWR). PCM wall performance was tested experimentally, and EnergyPlus simulations were conducted to assess building energy use for WWR values ranging from 0.25 to 0.50, with and without PCM. The phase change material (PCM) used in this study is paraffin (an organic phase change material), which has a melting point of 26 °C and can store and release heat during temperature fluctuations. The experimental results show that PCM walls effectively reduce heat transfer, lowering the surface temperatures of external, central, and internal walls by 3.9 °C, 3.8 °C, and 3.7 °C, respectively, compared to walls without PCM. The simulation results predict that the PCM wall can reduce air conditioning energy consumption by 8.2% in summer and total annual energy consumption by 14.2%. The impact of WWR is orientation-dependent: east and west façades experience significant cooling penalties as WWR increases and should be maintained at or below 0.30; the south façade achieves optimal performance at a WWR of 0.40, with the lowest total energy load (111.2 kW·h·m-2); and the north façade performs best at the lower bound (WWR = 0.25). Under the combined strategy (south wall with PCM and WWR = 0.40), annual total energy consumption is reduced by 9.8% compared to the baseline (no PCM), with indoor temperatures maintained between 18 and 26 °C. This range is selected based on international thermal comfort standards (e.g., ASHRAE) and comfort research specifically targeting the elderly population, ensuring comfort for elderly occupants. These findings offer valuable guidance for energy-efficient design in similar climates and demonstrate that the synergy between PCM and WWR can reduce energy consumption while maintaining thermal comfort. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

Back to TopTop