Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,209)

Search Parameters:
Keywords = healthy tissues

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3847 KiB  
Article
Dietary Supplementation with Probiotics Alleviates Intestinal Injury in LPS-Challenged Piglets
by Di Zhao, Junmei Zhang, Dan Yi, Tao Wu, Maoxin Dou, Lei Wang and Yongqing Hou
Int. J. Mol. Sci. 2025, 26(15), 7646; https://doi.org/10.3390/ijms26157646 - 7 Aug 2025
Abstract
This study aimed to assess whether dietary supplementation with probiotics could alleviate intestinal injury in lipopolysaccharide (LPS)-challenged piglets. Healthy weaned piglets were randomly allocated to four individual groups (n = 6): (1) a control group; (2) an LPS group; (3) an LPS [...] Read more.
This study aimed to assess whether dietary supplementation with probiotics could alleviate intestinal injury in lipopolysaccharide (LPS)-challenged piglets. Healthy weaned piglets were randomly allocated to four individual groups (n = 6): (1) a control group; (2) an LPS group; (3) an LPS + Lactobacillus group; and (4) an LPS + Bacillus group. The control and LPS groups received a basal diet, while the probiotic groups were provided with the same basal diet supplemented with 6 × 106 cfu/g of Lactobacillus casei (L. casei) or a combination of Bacillus subtilis (B. subtilis) and Bacillus licheniformis (B. licheniformis) at a dosage of 3 × 106 cfu/g, respectively. On day 31 of the trial, overnight-fasted piglets were killed following the administration of either LPS or 0.9% NaCl solution. Blood samples and intestinal tissues were obtained for further analysis several hours later. The results indicate that dietary supplementation with probiotics significantly exhibited health-promoting effects compared with the control group and effectively reduced LPS-induced histomorphological damage to the small intestine, impairments in barrier function, and dysregulated immune responses via modulation of enzyme activity and the expression of relevant genes, such as nuclear factor-kappa B (NF-κB), interleukin 4 (IL-4), interleukin 6 (IL-6), interleukin 10 (IL-10), claudin-1, nuclear-associatedantigenki-67 (Ki-67), and β-defensins-1 (pBD-1). Collectively, these results suggest that dietary supplementation with probiotics could alleviate LPS-induced intestinal injury by enhancing the immunity and anti-inflammatory responses in piglets. Our research provides a theoretical basis for the rational application of probiotics in the future. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

26 pages, 6895 KiB  
Article
Generation of Individualized, Standardized, and Electrically Synchronized Human Midbrain Organoids
by Sanae El Harane, Bahareh Nazari, Nadia El Harane, Manon Locatelli, Bochra Zidi, Stéphane Durual, Abderrahim Karmime, Florence Ravier, Adrien Roux, Luc Stoppini, Olivier Preynat-Seauve and Karl-Heinz Krause
Cells 2025, 14(15), 1211; https://doi.org/10.3390/cells14151211 - 6 Aug 2025
Abstract
Organoids allow to model healthy and diseased human tissues. and have applications in developmental biology, drug discovery, and cell therapy. Traditionally cultured in immersion/suspension, organoids face issues like lack of standardization, fusion, hypoxia-induced necrosis, continuous agitation, and high media volume requirements. To address [...] Read more.
Organoids allow to model healthy and diseased human tissues. and have applications in developmental biology, drug discovery, and cell therapy. Traditionally cultured in immersion/suspension, organoids face issues like lack of standardization, fusion, hypoxia-induced necrosis, continuous agitation, and high media volume requirements. To address these issues, we developed an air–liquid interface (ALi) technology for culturing organoids, termed AirLiwell. It uses non-adhesive microwells for generating and maintaining individualized organoids on an air–liquid interface. This method ensures high standardization, prevents organoid fusion, eliminates the need for agitation, simplifies media changes, reduces media volume, and is compatible with Good Manufacturing Practices. We compared the ALi method to standard immersion culture for midbrain organoids, detailing the process from human pluripotent stem cell (hPSC) culture to organoid maturation and analysis. Air–liquid interface organoids (3D-ALi) showed optimized size and shape standardization. RNA sequencing and immunostaining confirmed neural/dopaminergic specification. Single-cell RNA sequencing revealed that immersion organoids (3D-i) contained 16% fibroblast-like, 23% myeloid-like, and 61% neural cells (49% neurons), whereas 3D-ALi organoids comprised 99% neural cells (86% neurons). Functionally, 3D-ALi organoids showed a striking electrophysiological synchronization, unlike the heterogeneous activity of 3D-i organoids. This standardized organoid platform improves reproducibility and scalability, demonstrated here with midbrain organoids. The use of midbrain organoids is particularly relevant for neuroscience and neurodegenerative diseases, such as Parkinson’s disease, due to their high incidence, opening new perspectives in disease modeling and cell therapy. In addition to hPSC-derived organoids, the method’s versatility extends to cancer organoids and 3D cultures from primary human cells. Full article
(This article belongs to the Special Issue The Current Applications and Potential of Stem Cell-Derived Organoids)
Show Figures

Figure 1

17 pages, 8134 KiB  
Article
Chronic Low Back Pain in Young Adults: Pathophysiological Aspects of Neuroinflammation and Degeneration
by Natalya G. Pravdyuk, Anastasiia A. Buianova, Anna V. Novikova, Alesya A. Klimenko, Mikhail A. Ignatyuk, Liubov A. Malykhina, Olga I. Patsap, Dmitrii A. Atiakshin, Vitaliy V. Timofeev and Nadezhda A. Shostak
Int. J. Mol. Sci. 2025, 26(15), 7592; https://doi.org/10.3390/ijms26157592 - 6 Aug 2025
Abstract
Degenerative disc disease (DDD) is a major cause of chronic low back pain (LBP), yet the molecular mechanisms driving disc degeneration and pain remain poorly understood. This study analyzed intervertebral disc (IVD) tissue from 36 young patients (median age = 36.00 [31.00, 42.50] [...] Read more.
Degenerative disc disease (DDD) is a major cause of chronic low back pain (LBP), yet the molecular mechanisms driving disc degeneration and pain remain poorly understood. This study analyzed intervertebral disc (IVD) tissue from 36 young patients (median age = 36.00 [31.00, 42.50] years) with herniated discs and LBP, alongside healthy controls, to investigate changes in the extracellular matrix (ECM) and neurochemical alterations. Disc degeneration was assessed using MRI (Pfirrmann grading) and histology (Sive’s criteria). Histochemical and immunohistochemical methods were used to evaluate aggrecan content, calcification, and the expression of nerve growth factor (NGF), substance P (SP), and S-100 protein. MRI findings included Pfirrmann grades V (30.55%), IV (61.11%), III (5.56%), and II (2.78%). Severe histological degeneration (10–12 points) was observed in three patients. Aggrecan depletion correlated with longer pain duration (r = 0.449, p = 0.031). NGF expression was significantly elevated in degenerated discs (p = 0.0287) and strongly correlated with SP (r = 0.785, p = 5.268 × 10−9). Free nerve endings were identified in 5 cases. ECM calcification, present in 36.1% of patients, was significantly associated with radiculopathy (r = 0.664, p = 0.005). The observed co-localization of NGF and SP suggests a synergistic role in pain development. These results indicate that in young individuals, aggrecan loss, neurochemical imbalance, and ECM calcification are key contributors to DDD and chronic LBP. Full article
(This article belongs to the Special Issue Molecular and Cellular Mechanisms of Intervertebral Disc Disease)
Show Figures

Figure 1

10 pages, 1191 KiB  
Article
RNA Sequencing on Muscle Biopsies from Exertional Rhabdomyolysis Patients Revealed Down-Regulation of Mitochondrial Function and Enhancement of Extracellular Matrix Composition
by Mingqiang Ren, Luke P. Michaelson, Ognoon Mungunsukh, Peter Bedocs, Liam Friel, Kristen Cofer, Carolyn E. Dartt, Nyamkhishig Sambuughin and Francis G. O’Connor
Genes 2025, 16(8), 930; https://doi.org/10.3390/genes16080930 - 2 Aug 2025
Viewed by 189
Abstract
Background/Objective: Exertional rhabdomyolysis (ER) is primarily driven by mechanical stress on muscles during strenuous or unaccustomed exercise, often exacerbated by environmental factors like heat and dehydration. While the general cellular pathway involving energy depletion and calcium overload is understood in horse ER models, [...] Read more.
Background/Objective: Exertional rhabdomyolysis (ER) is primarily driven by mechanical stress on muscles during strenuous or unaccustomed exercise, often exacerbated by environmental factors like heat and dehydration. While the general cellular pathway involving energy depletion and calcium overload is understood in horse ER models, the underlying mechanisms specific to the ER are not universally known within humans. This study aimed to evaluate whether patients with ER exhibited transcriptional signatures that were significantly different from those of healthy individuals. Methods: This study utilized RNA sequencing on skeletal muscle samples from 19 human patients with ER history, collected at a minimum of six months after the most recent ER event, and eight healthy controls to investigate the transcriptomic landscape of ER. To identify any alterations in biological processes between the case and control groups, functional pathway analyses were conducted. Results: Functional pathway enrichment analyses of differentially expressed genes revealed strong suppression of mitochondrial function. This suppression included the “aerobic electron transport chain” and “oxidative phosphorylation” pathways, indicating impaired energy production. Conversely, there was an upregulation of genes associated with adhesion and extracellular matrix-related pathways, indicating active restoration of muscle function in ER cases. Conclusions: The study demonstrated that muscle tissue exhibited signs of suppressed mitochondrial function and increased extracellular matrix development. Both of these facilitate muscle recovery within several months after an ER episode. Full article
Show Figures

Figure 1

10 pages, 784 KiB  
Article
Effect of Malnutrition on Femoral Cartilage Thickness in Pediatric Patients
by Şükrü Güngör, Raikan Büyükavcı, Fatma İlknur Varol, Emre Gök and Semra Aktürk
Children 2025, 12(8), 1021; https://doi.org/10.3390/children12081021 - 2 Aug 2025
Viewed by 150
Abstract
Background/Objectives: Malnutrition is an imbalance of nutrients required for growth, development, and organ function. Its impact on bone development is known, but its effects on cartilage remain unclear. This study aimed to evaluate the femoral cartilage thickness in children with primary malnutrition. [...] Read more.
Background/Objectives: Malnutrition is an imbalance of nutrients required for growth, development, and organ function. Its impact on bone development is known, but its effects on cartilage remain unclear. This study aimed to evaluate the femoral cartilage thickness in children with primary malnutrition. Methods: In this cross-sectional observational study, 83 children with primary malnutrition and 62 age- and sex-matched healthy controls were included. Patients with primary malnutrition were classified as mild, moderate and severe. Femoral cartilage thickness measurements of all children were taken by ultrasound from the femoral lateral condyle, femoral medial condyle and intercondylar area for both knees with the patient in a supine position with the knees flexed 90 degrees. Results: The right lateral, right medial, left lateral, and left medial femoral cartilages were significantly thicker in patients with malnutrition compared to those without malnutrition (p = 0.002, 0.004, <0.001, and 0.001, respectively). A significant negative correlation was found between age, weight Z-score, and height Z-score and triceps skinfold thickness. Conclusions: Distal femoral cartilage thickness is significantly greater in children with primary malnutrition. This demonstrates the effect of nutritional factors on cartilage tissue and suggests that children with chronic malnutrition are at risk for both knee joint problems and short stature later in life. Full article
(This article belongs to the Section Pediatric Gastroenterology and Nutrition)
Show Figures

Figure 1

14 pages, 25752 KiB  
Article
Development and Simulation-Based Validation of Biodegradable 3D-Printed Cog Threads for Pelvic Organ Prolapse Repair
by Ana Telma Silva, Nuno Miguel Ferreira, Henrique Leon Bastos, Maria Francisca Vaz, Joana Pinheiro Martins, Fábio Pinheiro, António Augusto Fernandes and Elisabete Silva
Materials 2025, 18(15), 3638; https://doi.org/10.3390/ma18153638 - 1 Aug 2025
Viewed by 221
Abstract
Pelvic organ prolapse (POP) is a prevalent condition, affecting women all over the world, and is commonly treated through surgical interventions that present limitations such as recurrence or complications associated with synthetic meshes. In this study, biodegradable poly(ϵ-caprolactone) (PCL) cog threads [...] Read more.
Pelvic organ prolapse (POP) is a prevalent condition, affecting women all over the world, and is commonly treated through surgical interventions that present limitations such as recurrence or complications associated with synthetic meshes. In this study, biodegradable poly(ϵ-caprolactone) (PCL) cog threads are proposed as a minimally invasive alternative for vaginal wall reinforcement. A custom cutting tool was developed to fabricate threads with varying barb angles (90°, 75°, 60°, and 45°), which were produced via Melt Electrowriting. Their mechanical behavior was assessed through uniaxial tensile tests and validated using finite element simulations. The results showed that barb orientation had minimal influence on tensile performance. In simulations of anterior vaginal wall deformation under cough pressure, all cog thread configurations significantly reduced displacement in the damaged tissue model, achieving values comparable to or even lower than those of healthy tissue. A ball burst simulation using an anatomically accurate model further demonstrated a 13% increase in reaction force with cog thread reinforcement. Despite fabrication limitations, this study supports the biomechanical potential of 3D-printed PCL cog threads for POP treatment, and lays the groundwork for future in vivo validation. Full article
Show Figures

Graphical abstract

13 pages, 6907 KiB  
Article
The Characterization of the Neuroimmune Response in Primary Pterygia
by Luis Fernando Barba-Gallardo, Sofía Guadalupe Ocón-Garcia, Manuel Enrique Avila-Blanco, José Luis Diaz-Rubio, Javier Ventura-Juárez, Elizabeth Casillas-Casillas and Martín Humberto Muñoz-Ortega
Int. J. Mol. Sci. 2025, 26(15), 7417; https://doi.org/10.3390/ijms26157417 - 1 Aug 2025
Viewed by 94
Abstract
Several chronic inflammatory processes are currently being studied in relation to other systems to better understand the regulation mechanisms and identify potential therapeutic targets. A significant body of evidence supports the role of the nervous system in regulating various immunological processes. This study [...] Read more.
Several chronic inflammatory processes are currently being studied in relation to other systems to better understand the regulation mechanisms and identify potential therapeutic targets. A significant body of evidence supports the role of the nervous system in regulating various immunological processes. This study investigates the relationship between pterygia and the sympathetic nervous system, focusing on their interaction in the inflammatory response and fibrogenic process. Sixteen surgical specimens of primary pterygia and four conjunctival tissue samples were examined, and their morphology was analyzed using hematoxylin–eosin and Masson’s trichrome stains. The gene expression of adrenergic receptors, as well as inflammatory and fibrogenic cytokines, was also assessed. Additionally, both adrenergic receptors and tyrosine hydroxylase were found to be localized within the tissues according to immunohistochemistry and immunofluorescence techniques. Increased expression of proinflammatory, fibrogenic, and adrenergic genes was observed in the pterygium compared to the healthy conjunctiva. Adrenergic receptors and tyrosine hydroxylase were localized in the basal region of the epithelium and within blood vessels, closely associated with immune cells. Neuroimmunomodulation plays a key role in the pathogenesis of pterygia by activating the sympathetic nervous system. At the intravascular level, norepinephrine promotes the migration of immune cells, thereby sustaining inflammation. Additionally, sympathetic nerve fibers located at the subepithelial level contribute to epithelial growth and the fibrosis associated with pterygia. Full article
Show Figures

Graphical abstract

12 pages, 4568 KiB  
Article
Histomorphometric Evaluation of Gingival Phenotypic Characteristics: A Cross-Sectional Study
by Dimitrios Papapetros, Karin Nylander and Sotirios Kalfas
Dent. J. 2025, 13(8), 350; https://doi.org/10.3390/dj13080350 - 31 Jul 2025
Viewed by 125
Abstract
Objectives: This study aims to explore the histological dimensions of the gingiva and the alveolar mucosa and to evaluate their associations with gingival phenotypic parameters, including gingival thickness (GT), keratinized tissue width (KTW), and gingival transparency. Methods: Histological and clinical assessments were [...] Read more.
Objectives: This study aims to explore the histological dimensions of the gingiva and the alveolar mucosa and to evaluate their associations with gingival phenotypic parameters, including gingival thickness (GT), keratinized tissue width (KTW), and gingival transparency. Methods: Histological and clinical assessments were performed on 45 healthy volunteers. Gingival and mucosal tissue samples were collected from the mucogingival junction region of one maxillary central incisor. Histomorphometric analysis included measurements of gingival and mucosal thickness, epithelial thickness, connective tissue thickness, epithelial papilla length and density, and keratinization. Clinical parameters included KTW and probe visibility upon insertion into the gingival sulcus. Correlations were statistically analyzed between clinical and histological parameters. Results: Probe visibility showed no significant correlations with any assessed parameter. Histological gingival thickness strongly correlated with gingival connective tissue thickness, moderately with epithelial thickness and papilla length, and weakly with papilla density. Mucosal thickness was strongly associated with connective tissue thickness and moderately with keratinization, but not with other parameters. KTW exhibited weak correlations with epithelial thickness and papilla length. Conclusions: Variability in gingival and mucosal thickness is primarily determined by connective tissue thickness, with a smaller contribution from the epithelium. Increased thickness is associated with longer, sparser epithelial papillae and with a tendency toward higher keratinization. KTW is significantly associated with epithelial thickness and papilla length, underscoring its relevance in gingival phenotype characterization. Full article
Show Figures

Figure 1

16 pages, 627 KiB  
Review
Essential Pieces of the Puzzle: The Roles of VEGF and Dopamine in Aging
by Melanie B. Thompson, Sanjay P. Tirupattur, Nandini Vishwakarma and Laxmansa C. Katwa
Cells 2025, 14(15), 1178; https://doi.org/10.3390/cells14151178 - 31 Jul 2025
Viewed by 323
Abstract
Aging is a well-known, complex physiological process characterized by progressive functional decline and increased susceptibility to disease, particularly in the cardiovascular and nervous systems. While genetic and environmental factors can shape its advancement, molecular regulators such as vascular endothelial growth factor (VEGF) and [...] Read more.
Aging is a well-known, complex physiological process characterized by progressive functional decline and increased susceptibility to disease, particularly in the cardiovascular and nervous systems. While genetic and environmental factors can shape its advancement, molecular regulators such as vascular endothelial growth factor (VEGF) and dopamine signaling have emerged as critical factors in maintaining vascular and neural health. VEGF promotes angiogenesis and tissue repair, while dopamine, primarily recognized for its neuromodulatory roles, regulates vascular tone and appears to modulate VEGF activity. Despite substantial research on their roles in cardiovascular and neurodegenerative diseases, little is known about how VEGF and dopamine interact in the aging process, particularly in healthy versus unhealthy aging contexts. This review describes existing evidence on the independent and potentially complementary roles of VEGF and dopamine in aging, emphasizing their influence on maintaining or improving neurovascular health. It also explores how lifestyle interventions may be beneficial in modulating VEGF and dopamine signaling pathways in the aging population. By addressing the current knowledge gap surrounding VEGF–dopamine crosstalk, this review highlights the need for further investigation into their combined effects and targeting molecular interaction to unlock new research avenues for innovative strategies for healthy aging and the potential treatment of age-related diseases. Full article
(This article belongs to the Special Issue Cellular and Molecular Mechanisms in Aging)
Show Figures

Graphical abstract

55 pages, 6122 KiB  
Review
Isorhamnetin: Reviewing Recent Developments in Anticancer Mechanisms and Nanoformulation-Driven Delivery
by Juie Nahushkumar Rana, Kainat Gul and Sohail Mumtaz
Int. J. Mol. Sci. 2025, 26(15), 7381; https://doi.org/10.3390/ijms26157381 - 30 Jul 2025
Viewed by 219
Abstract
Natural compounds, particularly flavonoids, have emerged as promising anticancer agents due to their various biological activities and no or negligible toxicity towards healthy tissues. Among these, isorhamnetin, a methylated flavonoid, has gained significant attention for its potential to target multiple cancer hallmarks. This [...] Read more.
Natural compounds, particularly flavonoids, have emerged as promising anticancer agents due to their various biological activities and no or negligible toxicity towards healthy tissues. Among these, isorhamnetin, a methylated flavonoid, has gained significant attention for its potential to target multiple cancer hallmarks. This review comprehensively explores the mechanisms by which isorhamnetin exerts its anticancer effects, including cell cycle regulation, apoptosis, suppression of metastasis and angiogenesis, and modulation of oxidative stress and inflammation. Notably, isorhamnetin arrests cancer cell proliferation by regulating cyclins, and CDKs induce apoptosis via caspase activation and mitochondrial dysfunction. It inhibits metastatic progression by downregulating MMPs, VEGF, and epithelial–mesenchymal transition (EMT) markers. Furthermore, its antioxidant and anti-inflammatory properties mitigate reactive oxygen species (ROS) and pro-inflammatory cytokines, restricting cancer progression and modulating tumor microenvironments. Combining isorhamnetin with other treatments was also discussed to overcome multidrug resistance. Importantly, this review integrates the recent literature (2022–2024) and highlights isorhamnetin’s roles in modulating cancer-specific signaling pathways, immune evasion, tumor microenvironment dynamics, and combination therapies. We also discuss nanoformulation-based strategies that significantly enhance isorhamnetin’s delivery and bioavailability. This positions isorhamnetin as a promising adjunct in modern oncology, capable of improving therapeutic outcomes when used alone or in synergy with conventional treatments. The future perspectives and potential research directions were also summarized. By consolidating current knowledge and identifying critical research gaps, this review positions Isorhamnetin as a potent and versatile candidate in modern oncology, offering a pathway toward safer and more effective cancer treatment strategies. Full article
(This article belongs to the Special Issue The Role of Natural Compounds in Cancer and Inflammation, 2nd Edition)
Show Figures

Figure 1

21 pages, 3471 KiB  
Review
Nanomedicine: The Effective Role of Nanomaterials in Healthcare from Diagnosis to Therapy
by Raisa Nazir Ahmed Kazi, Ibrahim W. Hasani, Doaa S. R. Khafaga, Samer Kabba, Mohd Farhan, Mohammad Aatif, Ghazala Muteeb and Yosri A. Fahim
Pharmaceutics 2025, 17(8), 987; https://doi.org/10.3390/pharmaceutics17080987 - 30 Jul 2025
Viewed by 267
Abstract
Nanotechnology is revolutionizing medicine by enabling highly precise diagnostics, targeted therapies, and personalized healthcare solutions. This review explores the multifaceted applications of nanotechnology across medical fields such as oncology and infectious disease control. Engineered nanoparticles (NPs), such as liposomes, polymeric carriers, and carbon-based [...] Read more.
Nanotechnology is revolutionizing medicine by enabling highly precise diagnostics, targeted therapies, and personalized healthcare solutions. This review explores the multifaceted applications of nanotechnology across medical fields such as oncology and infectious disease control. Engineered nanoparticles (NPs), such as liposomes, polymeric carriers, and carbon-based nanomaterials, enhance drug solubility, protect therapeutic agents from degradation, and enable site-specific delivery, thereby reducing toxicity to healthy tissues. In diagnostics, nanosensors and contrast agents provide ultra-sensitive detection of biomarkers, supporting early diagnosis and real-time monitoring. Nanotechnology also contributes to regenerative medicine, antimicrobial therapies, wearable devices, and theranostics, which integrate treatment and diagnosis into unified systems. Advanced innovations such as nanobots and smart nanosystems further extend these capabilities, enabling responsive drug delivery and minimally invasive interventions. Despite its immense potential, nanomedicine faces challenges, including biocompatibility, environmental safety, manufacturing scalability, and regulatory oversight. Addressing these issues is essential for clinical translation and public acceptance. In summary, nanotechnology offers transformative tools that are reshaping medical diagnostics, therapeutics, and disease prevention. Through continued research and interdisciplinary collaboration, it holds the potential to significantly enhance treatment outcomes, reduce healthcare costs, and usher in a new era of precise and personalized medicine. Full article
Show Figures

Figure 1

14 pages, 1308 KiB  
Review
Antibiotics in Mucogingival Surgery for Recession Treatment: A Narrative Review
by Magdalena Latkowska-Wiśniewska, Sylwia Jakubowska and Bartłomiej Górski
Antibiotics 2025, 14(8), 769; https://doi.org/10.3390/antibiotics14080769 - 30 Jul 2025
Viewed by 401
Abstract
Gingival recession is a common problem, particularly affecting oral health and esthetics, and its treatment involves surgical root coverage procedures. The aim of this narrative review is to evaluate the role of systemic antibiotic therapy in mucogingival surgery for recession treatment. The available [...] Read more.
Gingival recession is a common problem, particularly affecting oral health and esthetics, and its treatment involves surgical root coverage procedures. The aim of this narrative review is to evaluate the role of systemic antibiotic therapy in mucogingival surgery for recession treatment. The available literature does not support routine antibiotic use in systemically healthy patients undergoing recession coverage surgery. Indications for prophylactic antibiotics are restricted to individuals at high risk of infective endocarditis and immunocompromised patients with elevated susceptibility to surgical site infections. Although mucogingival surgeries are performed in a non-sterile environment, the risk of infection remains low when proper aseptic techniques and good preoperative tissue preparation are applied. The review emphasizes the importance of making clinical decisions that consider the patient’s health status and are aligned with current recommendations. It also emphasizes the necessity for prospective studies to evaluate antibiotics’ effect on recession coverage procedures outcome. To bridge the gap between contemporary evidence and clinical practice and to foster responsible use of antibiotics in periodontal plastic surgery, the authors of this review integrate current evidence and clinical guidelines into a practical tool designed to assist clinicians in making reasoned, evidence-based decisions. Full article
(This article belongs to the Special Issue Periodontal Bacteria and Periodontitis: Infections and Therapy)
Show Figures

Figure 1

17 pages, 1500 KiB  
Article
Comprehensive Receptor Repertoire and Functional Analysis of Peripheral NK Cells in Soft Tissue Sarcoma Patients
by Luana Madalena Sousa, Jani-Sofia Almeida, Tânia Fortes-Andrade, Patrícia Couceiro, Joana Rodrigues, Rúben Fonseca, Manuel Santos-Rosa, Paulo Freitas-Tavares, José Manuel Casanova and Paulo Rodrigues-Santos
Cancers 2025, 17(15), 2508; https://doi.org/10.3390/cancers17152508 - 30 Jul 2025
Viewed by 312
Abstract
Background: Soft tissue sarcomas (STSs) are a rare and heterogeneous group of mesenchymal tumors with limited response to current therapies, particularly in advanced stages. STS tumors were traditionally considered “cold” tumors, characterized by limited immune infiltration and low immunogenicity. However, emerging evidence is [...] Read more.
Background: Soft tissue sarcomas (STSs) are a rare and heterogeneous group of mesenchymal tumors with limited response to current therapies, particularly in advanced stages. STS tumors were traditionally considered “cold” tumors, characterized by limited immune infiltration and low immunogenicity. However, emerging evidence is challenging this perception, highlighting a potentially critical role for the immune system in STS biology. Objective: Building on our previous findings suggesting impaired natural killer (NK) cell activity in STS patients, we aimed to perform an in-depth characterization of peripheral NK cells in STS. Methods: Peripheral blood samples from STS patients and sex- and age-matched healthy donors were analyzed to assess NK cell degranulation, IFNγ production, and receptor repertoire. Results: Functional assays revealed a notable reduction in both degranulation and IFNγ production in NK cells from STS patients. STS patients also exhibited dysregulated expression of activating and inhibitory NK cell receptors. Principal component analysis (PCA) identified CD27 and NKp44 as critical markers for distinguishing STS patients from healthy donors. Increased CD27 expression represents a shift towards a more regulatory NK cell phenotype, and we found that CD27 expression was negatively correlated with NK cell degranulation and IFNγ production. ROC curve analysis demonstrated strong potential to distinguish between the groups for both CD27 (AUC = 0.85) and NKp44 (AUC = 0.94). Conclusion: In conclusion, STS patients exhibited impaired NK cell function, altered receptor repertoire, and a shift towards a less cytotoxic and more regulatory phenotype. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

26 pages, 7326 KiB  
Article
Cocoa Polyphenols Alter the Fecal Microbiome Without Mitigating Colitis in Mice Fed Healthy or Western Basal Diets
by Eliza C. Stewart, Mohammed F. Almatani, Marcus Hayden, Giovanni Rompato, Jeremy Case, Samuel Rice, Korry J. Hintze and Abby D. Benninghoff
Nutrients 2025, 17(15), 2482; https://doi.org/10.3390/nu17152482 - 29 Jul 2025
Viewed by 319
Abstract
Background/Objectives: Chronic inflammation and Western-style diets elevate colorectal cancer (CRC) risk, particularly in individuals with colitis, a feature of inflammatory bowel disease (IBD). Diets rich in polyphenol-containing functional foods, such as cocoa, may reduce gut inflammation and modulate the gut microbiome. This [...] Read more.
Background/Objectives: Chronic inflammation and Western-style diets elevate colorectal cancer (CRC) risk, particularly in individuals with colitis, a feature of inflammatory bowel disease (IBD). Diets rich in polyphenol-containing functional foods, such as cocoa, may reduce gut inflammation and modulate the gut microbiome. This study investigated the impact of cocoa polyphenol (CP) supplementation on inflammation and microbiome composition in mice with colitis, fed either a healthy or Western diet, before, during, and after the onset of disease. We hypothesized that CPs would attenuate inflammation and promote distinct shifts in the microbiome, especially in the context of a Western diet. Methods: A 2 × 2 factorial design tested the effects of the basal diet (AIN93G vs. total Western diet [TWD]) and CP supplementation (2.6% w/w CocoaVia™ Cardio Health Powder). Inflammation was induced using the AOM/DSS model of colitis. Results: CP supplementation did not reduce the severity of colitis, as measured by disease activity index or histopathology. CPs did not alter gene expression in healthy tissue or suppress the colitis-associated pro-inflammatory transcriptional profile in either of the two diet groups. However, fecal microbiome composition shifted significantly with CPs before colitis induction, with persistent effects on several rare taxa during colitis and recovery. Conclusions: CP supplementation did not mitigate inflammation or mucosal injury at the tissue level, nor did it affect the expression of immune-related genes. While CPs altered microbiome composition, most notably in healthy mice before colitis, these shifts did not correspond to changes in inflammatory signaling. Basal diet remained the primary determinant of inflammation, mucosal damage, and colitis severity in this model. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

18 pages, 2358 KiB  
Article
Characterizing the Temporally Dynamic Nature of Relative Growth Rates: A Kinetic Analysis on Nitrogen-, Phosphorus-, and Potassium-Limited Growth
by Andrew Sharkey, Asher Altman, Yuming Sun, Thomas K. S. Igou and Yongsheng Chen
Agriculture 2025, 15(15), 1641; https://doi.org/10.3390/agriculture15151641 - 29 Jul 2025
Viewed by 269
Abstract
Developing precision models to describe agricultural growth is a necessary step to promote sustainable agriculture and increase resource circulation. In this study, the researchers hydroponically cultivated Bibb lettuce (Lactuca sativa) across a variety of nitrogen, phosphorus, and potassium (NPK)-limited treatments and [...] Read more.
Developing precision models to describe agricultural growth is a necessary step to promote sustainable agriculture and increase resource circulation. In this study, the researchers hydroponically cultivated Bibb lettuce (Lactuca sativa) across a variety of nitrogen, phosphorus, and potassium (NPK)-limited treatments and developed robust data-driven kinetic models observing nutrient uptake, biomass growth, and tissue composition based on all three primary macronutrients. The resulting Dynamic μ model is the first to integrate plant maturity’s impact on growth rate, significantly improving model accuracy across limiting nutrients, treatments, and developmental stages. This reduced error supports this simple expansion as a practical and necessary inclusion for agricultural kinetic modeling. Furthermore, analysis of nutrient uptake refines the ideal hydroponic nutrient balance for Bibb lettuce to 132, 35, and 174 mg L−1 (N, P, and K, respectively), while qualitative cell yield analysis identifies minimum nutrient thresholds at approximately 26.2–41.7 mg-N L−1, 3.7–5.6 mg-P L−1, and 17.4–31.5 mg-K L−1 to produce compositionally healthy lettuce. These findings evaluate reclaimed wastewater’s ability to offset the fertilizer burden for lettuce by 23–45%, 14–57%, and 3–23% for N, P, and K and guide the required minimum amount of wastewater pre-processing or nutrient supplements needed to completely fulfill hydroponic nutrient demands. Full article
(This article belongs to the Section Agricultural Systems and Management)
Show Figures

Figure 1

Back to TopTop