Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = health effect of biodiesel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 6284 KiB  
Article
A Biorefinery Approach Integrating Lipid and EPS Augmentation Along with Cr (III) Mitigation by Chlorella minutissima
by Sonia Choudhary, Mansi Tiwari and Krishna Mohan Poluri
Cells 2024, 13(24), 2047; https://doi.org/10.3390/cells13242047 - 11 Dec 2024
Cited by 2 | Viewed by 1100
Abstract
The quest for cleaner and sustainable energy sources is crucial, considering the current scenario of a steep rise in energy consumption and the fuel crisis, exacerbated by diminishing fossil fuel reserves and rising pollutants. In particular, the bioaccumulation of hazardous substances like trivalent [...] Read more.
The quest for cleaner and sustainable energy sources is crucial, considering the current scenario of a steep rise in energy consumption and the fuel crisis, exacerbated by diminishing fossil fuel reserves and rising pollutants. In particular, the bioaccumulation of hazardous substances like trivalent chromium has not only disrupted the fragile equilibrium of the ecological system but also poses significant health hazards to humans. Microalgae emerged as a promising solution for achieving sustainability due to their ability to remediate contaminants and produce greener alternatives such as biofuels. This integrated approach provides an ambitious strategy to address global concerns pertaining to economic stability, environmental degradation, and the energy crisis. This study investigates the intricate defense mechanisms deployed by freshwater microalgae Chlorella minutissima in response to Cr (III) toxicity. The microalga achieved an impressive 92% removal efficiency with an IC50 value of 200 ppm, illustrating its extraordinary resilience towards chromium-induced stress. Furthermore, this research embarked on thorough explorations encompassing morphological, pigment-centric, and biochemical analyses, aimed at revealing the adaptive strategies associated with Cr (III) resilience, as well as the dynamics of carbon pool flow that contribute to enhanced lipid and extracellular polysaccharide (EPS) synthesis. The FAME profile of the biodiesel produced complies with the benchmark established by American and European fuel regulations, emphasizing its suitability as a high-quality vehicular fuel. Elevated levels of ROS, TBARS, and osmolytes (such as glycine-betaine), along with the increased activity of antioxidant enzymes (CAT, GR, and SOD), reveal the activation of robust defense mechanisms against oxidative stress caused by Cr (III). The finding of this investigation presents an effective framework for an algal-based biorefinery approach, integrating pollutant detoxification with the generation of vehicular-quality biodiesel and additional value-added compounds vital for achieving sustainability under the concept of a circular economy. Full article
Show Figures

Figure 1

18 pages, 2078 KiB  
Article
The Toxic Effects of Petroleum Diesel, Biodiesel, and Renewable Diesel Exhaust Particles on Human Alveolar Epithelial Cells
by Oskari J. Uski, Gregory Rankin, Håkan Wingfors, Roger Magnusson, Christoffer Boman, Robert Lindgren, Ala Muala, Anders Blomberg, Jenny A. Bosson and Thomas Sandström
J. Xenobiot. 2024, 14(4), 1432-1449; https://doi.org/10.3390/jox14040080 - 9 Oct 2024
Cited by 1 | Viewed by 2113
Abstract
The use of alternative diesel fuels has increased due to the demand for renewable energy sources. There is limited knowledge regarding the potential health effects caused by exhaust emissions from biodiesel- and renewable diesel-fueled engines. This study investigates the toxic effects of particulate [...] Read more.
The use of alternative diesel fuels has increased due to the demand for renewable energy sources. There is limited knowledge regarding the potential health effects caused by exhaust emissions from biodiesel- and renewable diesel-fueled engines. This study investigates the toxic effects of particulate matter (PM) emissions from a diesel engine powered by conventional petroleum diesel fuel (SD10) and two biodiesel and renewable diesel fuels in vitro. The fuels used were rapeseed methyl ester (RME), soy methyl ester (SME), and Hydrogenated Vegetable Oil (HVO), either pure or as 50% blends with SD10. Additionally, a 5% RME blend was also used. The highest concentration of polycyclic aromatic hydrocarbon emissions and elemental carbon (EC) was found in conventional diesel and the 5% RME blend. HVO PM samples also exhibited a high amount of EC. A dose-dependent genotoxic response was detected with PM from SD10, pure SME, and RME as well as their blends. Reactive oxygen species levels were several times higher in cells exposed to PM from SD10, pure HVO, and especially the 5% RME blend. Apoptotic cell death was observed in cells exposed to PM from SD10, 5% RME blend, the 50% SME blend, and HVO samples. In conclusion, all diesel PM samples, including biodiesel and renewable diesel fuels, exhibited toxicity. Full article
Show Figures

Graphical abstract

39 pages, 1204 KiB  
Review
Application of Microalgae to Wastewater Bioremediation, with CO2 Biomitigation, Health Product and Biofuel Development, and Environmental Biomonitoring
by Gesthimani Iakovidou, Aikaterini Itziou, Arsenios Tsiotsias, Evangelia Lakioti, Petros Samaras, Constantinos Tsanaktsidis and Vayos Karayannis
Appl. Sci. 2024, 14(15), 6727; https://doi.org/10.3390/app14156727 - 1 Aug 2024
Cited by 8 | Viewed by 4143
Abstract
In the current study, the cultivation of microalgae on wastewater-based substrates is investigated for an effective natural wastewater treatment that also generates biofuels and value-added products beneficial to human health. Additionally, the health of ecosystems can be evaluated via microalgae. The utilization of [...] Read more.
In the current study, the cultivation of microalgae on wastewater-based substrates is investigated for an effective natural wastewater treatment that also generates biofuels and value-added products beneficial to human health. Additionally, the health of ecosystems can be evaluated via microalgae. The utilization of microalgae as bioindicators, biofuel producers, and wastewater treatment providers, under the biorefinery concept, is covered in this article. In fact, bioremediation is feasible, and microalgae culture can be used to efficiently process a variety of effluents. Along with wastewater processing and the creation of value-added substances, bioconversion concurrently offers a viable and promising alternative for reducing CO2 greenhouse gas emissions to contribute to climate change mitigation. The microalgal biorefinery being considered as the third generation is unique in that it addresses all the aforementioned problems, in contrast to lignocellulosic biomass from agricultural waste in second-generation biorefineries and edible crops in first-generation biorefineries. In particular, one of the most promising natural resources for the manufacture of biofuel, including biodiesel, bioethanol, biomethane, and biohydrogen, is found to be microalgae. Furthermore, products of high value, like fatty acid methyl esters, astaxanthin, β-carotene, DHA, and EPA can be made. Hence, microalgal biomass offers a substitute for the development of biofertilizers, bioplastics, pharmaceuticals, cosmetics, animal and aquatic feeds, and human nutrition products, thus promoting human and environmental health. Full article
Show Figures

Figure 1

17 pages, 2598 KiB  
Article
Tissue-Specific Accumulation Profiles of Phorbol Esters in Response to Abiotic and Biotic Stresses in Jatropha curcas
by Wei Zhang, Lei Wei, Shijuan Li, Fang Chen and Ying Xu
Seeds 2024, 3(3), 324-340; https://doi.org/10.3390/seeds3030024 - 2 Jul 2024
Cited by 1 | Viewed by 1550
Abstract
Jatropha curcas L. (J. curcas), a shrub plant of the Euphorbiaceae family, has received enormous attention as a promising biofuel plant for the production of biodiesel and medical potential in ethnopharmacology. However, the tumor-promoter toxin phorbol esters present in J. curcas [...] Read more.
Jatropha curcas L. (J. curcas), a shrub plant of the Euphorbiaceae family, has received enormous attention as a promising biofuel plant for the production of biodiesel and medical potential in ethnopharmacology. However, the tumor-promoter toxin phorbol esters present in J. curcas raise concerns for health and environmental risk as its large-scale cultivation limits the use of meal obtained after oil extraction for animal feed. Here, we determined the variation of phorbol ester profiles and contents in eight J. curcas tissues by high-performance liquid chromatography (HPLC) and found phorbol esters present in all parts of the plant except the seed shell. We showed tissue-specific patterns of accumulation of phorbol esters and associated terpenoids at the transcriptional level with high transcript levels in reproductive and young tissues. Genes involved in the same module of terpenoids biosynthesis were positively correlated. We further present diverse abiotic and biotic stresses that had different effects on the accumulation of transcripts in terpenoids shared and branched terpenoid pathways in plant seedlings. The fine-tuning of terpenoids biosynthesis may link with ecological functions in plants under extreme environments and defense against pathogens. Full article
Show Figures

Figure 1

17 pages, 734 KiB  
Review
Detoxification Methods of Jatropha curcas Seed Cake and Its Potential Utilization as Animal Feed
by Cândida Rita de Barros, Luís Miguel Mendes Ferreira, Irene Fraga, José Luís Mourão and Miguel António Machado Rodrigues
Fermentation 2024, 10(5), 256; https://doi.org/10.3390/fermentation10050256 - 14 May 2024
Cited by 2 | Viewed by 2624
Abstract
Jatropha seed cake (JSC) derived from Jatropha curcas seeds is a by-product of biodiesel production and, due to its high protein content, has been considered as a potential animal feed ingredient. However, the presence of toxic compounds such as phorbol esters and other anti-nutritional [...] Read more.
Jatropha seed cake (JSC) derived from Jatropha curcas seeds is a by-product of biodiesel production and, due to its high protein content, has been considered as a potential animal feed ingredient. However, the presence of toxic compounds such as phorbol esters and other anti-nutritional factors limits its use in animal feeding. Several detoxification approaches have been used to tackle these constraints and this review aims to summarize the recent advances in JSC treatment aiming to enhance its potential as an animal feedstuff. The review first provides an overview of the structure and composition of phorbol esters and other anti-nutritional compounds, discussing its toxic effects on different animal species. It then explores several detoxification methodologies giving special emphasis to its effects on the nutritional composition of JSC and on the use of the treated substrate as a feed ingredient in fish, poultry, pigs, and ruminants, highlighting their growth performance, nutrient utilization, and animal health issues. Overall, the review concludes that these treatments hold great potential for the detoxification and utilization of JSC as an animal feed ingredient. However, further research is needed to optimize the treatment conditions, evaluate the economic feasibility, and assess the long-term effects of treated JSC on animal health and product quality. Full article
(This article belongs to the Special Issue Bioconversion of Agricultural Wastes into High-Nutrition Animal Feed)
Show Figures

Figure 1

23 pages, 3242 KiB  
Article
Concordance between In Vitro and In Vivo Relative Toxic Potencies of Diesel Exhaust Particles from Different Biodiesel Blends
by Subramanian Karthikeyan, Dalibor Breznan, Errol M. Thomson, Erica Blais, Renaud Vincent and Premkumari Kumarathasan
Toxics 2024, 12(4), 290; https://doi.org/10.3390/toxics12040290 - 16 Apr 2024
Cited by 5 | Viewed by 2148
Abstract
Diesel exhaust particles (DEPs) contribute to air pollution exposure-related adverse health impacts. Here, we examined in vitro, and in vivo toxicities of DEPs from a Caterpillar C11 heavy-duty diesel engine emissions using ultra-low-sulfur diesel (ULSD) and biodiesel blends (20% v/v) [...] Read more.
Diesel exhaust particles (DEPs) contribute to air pollution exposure-related adverse health impacts. Here, we examined in vitro, and in vivo toxicities of DEPs from a Caterpillar C11 heavy-duty diesel engine emissions using ultra-low-sulfur diesel (ULSD) and biodiesel blends (20% v/v) of canola (B20C), soy (B20S), or tallow–waste fry oil (B20T) in ULSD. The in vitro effects of DEPs (DEPULSD, DEPB20C, DEPB20S, and DEPB20T) in exposed mouse monocyte/macrophage cells (J774A.1) were examined by analyzing the cellular cytotoxicity endpoints (CTB, LDH, and ATP) and secreted proteins. The in vivo effects were assessed in BALB/c mice (n = 6/group) exposed to DEPs (250 µg), carbon black (CB), or saline via intratracheal instillation 24 h post-exposure. Bronchoalveolar lavage fluid (BALF) cell counts, cytokines, lung/heart mRNA, and plasma markers were examined. In vitro cytotoxic potencies (e.g., ATP) and secreted TNF-α were positively correlated (p < 0.05) with in vivo inflammatory potency (BALF cytokines, lung/heart mRNA, and plasma markers). Overall, DEPULSD and DEPB20C appeared to be more potent compared to DEPB20S and DEPB20T. These findings suggested that biodiesel blend-derived DEP potencies can be influenced by biodiesel sources, and inflammatory process- was one of the potential underlying toxicity mechanisms. These observations were consistent across in vitro and in vivo exposures, and this work adds value to the health risk analysis of cleaner fuel alternatives. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Figure 1

22 pages, 3324 KiB  
Article
Biodiesel from Bark and Black Liquor—A Techno-Economic, Social, and Environmental Assessment
by Julia Hansson, Sofia Klugman, Tomas Lönnqvist, Nilay Elginoz, Julia Granacher, Pavinee Hasselberg, Fredrik Hedman, Nora Efraimsson, Sofie Johnsson, Sofia Poulikidou, Sahar Safarian and Kåre Tjus
Energies 2024, 17(1), 99; https://doi.org/10.3390/en17010099 - 23 Dec 2023
Cited by 3 | Viewed by 1840
Abstract
A techno-economic assessment and environmental and social sustainability assessments of novel Fischer–Tropsch (FT) biodiesel production from the wet and dry gasification of biomass-based residue streams (bark and black liquor from pulp production) for transport applications are presented. A typical French kraft pulp mill [...] Read more.
A techno-economic assessment and environmental and social sustainability assessments of novel Fischer–Tropsch (FT) biodiesel production from the wet and dry gasification of biomass-based residue streams (bark and black liquor from pulp production) for transport applications are presented. A typical French kraft pulp mill serves as the reference case and large-scale biofuel-production-process integration is explored. Relatively low greenhouse gas emission levels can be obtained for the FT biodiesel (total span: 16–83 g CO2eq/MJ in the assessed EU countries). Actual process configuration and low-carbon electricity are critical for overall performance. The site-specific social assessment indicates an overall positive social effect for local community, value chain actors, and society. Important social aspects include (i) job creation potential, (ii) economic development through job creation and new business opportunities, and (iii) health and safety for workers. For social risks, the country of implementation is important. Heat and electricity use are the key contributors to social impacts. The estimated production cost for biobased crude oil is about 13 €/GJ, and it is 14 €/GJ (0.47 €/L or 50 €/MWh) for the FT biodiesel. However, there are uncertainties, i.e., due to the low technology readiness level of the gasification technologies, especially wet gasification. However, the studied concept may provide substantial GHG reduction compared to fossil diesel at a relatively low cost. Full article
(This article belongs to the Special Issue Conversion of Biomass to Fuel and Commodity Chemicals)
Show Figures

Figure 1

12 pages, 2153 KiB  
Article
Alkaline Phosphatase PhoD Mutation Induces Fatty Acid and Long-Chain Polyunsaturated Fatty Acid (LC-PUFA)-Bound Phospholipid Production in the Model Diatom Phaeodactylum tricornutum
by Kaidian Zhang, Jiashun Li, Jie Cheng and Senjie Lin
Mar. Drugs 2023, 21(11), 560; https://doi.org/10.3390/md21110560 - 26 Oct 2023
Cited by 1 | Viewed by 2626
Abstract
With rapid growth and high lipid contents, microalgae have become promising environmentally friendly candidates for renewable biodiesel and health supplements in our era of global warming and energy depletion. Various pathways have been explored to enhance algal lipid production, especially gene editing. Previously, [...] Read more.
With rapid growth and high lipid contents, microalgae have become promising environmentally friendly candidates for renewable biodiesel and health supplements in our era of global warming and energy depletion. Various pathways have been explored to enhance algal lipid production, especially gene editing. Previously, we found that the functional loss of PhoD-type alkaline phosphatase (AP), a phosphorus-stress indicator in phytoplankton, could lead to increased lipid contents in the model diatom Phaeodactylum tricornutum, but how the AP mutation may change lipid composition remains unexplored. This study addresses the gap in the research and investigates the effects of PhoD-type AP mutation on the lipid composition and metabolic regulation in P. tricornutum using transcriptomic and lipidomic analyses. We observed significantly modified lipid composition and elevated production of fatty acids, lysophosphatidylcholine, lysophosphatidylethanolamine, ceramide, phosphatidylinositol bisphosphate, and monogalactosylmonoacylglycerol after PhoD_45757 mutation. Meanwhile, genes involved in fatty acid biosynthesis were upregulated in mutant cells. Moreover, the mutant exhibited increased contents of ω-3 long-chain polyunsaturated fatty acid (LC-PUFA)-bound phospholipids, indicating that PhoD_45757 mutation could improve the potential bioavailability of PUFAs. Our findings indicate that AP mutation could influence cellular lipid synthesis and probably redirect carbon toward lipid production and further demonstrate that AP mutation is a promising approach for the development of high-value microalgal strains for biomedical and other applications. Full article
(This article belongs to the Special Issue Exploring of Microalgae for Biotechnology Applications)
Show Figures

Graphical abstract

29 pages, 2281 KiB  
Review
Zero-Carbon and Carbon-Neutral Fuels: A Review of Combustion Products and Cytotoxicity
by Chao Jin, Xiaodan Li, Teng Xu, Juntong Dong, Zhenlong Geng, Jia Liu, Chenyun Ding, Jingjing Hu, Ahmed El ALAOUI, Qing Zhao and Haifeng Liu
Energies 2023, 16(18), 6507; https://doi.org/10.3390/en16186507 - 9 Sep 2023
Cited by 8 | Viewed by 3941
Abstract
The use of zero-carbon and carbon-neutral fuels reduces emissions of conventional pollutants, but their emissions can be toxic and have various adverse effects on human health. This article reviews the possible combustion products of zero-carbon and carbon-neutral fuels, as well as their cytotoxic [...] Read more.
The use of zero-carbon and carbon-neutral fuels reduces emissions of conventional pollutants, but their emissions can be toxic and have various adverse effects on human health. This article reviews the possible combustion products of zero-carbon and carbon-neutral fuels, as well as their cytotoxic effects and potential health risks. At the same time, the review outlines biological models and toxicity detection methods commonly used in pollutant toxicity studies. Metals, nitrogen oxides (NOX), and ammonia (NH3) emitted from the combustion of metal fuels, hydrogen fuels, and ammonia fuels in zero-carbon fuels are harmful to human health. Exhaust emissions from carbon-neutral fuels, particularly biodiesel, and their blends with gasoline/diesel are cytotoxic, leading to severe cellular damage, such as oxidative damage, inflammatory responses, DNA damage, cell death, or apoptosis. Moreover, the normal function of the human body’s respiratory, cardiovascular, immune, digestive, urinary, and nervous systems may also be impacted by these fuel emissions according to cytotoxic research. Cytotoxicity of fuel combustion products is usually related to the fuel type, time, dose, and cell line used in the experiment. This review provides some ideas for the exhaust emission management of zero-carbon and carbon-neutral fuels and human health assessment. It also presents a theoretical and experimental basis for further research, including in vivo experiments. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

17 pages, 3793 KiB  
Article
Comparable Response Following Exposure to Biodiesel and Diesel Exhaust Particles in Advanced Multicellular Human Lung Models
by Mizanur Rahman, Swapna Upadhyay, Koustav Ganguly, Micol Introna, Jie Ji, Christoffer Boman, Ala Muala, Anders Blomberg, Thomas Sandström and Lena Palmberg
Toxics 2023, 11(6), 532; https://doi.org/10.3390/toxics11060532 - 14 Jun 2023
Cited by 5 | Viewed by 2703
Abstract
Biodiesel is considered to be a sustainable alternative for fossil fuels such as petroleum-based diesel. However, we still lack knowledge about the impact of biodiesel emissions on humans, as airways and lungs are the primary target organs of inhaled toxicants. This study investigated [...] Read more.
Biodiesel is considered to be a sustainable alternative for fossil fuels such as petroleum-based diesel. However, we still lack knowledge about the impact of biodiesel emissions on humans, as airways and lungs are the primary target organs of inhaled toxicants. This study investigated the effect of exhaust particles from well-characterized rapeseed methyl ester (RME) biodiesel exhaust particles (BDEP) and petro-diesel exhaust particles (DEP) on primary bronchial epithelial cells (PBEC) and macrophages (MQ). The advanced multicellular physiologically relevant bronchial mucosa models were developed using human primary bronchial epithelial cells (PBEC) cultured at air–liquid interface (ALI) in the presence or absence of THP-1 cell-derived macrophages (MQ). The experimental set-up used for BDEP and DEP exposures (18 µg/cm2 and 36 µg/cm2) as well as the corresponding control exposures were PBEC-ALI, MQ-ALI, and PBEC co-cultured with MQ (PBEC-ALI/MQ). Following exposure to both BDEP and DEP, reactive oxygen species as well as the stress protein heat shock protein 60 were upregulated in PBEC-ALI and MQ-ALI. Expression of both pro-inflammatory (M1: CD86) and repair (M2: CD206) macrophage polarization markers was increased in MQ-ALI after both BDEP and DEP exposures. Phagocytosis activity of MQ and the phagocytosis receptors CD35 and CD64 were downregulated, whereas CD36 was upregulated in MQ-ALI. Increased transcript and secreted protein levels of CXCL8, as well as IL-6 and TNF-α, were detected following both BDEP and DEP exposure at both doses in PBEC-ALI. Furthermore, the cyclooxygenase-2 (COX-2) pathway, COX-2-mediated histone phosphorylation and DNA damage were all increased in PBEC-ALI following exposure to both doses of BDEP and DEP. Valdecoxib, a COX-2 inhibitor, reduced the level of prostaglandin E2, histone phosphorylation, and DNA damage in PBEC-ALI following exposure to both concentrations of BDEP and DEP. Using physiologically relevant multicellular human lung mucosa models with human primary bronchial epithelial cells and macrophages, we found BDEP and DEP to induce comparable levels of oxidative stress, inflammatory response, and impairment of phagocytosis. The use of a renewable carbon-neutral biodiesel fuel does not appear to be more favorable than conventional petroleum-based alternative, as regards of its potential for adverse health effects. Full article
(This article belongs to the Special Issue Exposure to Air Pollution and Respiratory Health Effects)
Show Figures

Graphical abstract

17 pages, 1817 KiB  
Review
Nanocatalyst-Based Biofuel Generation: An Update, Challenges and Future Possibilities
by Atreyi Pramanik, Anis Ahmad Chaudhary, Aashna Sinha, Kundan Kumar Chaubey, Mohammad Saquib Ashraf, Nosiba Suliman Basher, Hassan Ahmad Rudayni, Deen Dayal and Sanjay Kumar
Sustainability 2023, 15(7), 6180; https://doi.org/10.3390/su15076180 - 4 Apr 2023
Cited by 12 | Viewed by 4470
Abstract
Aggrandize industrialization and urbanization have resulted in many issues, such as increased energy demand, a plethora of waste output, and negative environmental consequences. As a result, there is excessive exploitation and over-usage of fuels and finite resources, which is paving the path for [...] Read more.
Aggrandize industrialization and urbanization have resulted in many issues, such as increased energy demand, a plethora of waste output, and negative environmental consequences. As a result, there is excessive exploitation and over-usage of fuels and finite resources, which is paving the path for the exhaustion of fuels. Extensive use of these fossil-derived fuels has caused serious threats to the environment in terms of greenhouse gases emission leading to breathing troubles and other associated health hazards. In order to mitigate the harmful effects of fossil-derived fuels, researchers are more focused towards the production and application of bio-based fuels like bioethanol, biodiesel, biohydrogen etc. These biofuels are produced from crops and edible/non-edible materials and emit much lower pollution compared to fossil-derived fuels. Even though biofuels are effective alternatives, high operational costs with low production volume are the major limitations of this process, which the available technologies cannot handle. With increasing application of nanoparticles as catalysts in several sectors due to its unique properties such as high catalytic activity, surface to volume ratio, mechanical properties, etc., its application in biofuels production has been explored recently. The present review focuses on the application of nanocatalysts in various stages of biofuel production, different types of nanocatalyst used in the innovative era and for biofuels production and their merits and demerits. The supply of biofuels, such as feedstock is large, and with improved processing, we may be able to significantly lower our reliance on fossil fuels. The present review discusses the current updates, future possibilities, and challenges of biofuels production to help make the country self-reliant in the field of green energy. Full article
(This article belongs to the Special Issue Energy in the 21st Century Prospects and Sustainability)
Show Figures

Figure 1

20 pages, 2827 KiB  
Article
Emissions of PAHs, Nitro-PAHs and Quinones (Oxy-PAHs) Associated to PM1.0 and PM2.5 Emitted by a Diesel Engine Fueled with Diesel-Biodiesel-Ethanol Blends
by Joilson Nascimento Paim, Aldenor Gomes Santos, Rennan G. O. Araujo, Madson Moreira Nascimento, Jailson Bittencourt De Andrade and Lilian Lefol Nani Guarieiro
Atmosphere 2023, 14(4), 656; https://doi.org/10.3390/atmos14040656 - 31 Mar 2023
Cited by 6 | Viewed by 3135
Abstract
Emissions of PAH, nitro-PAHs, and oxy-PAHs from a diesel engine fueled with diesel-biodiesel-ethanol blends need to be controlled and reduced, as they are unregulated emissions harmful to the environment and human health. The objective of this work was to investigate the effect of [...] Read more.
Emissions of PAH, nitro-PAHs, and oxy-PAHs from a diesel engine fueled with diesel-biodiesel-ethanol blends need to be controlled and reduced, as they are unregulated emissions harmful to the environment and human health. The objective of this work was to investigate the effect of ethanol concentration on diesel engine emissions when fueled with diesel–biodiesel–ethanol blends. Ethanol was added with biodiesel–diesel blends. Diesel B7 and two ternary blends, B7E3 and B7E10, with 3% and 10% ethanol, were tested and studied in a diesel engine to determine engine performance characteristics and particulate matter emissions and to quantify polycyclic aromatic compounds (PACs) associated with PM1.0 and PM2.5. Under the same engine conditions, 18 PAHs, 27 nitro-PAHs, and 6 quinones (oxy-PAHs) were determined by GC–MS in real samples obtained from the engine. The mean concentrations of PACs found in the B7, B7E3, and B7E10 blends for PM1.0 ranged from 0.1 µg m−3 (coronene) to 118.1 µg m−3 (2-nitrofluorene). The concentrations for PM2.5 ranged from 0.1 µg m−3 (acenaphthylene) to 99.7 µg m−3 (2-nitrofluorene). Potent mutagens benzanthrone (BA) and 3-nitrobenzanthrone (3-NBA) were found at concentrations ranging from 0.10 µg m−3 to 1.9 µg m−3 and 0.3 µg m−3 to 1.6 µg m−3, respectively. Low molecular weight (LMW) PAHs were mainly PACs bounded to the PM1.0 and PM2.5 particles emitted by B7E10. Flow properties were improved by adding 3% and 10% ethanol to biodiesel. B7E3 and B7E10 blends presented low fuel consumption and a reduction in the emission factor (EF) by the engine. B7E10 blending showed a smaller total concentration of ∑PAH (26.8 µg m−3), ∑nitro-PAH (85.4 µg m−3), and ∑oxy-PAH (6.0 µg m−3) associated with PM2.5 particles compared PM1.0. Full article
(This article belongs to the Special Issue Air Pollution Exposure and Health Impact Assessment)
Show Figures

Figure 1

23 pages, 2939 KiB  
Article
Respiratory Health Effects of In Vivo Sub-Chronic Diesel and Biodiesel Exhaust Exposure
by Katherine R. Landwehr, Ryan Mead-Hunter, Rebecca A. O’Leary, Anthony Kicic, Benjamin J. Mullins and Alexander N. Larcombe
Int. J. Mol. Sci. 2023, 24(6), 5130; https://doi.org/10.3390/ijms24065130 - 7 Mar 2023
Cited by 5 | Viewed by 2501
Abstract
Biodiesel, which can be made from a variety of natural oils, is currently promoted as a sustainable, healthier replacement for commercial mineral diesel despite little experimental data supporting this. The aim of our research was to investigate the health impacts of exposure to [...] Read more.
Biodiesel, which can be made from a variety of natural oils, is currently promoted as a sustainable, healthier replacement for commercial mineral diesel despite little experimental data supporting this. The aim of our research was to investigate the health impacts of exposure to exhaust generated by the combustion of diesel and two different biodiesels. Male BALB/c mice (n = 24 per group) were exposed for 2 h/day for 8 days to diluted exhaust from a diesel engine running on ultra-low sulfur diesel (ULSD) or Tallow or Canola biodiesel, with room air exposures used as control. A variety of respiratory-related end-point measurements were assessed, including lung function, responsiveness to methacholine, airway inflammation and cytokine response, and airway morphometry. Exposure to Tallow biodiesel exhaust resulted in the most significant health impacts compared to Air controls, including increased airway hyperresponsiveness and airway inflammation. In contrast, exposure to Canola biodiesel exhaust resulted in fewer negative health effects. Exposure to ULSD resulted in health impacts between those of the two biodiesels. The health effects of biodiesel exhaust exposure vary depending on the feedstock used to make the fuel. Full article
Show Figures

Figure 1

20 pages, 3578 KiB  
Article
Environmental Impacts of Biodiesel Production Cycle from Farm to Manufactory: An Application of Sustainable Systems Engineering
by Ali Motevali, Niusha Hooshmandzadeh, Ebrahim Fayyazi, Mohammad Valipour and Jun Yue
Atmosphere 2023, 14(2), 399; https://doi.org/10.3390/atmos14020399 - 18 Feb 2023
Cited by 27 | Viewed by 7597
Abstract
One of the key challenges in using fossil fuels is the environmental impacts of these energy sources, and to reduce these destructive effects, the use of renewable energy sources (biofuels) is necessary. One of the important biofuels is biodiesel, which can be produced [...] Read more.
One of the key challenges in using fossil fuels is the environmental impacts of these energy sources, and to reduce these destructive effects, the use of renewable energy sources (biofuels) is necessary. One of the important biofuels is biodiesel, which can be produced from cottonseed. To properly manage the chain dealing with biodiesel production from the cottonseed chain (from farm to manufactory), environmental hotspots must be pinpointed. In the present study, it was attempted to examine the environmental impacts of the biodiesel production cycle from cottonseed (agronomic stages, ginning, oiling, and biodiesel production). The data obtained in all three stages were analyzed by the Impact 2002+ method in the SimaPro software. The highest contribution to creating environmental indicators at the agricultural stage was related to the use of nitrogen fertilizers, direct emission from the farm and fossil fuels, the ginning and oiling stage involving the use of diesel fuel and sulfuric acid, and the production of biodiesel in the manufactory involving the use of methanol and electricity. The potential environmental impacts of a functional unit of 1 kg of biodiesel include: human health, 9.05–10−6 (DAYLY); ecosystem quality, 1.369 (PDF*m2*year); climate changes, (kg CO2 eq.) 17.247; and resources (MJ primary), 89.116. Results showed that agriculture has more significant participation in the environmental impact than other sections (ginning and oiling and biodiesel production), especially due to the application of fertilizers and fuel. Surveying the environmental indicators of the results showed that at the agricultural stage, the human health indicator is 10.43, 1.21, and 5.32 times higher than the ecosystem quality, climate change, and resource indicators, respectively; at the ginning and oiling stages, it is 2.35, 31.68, and 2.09 times higher, respectively; and at the stage of biodiesel production in the manufactory, it is 16.41, 1.96, and 0.99 times higher, respectively, in terms of the destructive effects. The overall results showed that the hotspot points in the present study can be largely modified by reducing the consumption of nitrogen fertilizers, using new equipment and machinery, ginning and oiling, and using fewer methanol ratios than oil. Full article
(This article belongs to the Section Air Pollution Control)
Show Figures

Figure 1

24 pages, 2147 KiB  
Review
Biodiesel Emissions: A State-of-the-Art Review on Health and Environmental Impacts
by Abdulelah Aljaafari, I. M. R. Fattah, M. I. Jahirul, Yuantong Gu, T. M. I. Mahlia, Md. Ariful Islam and Mohammad S. Islam
Energies 2022, 15(18), 6854; https://doi.org/10.3390/en15186854 - 19 Sep 2022
Cited by 54 | Viewed by 9856
Abstract
Biodiesel is an alternative source of fuel for various automotive applications. Because of the increasing demand for energy and the scarcity of fossil fuels, researchers have turned their attention to biodiesel production from various sources in recent years. The production of biofuels from [...] Read more.
Biodiesel is an alternative source of fuel for various automotive applications. Because of the increasing demand for energy and the scarcity of fossil fuels, researchers have turned their attention to biodiesel production from various sources in recent years. The production of biofuels from organic materials and waste components allows for the use of these waste resources in transporting resources and people over long distances. As a result, developing sustainable measures for this aspect of life is critical, as knowledge of appropriate fuel sources, corresponding emissions, and health impacts will benefit the environment and public health assessment, which is currently lacking in the literature. This study investigates biodiesel’s composition and production process, in addition to biodiesel emissions and their associated health effects. Based on the existing literature, a detailed analysis of biodiesel production from vegetable oil crops and emissions was undertaken. This study also considered vegetable oil sources, such as food crops, which can have a substantial impact on the environment if suitable growing procedures are not followed. Incorporating biodegradable fuels as renewable and sustainable solutions decreases pollution to the environment. The effects of biodiesel exhaust gas and particulates on human health were also examined. According to epidemiologic studies, those who have been exposed to diesel exhaust have a 1.2–1.5 times higher risk of developing lung cancer than those who have not. In addition, for every 24 parts per billion increase in NO2 concentration, symptom prevalence increases 2.7-fold. Research also suggests that plain biodiesel combustion emissions are more damaging than petroleum diesel fuel combustion emissions. A comprehensive analysis of biodiesel production, emissions, and health implications would advance this field’s understanding. Full article
Show Figures

Figure 1

Back to TopTop