Zero-Carbon and Carbon-Neutral Fuels: A Review of Combustion Products and Cytotoxicity
Abstract
:1. Introduction
2. Zero-Carbon and Carbon-Neutral Fuel Combustion Products
2.1. Zero-Carbon Fuel Combustion Products
2.1.1. Metal Fuels
2.1.2. Hydrogen
2.1.3. Ammonia
2.2. Carbon-Neutral Fuel Combustion Products
2.2.1. Alcohol Fuels
2.2.2. Ether Fuels
2.2.3. Biodiesel
2.2.4. Blended Fuels
3. Toxicity of Zero-Carbon Fuels
4. Toxicity of Biodiesel and Biodiesel Blends
4.1. Types of Cytotoxic Effects
4.2. Exposure of Specific Cell Lines in Different Biological Systems
4.2.1. Exposure of Respiratory System Cell Lines
4.2.2. Exposure of Cardiovascular System Cell Lines
4.2.3. Exposure of Immune System Cell Lines
4.2.4. Exposure of Skin and Other System Cell Lines
4.3. Degree of Cytotoxic of Biodiesel
4.3.1. Lower Toxicity Than Diesel
4.3.2. Higher Toxicity Than Diesel
4.3.3. Causes of the Toxicity Contradiction
5. Toxicity of Alcohol and Alcohol Blends
5.1. Exposure of Respiratory System Cell Lines
5.2. Exposure of Immune System Cell Lines
5.3. Exposure of Other System Cell Lines
6. Toxicity of Gasoline/Diesel—Biodiesel—Alcohol/Ether Blends
7. Biological Models and Methods for Toxicity Assessment
7.1. Biological Models
7.2. Toxicity Detection Methods
8. Conclusions and Prospect
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
NOx | Nitrogen Oxides |
HC | Hydrocarbon |
CO | Carbon Monoxide |
PM | Particulate Matter |
CO2 | Carbon Dioxide |
VOCs | Volatile Organic Compounds |
NO | Nitric Oxide |
NO2 | Nitrogen Dioxide |
N2O | Nitrous Oxide |
MAHs | Monocyclic aromatic hydrocarbons |
PAHs | Polycyclic aromatic hydrocarbons |
LDH | Lactate Dehydrogenase |
SOF | Soluble organic compounds |
EOM | Extractable organic matter |
AK | Adenylate Kinase |
ROS | Reactive oxygen species |
SOD | Superoxide dismutase |
COX-2 | Cyclooxygenase-2 |
CYP1A1 | Cytochrome P450 1A1 |
CYP1B1 | Cytochrome P450 1B1 |
8-OhdG | 8-hydroxydeoxyguanosine |
TUNEL | TdT-mediated dUTP nick end labeling |
HVO | Hydrogenated vegetable oil |
SSBs | Single-strand breaks |
MN | Micronucleus |
NQO1 | NAD (P)H: Quinone oxidoreductase 1 |
PPAR | Peroxisome proliferator-activated receptor |
[3H]-TdR | [3H] thymidine deoxyribose |
BrdU | 5-bromo-2-deoxyuridine |
EdU | 5-ethynyl-2′-deoxyuridine |
References
- Ramos, J.L.; Pakuts, B.; Godoy, P.; Garcia-Franco, A.; Duque, E. Addressing the energy crisis: Using microbes to make biofuels. Microb. Biotechnol. 2022, 15, 1026–1030. [Google Scholar] [CrossRef]
- EI. Statistical Review of World Energy. 2023. Available online: https://www.energyinst.org/statistical-review (accessed on 2 August 2023).
- Escobar, J.C.; Lora, E.S.; Venturini, O.J.; Yáñez, E.E.; Castillo, E.F.; Almazan, O. Biofuels: Environment, technology and food security. Renew. Sustain. Energy Rev. 2009, 13, 1275–1287. [Google Scholar] [CrossRef]
- IEA. Global Energy Review. 2021. Available online: https://www.iea.org/reports/global-energy-review-2021 (accessed on 16 May 2023).
- Sharma, S.; Agarwal, S.; Jain, A. Significance of Hydrogen as Economic and Environmentally Friendly Fuel. Energies 2021, 14, 7389. [Google Scholar] [CrossRef]
- Xue, W.; Zhan, Q.; Zhang, Q.; Wu, Z. Spatiotemporal Variations of Particulate and Gaseous Pollutants and Their Relations to Meteorological Parameters: The Case of Xiangyang, China. Int. J. Environ. Res. Public Health 2020, 17, 136. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Zhang, H. Impact of ambient air pollution on physical activity and sedentary behavior in children. BMC Public Health 2023, 23, 357. [Google Scholar] [CrossRef]
- Mendoza-Villafuerte, P.; Suarez-Bertoa, R.; Giechaskiel, B.; Riccobono, F.; Bulgheroni, C.; Astorga, C.; Perujo, A. NOx, NH3, N2O and PN real driving emissions from a Euro VI heavy-duty vehicle. Impact of regulatory on-road test conditions on emissions. Sci. Total Environ. 2017, 609, 546–555. [Google Scholar] [CrossRef]
- Wallington, T.J.; Anderson, J.E.; Dolan, R.H.; Winkler, S.L. Vehicle Emissions and Urban Air Quality: 60 Years of Progress. Atmosphere 2022, 13, 650. [Google Scholar] [CrossRef]
- Park, J.; Shin, M.; Lee, J.; Lee, J. Estimating the effectiveness of vehicle emission regulations for reducing NOx from light-duty vehicles in Korea using on-road measurements. Sci. Total Environ. 2021, 767, 144250. [Google Scholar] [CrossRef]
- Selleri, T.; Melas, A.D.; Joshi, A.; Manara, D.; Perujo, A.; Suarez-Bertoa, R. An Overview of Lean Exhaust deNOx Aftertreatment Technologies and NOx Emission Regulations in the European Union. Catalysts 2021, 11, 404. [Google Scholar] [CrossRef]
- Warkins, J.; Tao, T.; Shen, M.; Lyu, S. Application of Low-Mass Corning® FLORA® Substrates for Cold-Start Emissions Reduction to Meet Upcoming LEV III SULEV30 Regulation Requirement; SAE Technical Paper, SAE International: Warrendale, PA, USA, 2020. [Google Scholar] [CrossRef]
- Cheng, Y.; Chow, J.C.; Watson, J.G.; Zhou, J.; Liu, S.; Cao, J. Decreasing concentrations of carbonaceous aerosols in China from 2003 to 2013. Sci. Rep. 2021, 11, 5352. [Google Scholar] [CrossRef] [PubMed]
- Pushpaanjali, G.; Arivarasu, L.; Rani, L.S. Global Renewable Energy. J. Complement. Med. Res. 2020, 11, 95–101. [Google Scholar] [CrossRef]
- Sergio, M.; Antonio, D.A.; Paolo, R. A dynamic decision model for energy-efficient scheduling of manufacturing system with renewable energy supply. J. Clean. Prod. 2020, 270, 122028. [Google Scholar] [CrossRef]
- Notton, G.; Nivet, M.-L.; Voyant, C.; Paoli, C.; Darras, C.; Motte, F.; Fouilloy, A. Intermittent and stochastic character of renewable energy sources: Consequences, cost of intermittence and benefit of forecasting. Renew. Sustain. Energy Rev. 2018, 87, 96–105. [Google Scholar] [CrossRef]
- Zheng, X.; Yang, Y.; Chen, S.; Zhang, L. Slow photons for solar fuels. Chin. J. Catal. 2018, 39, 379–389. [Google Scholar] [CrossRef]
- Kalamaras, E.; Maroto-Valer, M.M.; Shao, M.; Xuan, J.; Wang, H. Solar carbon fuel via photoelectrochemistry. Catal. Today 2018, 317, 56–75. [Google Scholar] [CrossRef]
- Yadav, D.; Banerjee, R. A review of solar thermochemical processes. Renew. Sustain. Energy Rev. 2016, 54, 497–532. [Google Scholar] [CrossRef]
- Qu, W.; Hong, H.; Jin, H. A spectral splitting solar concentrator for cascading solar energy utilization by integrating photovoltaics and solar thermal fuel. Appl. Energy 2019, 248, 162–173. [Google Scholar] [CrossRef]
- Hani, A.; Hameed, B.H. Electrofuels as emerging new green alternative fuel: A review of recent literature. Energy Convers. Manag. 2022, 254, 115213. [Google Scholar] [CrossRef]
- Brynolf, S.; Taljegard, M.; Grahn, M.; Hansson, J. Electrofuels for the transport sector: A review of production costs. Renew. Sustain. Energy Rev. 2018, 81, 1887–1905. [Google Scholar] [CrossRef]
- Keasling, J.; GarciaMartin, H.; Lee, T.S.; Mukhopadhyay, A.W.; Singer, S.; Sundstrom, E. Microbial production of advanced biofuels. Nat. Rev. Microbiol. 2021, 19, 701–715. [Google Scholar] [CrossRef]
- Tobío-Pérez, I.; Alfonso-Cardero, A.; Díaz-Domínguez, Y.; Pohl, S.; Piloto-Rodríguez, R.; Lapuerta, M. Thermochemical Conversion of Sargassum for Energy Production: A Comprehensive Review. BioEnergy Res. 2022, 15, 1872–1893. [Google Scholar] [CrossRef]
- Rodionova, M.V.; Poudyal, R.S.; Tiwari, I.; Voloshin, R.A.; Zharmukhamedov, S.K.; Nam, H.G.; Zayadan, B.K.; Bruce, B.D.; Hou, H.J.M.; Allakhverdiev, S.I. Biofuel production: Challenges and opportunities. Int. J. Hydrogen Energy 2017, 42, 8450–8461. [Google Scholar] [CrossRef]
- Panahi, H.K.S.; Dehhaghi, M.; Guillemin, G.J.; Gupta, V.K.; Lam, S.S.; Aghbashlo, M.; Tabatabaei, M. A comprehensive review on anaerobic fungi applications in biofuels production. Sci. Total Environ. 2022, 829, 154521. [Google Scholar] [CrossRef]
- Bergthorson, J.M. Recyclable metal fuels for clean and compact zero-carbon power. Prog. Energy Combust. Sci. 2018, 68, 169–196. [Google Scholar] [CrossRef]
- Marzi, E.; Morini, M.; Gambarotta, A. Analysis of the Status of Research and Innovation Actions on Electrofuels under Horizon 2020. Energies 2022, 15, 618. [Google Scholar] [CrossRef]
- Li, S.; Li, X.; Ho, S.-H. Microalgae as a solution of third world energy crisis for biofuels production from wastewater toward carbon neutrality: An updated review. Chemosphere 2022, 291, 132863. [Google Scholar] [CrossRef]
- Han, X.; Wang, Z.; Costa, M.; Sun, Z.; He, Y.; Cen, K. Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3/H2/air, NH3/CO/air and NH3/CH4/air premixed flames. Combust. Flame 2019, 206, 214–226. [Google Scholar] [CrossRef]
- Cheng, Y.; Hou, P.; Wang, X.; Kang, P. CO2 Electrolysis System under Industrially Relevant Conditions. Acc. Chem. Res. 2022, 55, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, B.S.; Singh, R.K.; Cho, H.M.; Lim, H.C. Practice of diesel fuel blends using alternative fuels: A review. Renew. Sustain. Energy Rev. 2016, 59, 1358–1368. [Google Scholar] [CrossRef]
- Verger, T.; Azimov, U.; Adeniyi, O. Biomass-based fuel blends as an alternative for the future heavy-duty transport: A review. Renew. Sustain. Energy Rev. 2022, 161, 112391. [Google Scholar] [CrossRef]
- Hosseini, S.H.; Tsolakis, A.; Alagumalai, A.; Mahian, O.; Lam, S.S.; Pan, J.; Peng, W.; Tabatabaei, M.; Aghbashlo, M. Use of hydrogen in dual-fuel diesel engines. Prog. Energy Combust. Sci. 2023, 98, 101100. [Google Scholar] [CrossRef]
- Chai, W.S.; Bao, Y.; Jin, P.; Tang, G.; Zhou, L. A review on ammonia, ammonia-hydrogen and ammonia-methane fuels. Renew. Sustain. Energy Rev. 2021, 147, 111254. [Google Scholar] [CrossRef]
- Strandell, M.; Zakrisson, S.; Alsberg, T.; Westerholm, R.; Winquist, L.; Rannug, U. Chemical analysis and biological testing of a polar fraction of ambient air, diesel engine, and gasoline engine particulate extracts. Environ. Health Perspect. 1994, 102, 85–92. [Google Scholar] [CrossRef]
- Pereira, S.A.; Araújo, V.Q.; Reboucas, M.V.; Vieira, F.S.V.; de Almeida, M.V.A.; Chinalia, F.A.; Nascimento, I.A. Toxicity of biodiesel, diesel and biodiesel/diesel blends: Comparative sub-lethal effects of water-soluble fractions to microalgae species. Bull. Environ. Contam. Toxicol. 2011, 88, 234–238. [Google Scholar] [CrossRef]
- Oh, S.-M.; Chung, K.-H. Identification of mammalian cell genotoxins in respirable diesel exhaust particles by bioassay-directed chemical analysis. Toxicol. Lett. 2006, 161, 226–235. [Google Scholar] [CrossRef]
- Huang, Y.-W.; Cambre, M.; Lee, H.-J. The Toxicity of Nanoparticles Depends on Multiple Molecular and Physicochemical Mechanisms. Int. J. Mol. Sci. 2017, 18, 2702. [Google Scholar] [CrossRef]
- Zahedi, A.; Phandthong, R.; Chaili, A.; Leung, S.; Omaiye, E.; Talbot, P. Mitochondrial Stress Response in Neural Stem Cells Exposed to Electronic Cigarettes. iScience 2019, 16, 250–269. [Google Scholar] [CrossRef] [PubMed]
- Julien, P.; Bergthorson, J.M. Enabling the metal fuel economy: Green recycling of metal fuels. Sustain. Energy Fuels 2017, 1, 615–625. [Google Scholar] [CrossRef]
- Bergthorson, J.M.; Goroshin, S.; Soo, M.J.; Julien, P.; Palecka, J.; Frost, D.L.; Jarvis, D.J. Direct combustion of recyclable metal fuels for zero-carbon heat and power (vol 160, pg 368, 2015). Appl. Energy 2017, 202, 784. [Google Scholar] [CrossRef]
- Laraqui, D.; Allgaier, O.; Schönnenbeck, C.; Leyssens, G.; Brilhac, J.-F.; Lomba, R.; Dumand, C.; Guézet, O. Experimental study of a confined premixed metal combustor: Metal flame stabilization dynamics and nitrogen oxides production. Proc. Combust. Inst. 2019, 37, 3175–3184. [Google Scholar] [CrossRef]
- Garra, P.; Leyssens, G.; Allgaier, O.; Schonnenbeck, C.; Tschamber, V.; Brilhac, J.F.; Tahtouh, T.; Guezet, O.; Allano, S. Magnesium/air combustion at pilot scale and subsequent PM and NOx emissions. Appl. Energy 2017, 189, 578–587. [Google Scholar] [CrossRef]
- Li, S.; Tan, E.C.D.; Dutta, A.; Snowden-Swan, L.J.; Thorson, M.R.; Ramasamy, K.K.; Bartling, A.W.; Brasington, R.; Kass, M.D.; Zaimes, G.G.; et al. Techno-economic Analysis of Sustainable Biofuels for Marine Transportation. Environ. Sci. Technol. 2022, 56, 17206–17214. [Google Scholar] [CrossRef]
- Dong, Z.Y.; Yang, J.; Yu, L.; Daiyan, R.; Amal, R. A green hydrogen credit framework for international green hydrogen trading towards a carbon neutral future. Int. J. Hydrogen Energy 2022, 47, 728–734. [Google Scholar] [CrossRef]
- Dimitriou, P.; Tsujimura, T. A review of hydrogen as a compression ignition engine fuel. Int. J. Hydrogen Energy 2017, 42, 24470–24486. [Google Scholar] [CrossRef]
- Staffell, I.; Scamman, D.; Abad, A.V.; Balcombe, P.; Dodds, P.E.; Ekins, P.; Shah, N.; Ward, K.R. The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 2019, 12, 463–491. [Google Scholar] [CrossRef]
- Farias, C.B.B.; Barreiros, R.C.S.; da Silva, M.F.; Casazza, A.A.; Converti, A.; Sarubbo, L.A. Use of Hydrogen as Fuel: A Trend of the 21st Century. Energies 2022, 15, 311. [Google Scholar] [CrossRef]
- Stępień, Z. A Comprehensive Overview of Hydrogen-Fueled Internal Combustion Engines: Achievements and Future Challenges. Energies 2021, 14, 6504. [Google Scholar] [CrossRef]
- Hanfei, Z.; Ligang, W.; Jan Van, H.; François, M.; Umberto, D. Techno-economic comparison of green ammonia production processes. Appl. Energy 2019, 259, 114135. [Google Scholar] [CrossRef]
- Jianyun, Z.; Li, J.; Yanhong, L.; San Ping, J.; Shuangyin, W. Green Synthesis of Nitrogen-to-Ammonia Fixation: Past, Present, and Future. Energy Environ. Mater. 2021, 5, 452–457. [Google Scholar] [CrossRef]
- Hanchu, W.; Prodromos, D.; Qi, Z. Harnessing the Wind Power of the Ocean with Green Offshore Ammonia. ACS Sustain. Chem. Eng. 2021, 9, 14605–14617. [Google Scholar] [CrossRef]
- Jun, L.; Shini, L.; Danan, C.; Rongjun, W.; Noriyuki, K.; Lisheng, D.; Hongyu, H. A Review on Combustion Characteristics of Ammonia as a Carbon-Free Fuel. Front. Energy Res. 2021, 9, 760356. [Google Scholar] [CrossRef]
- Hideaki, K.; Akihiro, H.; Somarathne, K.D.; Kunkuma, A.; Ekenechukwu, C.O. Science and technology of ammonia combustion. Proc. Combust. Inst. 2019, 37, 109–133. [Google Scholar] [CrossRef]
- Chehade, G.; Dincer, I. Progress in green ammonia production as potential carbon-free fuel. Fuel 2021, 299, 120845. [Google Scholar] [CrossRef]
- Dimitriou, P.; Javaid, R. A review of ammonia as a compression ignition engine fuel. Int. J. Hydrogen Energy 2020, 45, 7098–7118. [Google Scholar] [CrossRef]
- Shenbagamuthuraman, V.; Patel, A.; Khanna, S.; Banerjee, E.; Parekh, S.; Karthick, C.; Ashok, B.; Velvizhi, G.; Nanthagopal, K.; Ong, H.C. State of art of valorising of diverse potential feedstocks for the production of alcohols and ethers: Current changes and perspectives. Chemosphere 2022, 286, 131587. [Google Scholar] [CrossRef]
- Sarp, S.; Gonzalez Hernandez, S.; Chen, C.; Sheehan, S.W. Alcohol Production from Carbon Dioxide: Methanol as a Fuel and Chemical Feedstock. Joule 2021, 5, 59–76. [Google Scholar] [CrossRef]
- Awad, O.I.; Mamat, R.; Ali, O.M.; Sidik, N.A.C.; Yusaf, T.; Kadirgama, K.; Kettner, M. Alcohol and ether as alternative fuels in spark ignition engine: A review. Renew. Sustain. Energy Rev. 2018, 82, 2586–2605. [Google Scholar] [CrossRef]
- Bharath, B.K.; Arul Mozhi Selvan, V. Influence of Higher Alcohol Additives in Methanol–Gasoline Blends on the Performance and Emissions of an Unmodified Automotive SI Engine: A Review. Arab. J. Sci. Eng. 2021, 46, 7057–7085. [Google Scholar] [CrossRef]
- Yusri, I.M.; Mamat, R.; Najafi, G.; Razman, A.; Awad, O.I.; Azmi, W.H.; Ishak, W.F.W.; Shaiful, A.I.M. Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: A review on engine performance and exhaust emissions. Renew. Sustain. Energy Rev. 2017, 77, 169–181. [Google Scholar] [CrossRef]
- Andreis, G.S.L.; Vaz, F.A.; De Bortoli, A.L. Bioethanol combustion based on a reduced kinetic mechanism. J. Math. Chem. 2013, 51, 1584–1598. [Google Scholar] [CrossRef]
- Guimaraes, C.; Custodio, D.; de Oliveira, R.; Varandas, L.; Arbilla, G. Comparative study of automotive, aircraft and biogenic emissions of aldehydes and aromatic compounds. Bull. Environ. Contam. Toxicol. 2010, 84, 180–184. [Google Scholar] [CrossRef]
- Sarathy, S.M.; Oßwald, P.; Hansen, N.; Kohse-Höinghaus, K. Alcohol combustion chemistry. Prog. Energy Combust. Sci. 2014, 44, 40–102. [Google Scholar] [CrossRef]
- Feng, B.; Zhai, Y.; Zhang, L. Toward the Mechanism Study of Pd/γ-Al2O3-Assisted Bioalcohol Combustion in a Flow Reactor. Energy Fuels 2021, 35, 14954–14962. [Google Scholar] [CrossRef]
- Su, S.; Ge, Y.; Wang, X.; Zhang, M.; Hao, L.; Tan, J.; Shi, F.; Guo, D.; Yang, Z. Evaluating the In-Service Emissions of High-Mileage Dedicated Methanol-Fueled Passenger Cars: Regulated and Unregulated Emissions. Energies 2020, 13, 2680. [Google Scholar] [CrossRef]
- Li, W.; Zhang, Y.; Mei, B.; Li, Y.; Cao, C.; Zou, J.; Yang, J.; Cheng, Z. Experimental and kinetic modeling study of n-propanol and i-propanol combustion: Flow reactor pyrolysis and laminar flame propagation. Combust. Flame 2019, 207, 171–185. [Google Scholar] [CrossRef]
- Frassoldati, A.; Cuoci, A.; Faravelli, T.; Niemann, U.; Ranzi, E.; Seiser, R.; Seshadri, K. An experimental and kinetic modeling study of n-propanol and iso-propanol combustion. Combust. Flame 2010, 157, 2–16. [Google Scholar] [CrossRef]
- Welz, O.; Savee, J.D.; Eskola, A.J.; Sheps, L.; Osborn, D.L.; Taatjes, C.A. Low-temperature combustion chemistry of biofuels: Pathways in the low-temperature (550–700 K) oxidation chemistry of isobutanol and tert-butanol. Proc. Combust. Inst. 2013, 34, 493–500. [Google Scholar] [CrossRef]
- Grana, R.; Frassoldati, A.; Faravelli, T.; Niemann, U.; Ranzi, E.; Seiser, R.; Cattolica, R.; Seshadri, K. An experimental and kinetic modeling study of combustion of isomers of butanol. Combust. Flame 2010, 157, 2137–2154. [Google Scholar] [CrossRef]
- Bai, F.-Y.; Chen, M.-Y.; Liu, X.-H.; Ni, S.; Tang, Y.-Z.; Pan, X.-M.; Zhao, Z. Kinetics and mechanism of OH-mediated degradation of three pentanols in the atmosphere. New J. Chem. 2021, 45, 16543–16556. [Google Scholar] [CrossRef]
- Wang, G.; Yuan, W.; Li, Y.; Zhao, L.; Qi, F. Experimental and kinetic modeling study of n-pentanol pyrolysis and combustion. Combust. Flame 2015, 162, 3277–3287. [Google Scholar] [CrossRef]
- Hashemi, H.; Christensen, J.M.; Glarborg, P. High-pressure pyrolysis and oxidation of ethanol. Fuel 2018, 218, 247–257. [Google Scholar] [CrossRef]
- Geng, P.; Cao, E.; Tan, Q.; Wei, L. Effects of alternative fuels on the combustion characteristics and emission products from diesel engines: A review. Renew. Sustain. Energy Rev. 2017, 71, 523–534. [Google Scholar] [CrossRef]
- Rorrer, J.E.; Bell, A.T.; Toste, F.D. Synthesis of Biomass-Derived Ethers for Use as Fuels and Lubricants. ChemSusChem 2019, 12, 2835–2858. [Google Scholar] [CrossRef]
- Styring, P.; Dowson, G.R.M.; Tozer, I.O. Synthetic Fuels Based on Dimethyl Ether as a Future Non-Fossil Fuel for Road Transport From Sustainable Feedstocks. Front. Energy Res. 2021, 9, 663331. [Google Scholar] [CrossRef]
- Awad, O.I.; Mamat, R.; Ibrahim, T.K.; Hammid, A.T.; Yusri, I.M.; Hamidi, M.A.; Humada, A.M.; Yusop, A.F. Overview of the oxygenated fuels in spark ignition engine: Environmental and performance. Renew. Sustain. Energy Rev. 2018, 91, 394–408. [Google Scholar] [CrossRef]
- Putrasari, Y.; Lim, O. Dimethyl Ether as the Next Generation Fuel to Control Nitrogen Oxides and Particulate Matter Emissions from Internal Combustion Engines: A Review. ACS Omega 2022, 7, 32–37. [Google Scholar] [CrossRef]
- Lin, Q.; Tay, K.L.; Yu, W.; Zong, Y.; Yang, W.; Rivellini, L.-H.; Ma, M.; Lee, A.K.Y. Polyoxymethylene dimethyl ether 3 (PODE3) as an alternative fuel to reduce aerosol pollution. J. Clean. Prod. 2021, 285, 124857. [Google Scholar] [CrossRef]
- Han, D.; Yin, H.; Qian, E.; Ye, L.; Liu, D. Pyrolysis and catalysis of dimethyl ether in a flow reactor. Fuel 2020, 263, 116700. [Google Scholar] [CrossRef]
- Vin, N.; Herbinet, O.; Battin-Leclerc, F. Diethyl ether pyrolysis study in a jet-stirred reactor. J. Anal. Appl. Pyrolysis 2016, 121, 173–176. [Google Scholar] [CrossRef]
- Zhong, X.; Wang, H.; Zuo, Q.; Zheng, Z.; Wang, J.; Yin, W.; Yao, M. Experimental and kinetic modeling studies of polyoxymethylene dimethyl ether (PODE) pyrolysis in jet stirred reactor. J. Anal. Appl. Pyrolysis 2021, 159, 105332. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, H.; Yin, W.; Wang, J.; Li, W.; Wang, Z.; Xing, L.; Gao, X.; Mei, B.; Zhang, Y.; et al. Experimental and kinetic modeling study of di-n-propyl ether and diisopropyl ether combustion: Pyrolysis and laminar flame propagation velocity. Combust. Flame 2022, 237, 111809. [Google Scholar] [CrossRef]
- Serinyel, Z.; Dayma, G.; Glasziou, V.; Lailliau, M.; Dagaut, P. A pyrolysis study on C4–C8 symmetric ethers. Proc. Combust. Inst. 2021, 38, 329–336. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Q.; Ito, S.; Wada, Y. Oxidation characteristics and products of five ethers at low temperature. Fuel 2016, 165, 513–525. [Google Scholar] [CrossRef]
- Guo, H.; Sun, W.; Haas, F.M.; Farouk, T.; Dryer, F.L.; Ju, Y. Measurements of H2O2 in low temperature dimethyl ether oxidation. Proc. Combust. Inst. 2013, 34, 573–581. [Google Scholar] [CrossRef]
- Li, R.; Herreros, J.M.; Tsolakis, A.; Yang, W. Chemical kinetic study on ignition and flame characteristic of polyoxymethylene dimethyl ether 3 (PODE3). Fuel 2020, 279, 118423. [Google Scholar] [CrossRef]
- Andersen, A.; Carter, E.A. Insight into Selected Reactions in Low-Temperature Dimethyl Ether Combustion from Born−Oppenheimer Molecular Dynamics. J. Phys. Chem. A 2006, 110, 1393–1407. [Google Scholar] [CrossRef]
- Zhou, S.; Barnes, I.; Zhu, T.; Klotz, B.; Albu, M.; Bejan, I.; Benter, T. Product Study of the OH, NO3, and O3 Initiated Atmospheric Photooxidation of Propyl Vinyl Ether. Environ. Sci. Technol. 2006, 40, 5415–5421. [Google Scholar] [CrossRef] [PubMed]
- Gerhard, K.; Luis, F.R. Biodiesel fuels. Prog. Energy Combust. Sci. 2016, 58, 36–59. [Google Scholar] [CrossRef]
- Gaur, A.; Dwivedi, G.; Baredar, P.; Jain, S. Influence of blending additives in biodiesel on physiochemical properties, engine performance, and emission characteristics. Fuel 2022, 321, 124072. [Google Scholar] [CrossRef]
- Feng, Q.; Wang, Y.L.; Egolfopoulos, F.N.; Tsotsis, T.T. Fundamental Study of the Oxidation Characteristics and Pollutant Emissions of Model Biodiesel Fuels. Ind. Eng. Chem. Res. 2010, 49, 10392–10398. [Google Scholar] [CrossRef]
- Wallington, T.J.; Hurley, M.D.; Maurer, T.; Barnes, I.; Becker, K.H.; Tyndall, G.S.; Orlando, J.J.; Pimentel, A.S.; Bilde, M. Atmospheric Oxidation Mechanism of Methyl Formate. J. Phys. Chem. A 2001, 105, 5146–5154. [Google Scholar] [CrossRef]
- Li, R.; Wang, Z.; Xu, G. Study on Carbonyl Emissions of Diesel Engine Fueled with Biodiesel. Int. J. Chem. Eng. 2017, 2017, 1409495. [Google Scholar] [CrossRef]
- McCormick, R.L. The impact of biodiesel on pollutant emissions and public health. Inhal. Toxicol. 2007, 19, 1033–1039. [Google Scholar] [CrossRef]
- He, C.; Ge, Y.; Tan, J.; You, K.; Han, X.; Wang, J. Characteristics of polycyclic aromatic hydrocarbons emissions of diesel engine fueled with biodiesel and diesel. Fuel 2010, 89, 2040–2046. [Google Scholar] [CrossRef]
- Li, X.; Zheng, Y.; Guan, C.; Cheung, C.S.; Huang, Z. Effect of biodiesel on PAH, OPAH, and NPAH emissions from a direct injection diesel engine. Environ. Sci. Pollut. Res. 2018, 25, 34131–34138. [Google Scholar] [CrossRef] [PubMed]
- Karavalakis, G.; Deves, G.; Fontaras, G.; Stournas, S.; Samaras, Z.; Bakeas, E. The impact of soy-based biodiesel on PAH, nitro-PAH and oxy-PAH emissions from a passenger car operated over regulated and nonregulated driving cycles. Fuel 2010, 89, 3876–3883. [Google Scholar] [CrossRef]
- Das, A.K.; Sahu, S.K.; Panda, A.K. Current status and prospects of alternate liquid transportation fuels in compression ignition engines: A critical review. Renew. Sustain. Energy Rev. 2022, 161, 112358. [Google Scholar] [CrossRef]
- Canakci, M.; Ozsezen, A.N.; Alptekin, E.; Eyidogan, M. Impact of alcohol–gasoline fuel blends on the exhaust emission of an SI engine. Renew. Energy 2013, 52, 111–117. [Google Scholar] [CrossRef]
- Edwin Geo, V.; Jesu Godwin, D.; Thiyagarajan, S.; Saravanan, C.G.; Aloui, F. Effect of higher and lower order alcohol blending with gasoline on performance, emission and combustion characteristics of SI engine. Fuel 2019, 256, 115806. [Google Scholar] [CrossRef]
- Ratcliff, M.A.; Luecke, J.; Williams, A.; Christensen, E.; Yanowitz, J.; Reek, A.; McCormick, R.L. Impact of Higher Alcohols Blended in Gasoline on Light-Duty Vehicle Exhaust Emissions. Environ. Sci. Technol. 2013, 47, 13865–13872. [Google Scholar] [CrossRef]
- Varol, Y.; Öner, C.; Öztop, H.; Altun, Ş. Comparison of methanol, ethanol, or n-butanol blending with unleaded gasoline on exhaust emissions of an SI engine. Energy Sources Part A Recovery Util. Environ. Eff. 2014, 36, 938–948. [Google Scholar] [CrossRef]
- Stansfield, P.A.; Bisordi, A.; OudeNijeweme, D.; Williams, J.; Gold, M.; Ali, R. The performance of a modern vehicle on a variety of alcohol-gasoline fuel blends. SAE Int. J. Fuels Lubr. 2012, 5, 813–822. [Google Scholar] [CrossRef]
- Yesilyurt, M.K. A detailed investigation on the performance, combustion, and exhaust emission characteristics of a diesel engine running on the blend of diesel fuel, biodiesel and 1-heptanol (C7 alcohol) as a next-generation higher alcohol. Fuel 2020, 275, 117893. [Google Scholar] [CrossRef]
- Wu, S.; Bao, J.; Wang, Z.; Zhang, H.; Xiao, R. The regulated emissions and PAH emissions of bio-based long-chain ethers in a diesel engine. Fuel Process. Technol. 2021, 214, 106724. [Google Scholar] [CrossRef]
- Gao, W.; Liu, J.; Sun, P.; Yang, C.; Fang, J. Gaseous Emissions and Particle Microstructure Characteristics of PODE/Diesel Blend Fuel. Int. J. Automot. Technol. 2019, 20, 607–617. [Google Scholar] [CrossRef]
- Venugopal, T.; Ramesh, A. Performance, combustion and emission characteristics of a spark-ignition engine with simultaneous injection of n-butanol and gasoline in comparison to blended butanol and gasoline. Int. J. Energy Res. 2013, 38, 1060–1074. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, P.; Liu, Y. Investigation on combustion and emission performance of a common rail diesel engine fueled with diesel-ethylene glycol dual fuel. Appl. Therm. Eng. 2018, 142, 43–55. [Google Scholar] [CrossRef]
- Nour, M.; Attia, A.M.A.; Nada, S.A. Combustion, performance and emission analysis of diesel engine fuelled by higher alcohols (butanol, octanol and heptanol)/diesel blends. Energy Convers. Manag. 2019, 185, 313–329. [Google Scholar] [CrossRef]
- Nayak, S.K.; Behera, G.R.; Mishra, P.C.; Sahu, S.K. Biodiesel vs diesel: A race for the future. Energy Sources Part A Recovery Util. Environ. Eff. 2017, 39, 1453–1460. [Google Scholar] [CrossRef]
- Imdadul, H.K.; Zulkifli, N.W.M.; Masjuki, H.H.; Kalam, M.A.; Kamruzzaman, M.; Rashed, M.M.; Rashedul, H.K.; Alwi, A. Experimental assessment of non-edible candlenut biodiesel and its blend characteristics as diesel engine fuel. Environ. Sci. Pollut. Res. 2017, 24, 2350–2363. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhong, Y.; Wang, J.; Tan, D.; Zhang, Z.; Yang, D. Effects of Different Biodiesel-Diesel Blend Fuel on Combustion and Emission Characteristics of a Diesel Engine. Processes 2021, 9, 1984. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, X.; Zhong, X.; Hu, B.; Liu, H.; Yao, M. Experimental study on the combustion and emissions fueling biodiesel/n-butanol, biodiesel/ethanol and biodiesel/2,5-dimethylfuran on a diesel engine. Energy 2016, 115, 539–549. [Google Scholar] [CrossRef]
- Pérez, A.; Mateos, D.; García, C.; Caraveo, C.; Montero, G.; Coronado, M.; Valdez, B. Quantitative Evaluation of the Emissions of a Transport Engine Operating with Diesel-Biodiesel. Energies 2020, 13, 3594. [Google Scholar] [CrossRef]
- Alptekin, E. Emission, injection and combustion characteristics of biodiesel and oxygenated fuel blends in a common rail diesel engine. Energy 2017, 119, 44–52. [Google Scholar] [CrossRef]
- Devasani, S.K.R.; Vodnala, S.; Singarapu, D.; Nair, J.N. A comprehensive review on performance, combustion and emissions of ternary and quaternary biodiesel/diesel blends. Environ. Sci. Pollut. Res. 2021, 29, 51083–51094. [Google Scholar] [CrossRef] [PubMed]
- Bari, S. Performance, combustion and emission tests of a metro-bus running on biodiesel-ULSD blended (B20) fuel. Appl. Energy 2014, 124, 35–43. [Google Scholar] [CrossRef]
- Di, Y.; Cheung, C.S.; Huang, Z. Experimental investigation on regulated and unregulated emissions of a diesel engine fueled with ultra-low sulfur diesel fuel blended with biodiesel from waste cooking oil. Sci. Total Environ. 2008, 407, 835–846. [Google Scholar] [CrossRef] [PubMed]
- Mariappan, M.; Panithasan, M.S.; Venkadesan, G. Pyrolysis plastic oil production and optimisation followed by maximum possible replacement of diesel with bio-oil/methanol blends in a CRDI engine. J. Clean. Prod. 2021, 312, 127687. [Google Scholar] [CrossRef]
- Mangesh, V.L.; Padmanabhan, S.; Tamizhdurai, P.; Ramesh, A. Experimental investigation to identify the type of waste plastic pyrolysis oil suitable for conversion to diesel engine fuel. J. Clean. Prod. 2020, 246, 119066. [Google Scholar] [CrossRef]
- Prakash, S.; Abraham Baby, S.J.; Manikandan, K. Emission study of alcohol–biodiesel blends propelled diesel engine. Int. J. Ambient Energy 2021, 42, 292–296. [Google Scholar] [CrossRef]
- Devarajan, Y.; Munuswamy, D.B.; Nagappan, B.; Pandian, A.K. Performance, combustion and emission analysis of mustard oil biodiesel and octanol blends in diesel engine. Heat Mass Transf. 2018, 54, 1803–1811. [Google Scholar] [CrossRef]
- Roy, M.M.; Calder, J.; Wang, W.; Mangad, A.; Diniz, F.C.M. Cold start idle emissions from a modern Tier-4 turbo-charged diesel engine fueled with diesel-biodiesel, diesel-biodiesel-ethanol, and diesel-biodiesel-diethyl ether blends. Appl. Energy 2016, 180, 52–65. [Google Scholar] [CrossRef]
- Jia, D.; Deng, X.; Lei, J. Analysis on the impact of biodiesel–ethanol–diesel fuel on the performance and emissions of a diesel engine. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 41, 3013–3025. [Google Scholar] [CrossRef]
- Nagpure, A.G.; Chavan, S.B.; Rathod, W.S. Effects of diesel-Calophyllum Inophyllum biodiesel-propyl alcohol blends on performance, emissions and combustion of diesel engine. Environ. Prog. Sustain. Energy 2022, 41, e13834. [Google Scholar] [CrossRef]
- Yesilyurt, M.K.; Eryilmaz, T.; Arslan, M. A comparative analysis of the engine performance, exhaust emissions and combustion behaviors of a compression ignition engine fuelled with biodiesel/diesel/1-butanol (C4 alcohol) and biodiesel/diesel/n-pentanol (C5 alcohol) fuel blends. Energy 2018, 165, 1332–1351. [Google Scholar] [CrossRef]
- Ma, Q.; Zhang, Q.; Liang, J.; Yang, C. The performance and emissions characteristics of diesel/biodiesel/alcohol blends in a diesel engine. Energy Rep. 2021, 7, 1016–1024. [Google Scholar] [CrossRef]
- Seela, C.R.; Alagumalai, A.; Pugazhendhi, A. Evaluating the feasibility of diethyl ether and isobutanol added Jatropha Curcas biodiesel as environmentally friendly fuel blends. Sustain. Chem. Pharm. 2020, 18, 100340. [Google Scholar] [CrossRef]
- Galloni, E.; Fontana, G.; Staccone, S.; Scala, F. Performance analyses of a spark-ignition engine firing with gasoline–butanol blends at partial load operation. Energy Convers. Manag. 2016, 110, 319–326. [Google Scholar] [CrossRef]
- Noorollahi, Y.; Azadbakht, M.; Ghobadian, B. The effect of different diesterol (diesel–biodiesel–ethanol) blends on small air-cooled diesel engine performance and its exhaust gases. Energy 2018, 142, 196–200. [Google Scholar] [CrossRef]
- Kumar, S.; Prakash, R.; Murugan, S.; Singh, R.K. Performance and emission analysis of blends of waste plastic oil obtained by catalytic pyrolysis of waste HDPE with diesel in a CI engine. Energy Convers. Manag. 2013, 74, 323–331. [Google Scholar] [CrossRef]
- Datta, A.; Mandal, B.K. Numerical investigation of the performance and emission parameters of a diesel engine fuelled with diesel-biodiesel-methanol blends. J. Mech. Sci. Technol. 2016, 30, 1923–1929. [Google Scholar] [CrossRef]
- Abdalla, A.N.; Tao, H.; Bagaber, S.A.; Ali, O.M.; Kamil, M.; Ma, X.; Awad, O.I. Prediction of emissions and performance of a gasoline engine running with fusel oil–gasoline blends using response surface methodology. Fuel 2019, 253, 1–14. [Google Scholar] [CrossRef]
- Li, Y.; Gong, J.; Deng, Y.; Yuan, W.; Fu, J.; Zhang, B. Experimental comparative study on combustion, performance and emissions characteristics of methanol, ethanol and butanol in a spark ignition engine. Appl. Therm. Eng. 2017, 115, 53–63. [Google Scholar] [CrossRef]
- Ozsezen, A.N.; Canakci, M. Performance and combustion characteristics of alcohol–gasoline blends at wide-open throttle. Energy 2011, 36, 2747–2752. [Google Scholar] [CrossRef]
- Balan, K.; Yashvanth, U.; Booma Devi, P.; Arvind, T.; Nelson, H.; Devarajan, Y. Investigation on emission characteristics of alcohol biodiesel blended diesel engine. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 41, 1879–1889. [Google Scholar] [CrossRef]
- Agarwal, A.K.; Prashumn; Chandra, K. Di-ethyl ether-diesel blends fuelled off-road tractor engine: Part-I: Technical feasibility. Fuel 2022, 308, 121972. [Google Scholar] [CrossRef]
- Yilmaz, N.; Ileri, E.; Atmanli, A. Performance of biodiesel/higher alcohols blends in a diesel engine. Int. J. Energy Res. 2016, 40, 1134–1143. [Google Scholar] [CrossRef]
- Razak, N.H.; Hashim, H.; Yunus, N.A.; Klemeš, J.J. Reducing diesel exhaust emissions by optimisation of alcohol oxygenates blend with diesel/biodiesel. J. Clean. Prod. 2021, 316, 128090. [Google Scholar] [CrossRef]
- Agarwal, A.K.; Singh, A.P.; Gupta, T.; Agarwal, R.A.; Sharma, N.; Pandey, S.K.; Ateeq, B. Toxicity of exhaust particulates and gaseous emissions from gasohol (ethanol blended gasoline)-fuelled spark ignition engines. Environ. Sci. Process. Impacts 2020, 22, 1540–1553. [Google Scholar] [CrossRef]
- Nabi, M.N.; Zare, A.; Hossain, F.M.; Ristovski, Z.D.; Brown, R.J. Reductions in diesel emissions including PM and PN emissions with diesel-biodiesel blends. J. Clean. Prod. 2017, 166, 860–868. [Google Scholar] [CrossRef]
- Tsai, J.H.; Chen, S.J.; Huang, K.L.; Lin, W.Y.; Lee, W.J.; Lin, C.C.; Hsieh, L.T.; Chiu, J.Y.; Kuo, W.C. Emissions from a generator fueled by blends of diesel, biodiesel, acetone, and isopropyl alcohol: Analyses of emitted PM, particulate carbon, and PAHs. Sci. Total Environ. 2013, 466, 195–202. [Google Scholar] [CrossRef]
- Tüccar, G.; Ozgür, T.; Aydın, K. Effect of diesel–microalgae biodiesel–butanol blends on performance and emissions of diesel engine. Fuel 2014, 132, 47–52. [Google Scholar] [CrossRef]
- Zhu, L.; Xiao, Y.; Cheung, C.S.; Guan, C.; Huang, Z. Combustion, gaseous and particulate emission of a diesel engine fueled with n-pentanol (C5 alcohol) blended with waste cooking oil biodiesel. Appl. Therm. Eng. 2016, 102, 73–79. [Google Scholar] [CrossRef]
- Zhang, Z.; Balasubramanian, R. Investigation of particulate emission characteristics of a diesel engine fueled with higher alcohols/biodiesel blends. Appl. Energy 2016, 163, 71–80. [Google Scholar] [CrossRef]
- Liu, H.; Ma, X.; Li, B.; Chen, L.; Wang, Z.; Wang, J. Combustion and emission characteristics of a direct injection diesel engine fueled with biodiesel and PODE/biodiesel fuel blends. Fuel 2017, 209, 62–68. [Google Scholar] [CrossRef]
- Seeniappan, K.; Venkatesan, B.; Krishnan, N.N.; Kandhasamy, T.; Arunachalam, S.; Seeta, R.K.; Depoures, M.V. A comparative assessment of performance and emission characteristics of a DI diesel engine fuelled with ternary blends of two higher alcohols with lemongrass oil biodiesel and diesel fuel. Energy Environ. 2021, 33, 1134–1159. [Google Scholar] [CrossRef]
- Emiroğlu, A.O.; Şen, M. Combustion, performance and exhaust emission characterizations of a diesel engine operating with a ternary blend (alcohol-biodiesel-diesel fuel). Appl. Therm. Eng. 2018, 133, 371–380. [Google Scholar] [CrossRef]
- Mancebo, S.E.; Wang, S.Q. Recognizing the impact of ambient air pollution on skin health. J. Eur. Acad. Dermatol. Venereol. 2015, 29, 2326–2332. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, M.; Skrzypek, M.; Kowalski, M.; Cyrys, J. Effect of NOx and NO2 Concentration Increase in Ambient Air to Daily Bronchitis and Asthma Exacerbation, Silesian Voivodeship in Poland. Int. J. Environ. Res. Public Health 2020, 17, 754. [Google Scholar] [CrossRef]
- Grout, L.; Baker, M.G.; French, N.; Hales, S. A Review of Potential Public Health Impacts Associated With the Global Dairy Sector. GeoHealth 2020, 4, e2019GH000213. [Google Scholar] [CrossRef] [PubMed]
- Hossain, R.; Hassan, K.; Sahajwalla, V. Utilising problematic waste to detect toxic gas release in the environment: Fabricating a NiO doped CuO nanoflake based ammonia sensor from e-waste. Nanoscale Adv. 2022, 4, 4066–4079. [Google Scholar] [CrossRef]
- Abdelfattah, I.; El-Saied, F.A.; Almedolab, A.A.; El-Shamy, A.M. Biosorption as a Perfect Technique for Purification of Wastewater Contaminated with Ammonia. Appl. Biochem. Biotechnol. 2022, 194, 4105–4134. [Google Scholar] [CrossRef]
- Hong, S.-H.; Szili, E.J.; Fenech, M.; Gaur, N.; Short, R.D. Genotoxicity and cytotoxicity of the plasma jet-treated medium on lymphoblastoid WIL2-NS cell line using the cytokinesis block micronucleus cytome assay. Sci. Rep. 2017, 7, 3854. [Google Scholar] [CrossRef] [PubMed]
- Ruijter, N.; Soeteman-Hernández, L.G.; Carrière, M.; Boyles, M.; McLean, P.; Catalán, J.; Katsumiti, A.; Cabellos, J.; Delpivo, C.; Sánchez Jiménez, A.; et al. The State of the Art and Challenges of In Vitro Methods for Human Hazard Assessment of Nanomaterials in the Context of Safe-by-Design. Nanomaterials 2023, 13, 472. [Google Scholar] [CrossRef]
- Xia, M.; Huang, R.; Witt, K.L.; Southall, N.; Fostel, J.; Cho, M.-H.; Jadhav, A.; Smith, C.S.; Inglese, J.; Portier, C.J.; et al. Compound cytotoxicity profiling using quantitative high-throughput screening. Environ. Health Perspect. 2008, 116, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Hawley, B.; L’Orange, C.; Olsen, D.B.; Marchese, A.J.; Volckens, J. Oxidative stress and aromatic hydrocarbon response of human bronchial epithelial cells exposed to petro- or biodiesel exhaust treated with a diesel particulate filter. Toxicol. Sci. 2014, 141, 505–514. [Google Scholar] [CrossRef]
- Gerlofs-Nijland, M.E.; Totlandsdal, A.I.; Tzamkiozis, T.; Leseman, D.L.A.C.; Samaras, Z.; Låg, M.; Schwarze, P.; Ntziachristos, L.; Cassee, F.R. Cell toxicity and oxidative potential of engine exhaust particles: Impact of using particulate filter or biodiesel fuel blend. Environ. Sci. Technol. 2013, 41, 5931–5938. [Google Scholar] [CrossRef]
- Jalava, P.I.; Aakko-Saksa, P.; Murtonen, T.; Happo, M.S.; Markkanen, A.; Yli-Pirilä, P.; Hakulinen, P.; Hillamo, R.; Mäki-Paakkanen, J.; Salonen, R.O.; et al. Toxicological properties of emission particles from heavy duty engines powered by conventional and bio-based diesel fuels and compressed natural gas. Part. Fibre Toxicol. 2012, 9, 37. [Google Scholar] [CrossRef]
- Jan, A.T.; Azam, M.; Siddiqui, K.; Ali, A.; Choi, I.; Haq, Q.M.R. Heavy Metals and Human Health: Mechanistic Insight into Toxicity and Counter Defense System of Antioxidants. Int. J. Mol. Sci. 2015, 16, 29592–29630. [Google Scholar] [CrossRef]
- Lankoff, A.; Brzoska, K.; Czarnocka, J.; Kowalska, M.; Lisowska, H.; Mruk, R.; Øvrevik, J.; Wegierek-Ciuk, A.; Zuberek, M.; Kruszewski, M. A comparative analysis of in vitro toxicity of diesel exhaust particles from combustion of 1st- and 2nd-generation biodiesel fuels in relation to their physicochemical properties-the FuelHealth project. Environ. Sci. Pollut. Res. 2017, 24, 19357–19374. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.-F.; Wu, T.; Wang, B.; Wei, Y.-Y.; Kong, Q.-X.; Ye, Y.; Yin, H.-F.; Li, J.-B. The Regulation of Seventeen Inflammatory Mediators are Associated with Patient Outcomes in Severe Fever with Thrombocytopenia Syndrome. Sci. Rep. 2018, 8, 159. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.-K.; Saad Eldin, W.F.; El-Ghareeb, W.R.; Elhelaly, A.E.; Khedr, M.H.E.; Li, X.; Huang, X.-C. Effects of Pyrene on Human Liver HepG2 Cells: Cytotoxicity, Oxidative Stress, and Transcriptomic Changes in Xenobiotic Metabolizing Enzymes and Inflammatory Markers with Protection Trial Using Lycopene. BioMed Res. Int. 2019, 2019, 7604851. [Google Scholar] [CrossRef] [PubMed]
- Jalava, P.I.; Tapanainen, M.; Kuuspalo, K.; Markkanen, A.; Hakulinen, P.; Happo, M.S.; Pennanen, A.S.; Ihalainen, M.; Yli-Pirilä, P.; Makkonen, U. Toxicological effects of emission particles from fossil-and biodiesel-fueled diesel engine with and without DOC/POC catalytic converter. Inhal. Toxicol. 2010, 22, 48–58. [Google Scholar] [CrossRef]
- Fukagawa, N.K.; Li, M.; Poynter, M.E.; Palmer, B.C.; Parker, E.; Kasumba, J.; Holmén, B.A. Soy biodiesel and petrodiesel emissions differ in size, chemical composition and stimulation of inflammatory responses in cells and animals. Environ. Sci. Technol. 2013, 47, 12496–12504. [Google Scholar] [CrossRef]
- Martin, N.R.; Kelley, P.; Klaski, R.; Bosco, A.; Moore, B.; Traviss, N. Characterization and comparison of oxidative potential of real-world biodiesel and petroleum diesel particulate matter emitted from a nonroad heavy duty diesel engine. Sci. Total Environ. 2019, 655, 908–914. [Google Scholar] [CrossRef] [PubMed]
- Hemmingsen, J.G.; Møller, P.; Nøjgaard, J.K.; Roursgaard, M.; Loft, S. Oxidative stress, genotoxicity, and vascular cell adhesion molecule expression in cells exposed to particulate matter from combustion of conventional diesel and methyl ester biodiesel blends. Environ. Sci. Technol. 2011, 45, 8545–8551. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, A.; Stevanovic, S.; Banks, A.P.; Zare, A.; Rahman, M.M.; Bowman, R.V.; Fong, K.M.; Ristovski, Z.D.; Yang, I.A. The cytotoxic, inflammatory and oxidative potential of coconut oil-substituted diesel emissions on bronchial epithelial cells at an air-liquid interface. Environ. Sci. Pollut. Res. 2019, 26, 27783–27791. [Google Scholar] [CrossRef]
- Skuland, T.S.; Refsnes, M.; Magnusson, P.; Oczkowski, M.; Gromadzka-Ostrowska, J.; Kruszewski, M.; Mruk, R.; Myhre, O.; Lankoff, A.; Øvrevik, J. Proinflammatory effects of diesel exhaust particles from moderate blend concentrations of 1st and 2nd generation biodiesel in BEAS-2B bronchial epithelial cells—The FuelHealth project. Environ. Toxicol. Pharmacol. 2017, 52, 138–142. [Google Scholar] [CrossRef]
- Steiner, S.; Czerwinski, J.; Comte, P.; Popovicheva, O.; Kireeva, E.; Müller, L.; Heeb, N.; Mayer, A.; Fink, A.; Rothen-Rutishauser, B. Comparison of the toxicity of diesel exhaust produced by bio-and fossil diesel combustion in human lung cells in vitro. Atmos. Environ. 2013, 81, 380–388. [Google Scholar] [CrossRef]
- Betha, R.; Pavagadhi, S.; Sethu, S.; Hande, M.P.; Balasubramanian, R. Comparative in vitro cytotoxicity assessment of airborne particulate matter emitted from stationary engine fuelled with diesel and waste cooking oil-derived biodiesel. Atmos. Environ. 2012, 61, 23–29. [Google Scholar] [CrossRef]
- Vaughan, A.; Stevanovic, S.; Jafari, M.; Bowman, R.V.; Fong, K.M.; Ristovski, Z.D.; Yang, I.A. Primary human bronchial epithelial cell responses to diesel and biodiesel emissions at an air-liquid interface. Toxicol. Vitr. 2019, 57, 67–75. [Google Scholar] [CrossRef]
- Barabadi, H.; Najafi, M.; Samadian, H.; Azarnezhad, A.; Vahidi, H.; Mahjoub, M.A.; Koohiyan, M.; Ahmadi, A. A Systematic Review of the Genotoxicity and Antigenotoxicity of Biologically Synthesized Metallic Nanomaterials: Are Green Nanoparticles Safe Enough for Clinical Marketing? Medicina 2019, 55, 439. [Google Scholar] [CrossRef] [PubMed]
- Ross, J.A.; Nelson, G.B.; Mutlu, E.; Warren, S.H.; Gilmour, M.I.; DeMarini, D.M. DNA adducts induced by in vitro activation of extracts of diesel and biodiesel exhaust particles. Inhal. Toxicol. 2015, 31, 167. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, M.; Wegierek-Ciuk, A.; Brzoska, K.; Wojewodzka, M.; Meczynska-Wielgosz, S.; Gromadzka-Ostrowska, J.; Mruk, R.; Øvrevik, J.; Kruszewski, M.; Lankoff, A. Genotoxic potential of diesel exhaust particles from the combustion of first-and second-generation biodiesel fuels—The FuelHealth project. Environ. Sci. Pollut. Res. 2017, 24, 24223–24234. [Google Scholar] [CrossRef]
- Wronski, S.; Dannenmaier, J.; Schild, S.; Macke, O.; Müller, L.; Burmeister, Y.; Seilheimer, B.; Müller, M. Engystol reduces onset of experimental respiratory syncytial virus-induced respiratory inflammation in mice by modulating macrophage phagocytic capacity. PLoS ONE 2018, 13, e0195822. [Google Scholar] [CrossRef]
- Hirota, J.A.; Marchant, D.J.; Singhera, G.K.; Moheimani, F.; Dorscheid, D.R.; Carlsten, C.; Sin, D.; Knight, D. Urban particulate matter increases human airway epithelial cell IL-1β secretion following scratch wounding and H1N1 influenza A exposure in vitro. Exp. Lung Res. 2015, 41, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Mullins, B.J.; Kicic, A.; Ling, K.-M.; Mead-Hunter, R.; Larcombe, A.N. Biodiesel exhaust–induced cytotoxicity and proinflammatory mediator production in human airway epithelial cells. Environ. Toxicol. 2016, 31, 44–57. [Google Scholar] [CrossRef]
- Landwehr, K.R.; Hillas, J.; Mead-Hunter, R.; O’Leary, R.A.; Kicic, A.; Mullins, B.J.; Larcombe, A.N. Soy Biodiesel Exhaust is More Toxic than Mineral Diesel Exhaust in Primary Human Airway Epithelial Cells. Environ. Sci. Technol. 2019, 53, 11437–11446. [Google Scholar] [CrossRef]
- Swanson, K.J. Release of the pro-inflammatory markers IL-8 & IL-6 by BEAS-2B cells following in vitro exposure to biodiesel extracts. Open Toxicol. J. 2006, 3, 8–15. [Google Scholar] [CrossRef]
- Traviss, N.; Li, M.; Lombard, M.; Thelen, B.A.; Palmer, B.C.; Poynter, M.E.; Mossman, B.T.; Holmén, B.A.; Fukagawa, N.K. Petrodiesel and waste grease biodiesel (B20) emission particles at a rural recycling center: Characterization and effects on lung epithelial cells and macrophages. Air Qual. Atmos. Health 2014, 7, 59–70. [Google Scholar] [CrossRef]
- Cervena, T.; Rossnerova, A.; Sikorova, J.; Beranek, V.; Vojtisek-Lom, M.; Ciganek, M.; Topinka, J.; Rossner, P., Jr. DNA damage potential of engine emissions measured in vitro by micronucleus test in human bronchial epithelial cells. Basic Clin. Pharmacol. Toxicol. 2017, 121, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Barraud, C.; Corbière, C.; Pottier, I.; Estace, E.; Blanchard, K.; Logie, C.; Lagadu, S.; Kéravec, V.; Pottier, D.; Dionnet, F. Impact of after-treatment devices and biofuels on diesel exhausts genotoxicity in A549 cells exposed at air-liquid interface. Toxicol. Vitr. 2017, 45, 426–433. [Google Scholar] [CrossRef]
- Nieto Marin, V.; Echavarria Mazo, L.V.; Londono Berrio, M.; Orozco Jimenez, L.Y.; Estrada Velez, V.; Pablo Isaza, J.; Cristina Ortiz-Trujillo, I. Genotoxicity of organic material extracted from particulate matter of alternative fuels. Environ. Sci. Pollut. Res. 2021, 28, 17844–17852. [Google Scholar] [CrossRef]
- McCaffery, C.; Zhu, H.W.; Ahmed, C.M.S.; Canchola, A.; Chen, J.Y.; Li, C.G.; Johnson, K.C.; Durbin, T.D.; Lin, Y.H.; Karavalakis, G. Effects of hydrogenated vegetable oil (HVO) and HVO/biodiesel blends on the physicochemical and toxicological properties of emissions from an off-road heavy-duty diesel engine. Fuel 2022, 323, 124283. [Google Scholar] [CrossRef]
- Juárez-Facio, A.T.; Rogez-Florent, T.; Méausoone, C.; Castilla, C.; Mignot, M.; Devouge-Boyer, C.; Lavanant, H.; Afonso, C.; Morin, C.; Merlet-Machour, N.; et al. Ultrafine Particles Issued from Gasoline-Fuels and Biofuel Surrogates Combustion: A Comparative Study of the Physicochemical and In Vitro Toxicological Effects. Toxics 2022, 11, 21. [Google Scholar] [CrossRef] [PubMed]
- Landwehr, K.R.; Hillas, J.; Mead-Hunter, R.; Brooks, P.; King, A.; O’Leary, R.A.; Kicic, A.; Mullins, B.J.; Larcombe, A.N. Fuel feedstock determines biodiesel exhaust toxicity in a human airway epithelial cell exposure model. J. Hazard. Mater. 2021, 420, 126637. [Google Scholar] [CrossRef] [PubMed]
- Ke, S.; Liu, Q.; Yao, Y.; Zhang, X.; Sui, G. An in vitro cytotoxicities comparison of 16 priority polycyclic aromatic hydrocarbons in human pulmonary alveolar epithelial cells HPAEpiC. Toxicol. Lett. 2018, 290, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Bünger, J.; Krahl, J.; Franke, H.-U.; Munack, A.; Hallier, E. Mutagenic and cytotoxic effects of exhaust particulate matter of biodiesel compared to fossil diesel fuel. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 1998, 415, 13–23. [Google Scholar] [CrossRef]
- Landwehr, K.R.; Hillas, J.; Mead-Hunter, R.; King, A.; O’Leary, R.A.; Kicic, A.; Mullins, B.J.; Larcombe, A.N. Toxicity of different biodiesel exhausts in primary human airway epithelial cells grown at air-liquid interface. Sci. Total Environ. 2022, 832, 155016. [Google Scholar] [CrossRef]
- Faber, S.C.; McNabb, N.A.; Ariel, P.; Aungst, E.R.; McCullough, S.D. Exposure Effects Beyond the Epithelial Barrier: Transepithelial Induction of Oxidative Stress by Diesel Exhaust Particulates in Lung Fibroblasts in an Organotypic Human Airway Model. Toxicol. Sci. 2020, 177, 140–155. [Google Scholar] [CrossRef]
- Posma, J.J.; Kilinç, E.; Borissoff, J.I.; Haegens, A.; Jedynska, A.D.; Ten Cate, H.; Kooter, I.M.; Spronk, H.M. Abstract 599: Exposure to Biodiesel Exhaust Triggers Atherosclerotic Plaque Destabilisation through Increased Apoptosis of Vascular Smooth Muscle Cells in the Arterial Vessel Wall. Arterioscler. Thromb. Vasc. Biol. 2018, 38, A599. [Google Scholar] [CrossRef]
- Martens, D.S.; Cox, B.; Janssen, B.G.; Clemente, D.B.; Nawrot, T.S. Prenatal Air Pollution and Newborns’ Predisposition to Accelerated Biological Aging EDITORIAL COMMENT. Obstet. Gynecol. Surv. 2018, 73, 259–260. [Google Scholar] [CrossRef]
- Sears, C.G.; Sears, L.; Zierold, K.M. Sex differences in the association between exposure to indoor particulate matter and cognitive control among children (age 6–14 years) living near coal-fired power plants. Neurotoxicol. Teratol. 2020, 78, 106855. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zink, F.; Hezel, F.; Vogt, J.; Wachter, U.; Wepler, M.; Loconte, M.; Kranz, C.; Hellmann, A.; Mizaikoff, B.; et al. Metabolic substrate utilization in stress-induced immune cells. Intensive Care Med. Exp. 2020, 8, 28. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Sarangi, P.P. Inflammation driven metabolic regulation and adaptation in macrophages. Clin. Immunol. 2022, 246, 109216. [Google Scholar] [CrossRef] [PubMed]
- Sangani, R.G.; Deepak, V.; Anwar, J.; Patel, Z.; Ghio, A.J. Cigarette Smoking, and Blood Monocyte Count Correlate with Chronic Lung Injuries and Mortality. Int. J. Chronic Obstr. Pulm. Dis. 2023, 18, 431–446. [Google Scholar] [CrossRef] [PubMed]
- Kozlowski, E.; Wasserman, G.A.; Morgan, M.; O’Carroll, D.; Ramirez, N.-G.P.; Gummuluru, S.; Rah, J.Y.; Gower, A.C.; Ieong, M.; Quinton, L.J.; et al. The RNA uridyltransferase Zcchc6 is expressed in macrophages and impacts innate immune responses. PLoS ONE 2017, 12, e0179797. [Google Scholar] [CrossRef]
- Gali, N.K.; Yang, F.; Cheung, C.S.; Ning, Z. A comparative analysis of chemical components and cell toxicity properties of solid and semi-volatile PM from diesel and biodiesel blend. J. Aerosol Sci. 2017, 111, 51–64. [Google Scholar] [CrossRef]
- Bhavaraju, L.; Shannahan, J.; William, A.; McCormick, R.; McGee, J.; Kodavanti, U.; Madden, M. Diesel and biodiesel exhaust particle effects on rat alveolar macrophages with in vitro exposure. Chemosphere 2013, 104, 126–133. [Google Scholar] [CrossRef]
- Vogel, C.F.A.; Kado, S.Y.; Kobayashi, R.; Liu, X.; Wong, P.; Na, K.; Durbin, T.; Okamoto, R.A.; Kado, N.Y. Inflammatory marker and aryl hydrocarbon receptor-dependent responses in human macrophages exposed to emissions from biodiesel fuels. Chemosphere 2018, 220, 993–1002. [Google Scholar] [CrossRef]
- Tooker, B.C.; Quinn, K.; Armstrong, M.; Bauer, A.K.; Reisdorph, N. Comparing the effects of an exposure to a polycyclic aromatic hydrocarbon mixture versus individual polycyclic aromatic hydrocarbons during monocyte to macrophage differentiation: Mixture exposure results in altered immune metrics. J. Appl. Toxicol. 2021, 41, 1568–1583. [Google Scholar] [CrossRef]
- Soriano, J.A.; García-Contreras, R.; de la Fuente, J.; Armas, O.; Orozco-Jiménez, L.Y.; Agudelo, J.R. Genotoxicity and mutagenicity of particulate matter emitted from diesel, gas to liquid, biodiesel, and farnesane fuels: A toxicological risk assessment. Fuel 2020, 282, 118763. [Google Scholar] [CrossRef]
- Gioda, A.; Rodríguez-Cotto, R.I.; Amaral, B.S.; Encarnación-Medina, J.; Ortiz-Martínez, M.G.; Jiménez-Vélez, B.D. Biodiesel from soybean promotes cell proliferation in vitro. Toxicol. Vitr. 2016, 34, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Nakai, K.; Tsuruta, D. What Are Reactive Oxygen Species, Free Radicals, and Oxidative Stress in Skin Diseases? Int. J. Mol. Sci. 2021, 22, 10799. [Google Scholar] [CrossRef] [PubMed]
- Skowroń, J.; Miranowicz-Dzierzawska, K.; Zapor, L. Cytotoxicity of biofuels produced by esterification of waste materials: Vegetable oils or animal fats on A431 skin cells. Toxicol. Lett. 2015, 238, S345. [Google Scholar] [CrossRef]
- Agarwal, A.K.; Singh, A.P.; Gupta, T.; Agarwal, R.A.; Sharma, N.; Rajput, P.; Pandey, S.K.; Ateeq, B. Mutagenicity and Cytotoxicity of Particulate Matter Emitted from Biodiesel-Fueled Engines. Environ. Sci. Technol. 2018, 52, 14496–14507. [Google Scholar] [CrossRef] [PubMed]
- Cavalcante, D.G.S.M.; da Silva, N.D.G.; Marcarini, J.C.; Mantovani, M.S.; Marin-Morales, M.A.; Martinez, C.B.R. Cytotoxic, biochemical and genotoxic effects of biodiesel produced by different routes on ZFL cell line. Toxicol. Vitr. 2014, 28, 1117–1125. [Google Scholar] [CrossRef]
- Arias, S.; Estrada, V.; Ortiz, I.C.; Molina, F.J.; Agudelo, J.R. Biological toxicity risk assessment of two potential neutral carbon diesel fuel substitutes. Environ. Pollut. 2022, 308, 119677. [Google Scholar] [CrossRef]
- Martin, N.; Lombard, M.; Jensen, K.R.; Kelley, P.; Pratt, T.; Traviss, N. Effect of biodiesel fuel on “real-world”, nonroad heavy duty diesel engine particulate matter emissions, composition and cytotoxicity. Sci. Total Environ. 2017, 586, 409–418. [Google Scholar] [CrossRef]
- Mutlu, E.; Warren, S.H.; Matthews, P.P.; Schmid, J.E.; Kooter, I.M.; Linak, W.P.; Ian Gilmour, M.; DeMarini, D.M. Health effects of soy-biodiesel emissions: Bioassay-directed fractionation for mutagenicity. Inhal. Toxicol. 2015, 27, 597–612. [Google Scholar] [CrossRef] [PubMed]
- Novotná, B.; Sikorová, J.; Milcová, A.; Pechout, M.; Dittrich, L.; Vojtíšek-Lom, M.; Rossner Jr, P.; Brzicová, T.; Topinka, J. The genotoxicity of organic extracts from particulate truck emissions produced at various engine operating modes using diesel or biodiesel (B100) fuel: A pilot study. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2019, 845, 403034. [Google Scholar] [CrossRef] [PubMed]
- Brito, J.M.; Belotti, L.; Toledo, A.C.; Antonangelo, L.; Silva, F.S.; Alvim, D.S.; Andre, P.A.; Saldiva, P.H.N.; Rivero, D.H.R.F. Acute cardiovascular and inflammatory toxicity induced by inhalation of diesel and biodiesel exhaust particles. Toxicol. Sci. 2010, 116, 67–78. [Google Scholar] [CrossRef]
- Botero, M.L.; Mendoza, C.; Arias, S.; Hincapié, O.D.; Agudelo, J.R.; Ortiz, I.C. In vitro evaluation of the cytotoxicity, mutagenicity and DNA damage induced by particle matter and gaseous emissions from a medium-duty diesel vehicle under real driving conditions using palm oil biodiesel blends. Environ. Pollut. 2020, 265, 115034. [Google Scholar] [CrossRef]
- Liu, Y.-Y.; Lin, T.-C.; Wang, Y.-J.; Ho, W.-L. Biological toxicities of emissions from an unmodified engine fueled with diesel and biodiesel blend. J. Environ. Sci. Health Part A 2008, 43, 1735–1743. [Google Scholar] [CrossRef]
- Libalova, H.; Vrbova, K.; Brzicova, T.; Sikorova, J.; Milcova, A.; Vojtisek Lom, M.; Beranek, V.; Klema, J.; Neca, J.; Ciganek, M.; et al. Comparative analysis of the toxic responses of organic extracts from diesel/biodiesel engine emissions in human lung BEAS-2B cells. Toxicol. Lett. 2016, 258, S281–S282. [Google Scholar] [CrossRef]
- Leme, D.M.; Grummt, T.; Heinze, R.; Sehr, A.; Skerswetat, M.; de Marchi, M.R.R.; Machado, M.C.; de Oliveira, D.P.; Marin-Morales, M.A. Cytotoxicity of water-soluble fraction from biodiesel and its diesel blends to human cell lines. Ecotoxicol. Environ. Saf. 2011, 74, 2148–2155. [Google Scholar] [CrossRef]
- Zhang, Z.-Z.; Zhang, Q.; Liang, Y.; Li, C.-Q.; Lai, C.-C.; Huang, W.-B.; Wu, D.-S. Comparative study on the genotoxicity of gasoline-fueled vehicle exhaust and methanol-fueled vehicle exhaust. J. Sichuan Univ. Med. Sci. Ed. 2005, 36, 249–252. [Google Scholar]
- Liang, Y.; Zhan, L.; Zhang, Z.; Zhang, H.; Zeng, X.; Gou, X.; Lin, C.; Cai, C.; Shao, X.; Shao, G.; et al. Genotoxicity comparison between gasoline- and methanol-fueled exhaust by TK gene mutation assay. J. Biomed. Eng. 2005, 22, 347–350. [Google Scholar]
- Muñoz, M.; Heeb, N.V.; Haag, R.; Honegger, P.; Zeyer, K.; Mohn, J.; Comte, P.; Czerwinski, J. Bioethanol Blending Reduces Nanoparticle, PAH, and Alkyl- and Nitro-PAH Emissions and the Genotoxic Potential of Exhaust from a Gasoline Direct Injection Flex-Fuel Vehicle. Environ. Sci. Technol. 2016, 50, 11853–11861. [Google Scholar] [CrossRef] [PubMed]
- Líbalová, H.; Závodná, T.; Vrbová, K.; Sikorová, J.; Vojtíšek-Lom, M.; Beránek, V.; Pechout, M.; Kléma, J.; Ciganek, M.; Machala, M.; et al. Transcription profiles in BEAS-2B cells exposed to organic extracts from particulate emissions produced by a port-fuel injection vehicle, fueled with conventional fossil gasoline and gasoline-ethanol blend. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2021, 872, 503414. [Google Scholar] [CrossRef] [PubMed]
- Bisig, C.; Roth, M.; Müller, L.; Comte, P.; Heeb, N.; Mayer, A.; Czerwinski, J.; Petri-Fink, A.; Rothen-Rutishauser, B. Hazard identification of exhausts from gasoline-ethanol fuel blends using a multi-cellular human lung model. Environ. Res. 2016, 151, 789–796. [Google Scholar] [CrossRef]
- Rossner, P.; Cervena, T.; Vojtisek-Lom, M.; Neca, J.; Ciganek, M.; Vrbova, K.; Ambroz, A.; Novakova, Z.; Elzeinova, F.; Sima, M.; et al. Markers of lipid oxidation and inflammation in bronchial cells exposed to complete gasoline emissions and their organic extracts. Chemosphere 2021, 281, 130833. [Google Scholar] [CrossRef]
- Sima, M.; Cervena, T.; Elzeinova, F.; Ambroz, A.; Beranek, V.; Vojtisek-Lom, M.; Klema, J.; Ciganek, M.; Rossner, P. The impact of extractable organic matter from gasoline and alternative fuel emissions on bronchial cell models (BEAS-2B, MucilAir™). Toxicol. Vitr. 2022, 80, 105316. [Google Scholar] [CrossRef]
- Hakkarainen, H.; Aakko-Saksa, P.; Sainio, M.; Ihantola, T.; Rönkkö, T.J.; Koponen, P.; Rönkkö, T.; Jalava, P.I. Toxicological evaluation of exhaust emissions from light-duty vehicles using different fuel alternatives in sub-freezing conditions. Part. Fibre Toxicol. 2020, 17, 17. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Roth, P.; Durbin, T.D.; Shafer, M.M.; Hemming, J.; Antkiewicz, D.S.; Asa-Awuku, A.; Karavalakis, G. Emissions from a flex fuel GDI vehicle operating on ethanol fuels show marked contrasts in chemical, physical and toxicological characteristics as a function of ethanol content. Sci. Total Environ. 2019, 683, 749–761. [Google Scholar] [CrossRef]
- Le, C.T.T.; Ahn, S.Y.; Kang, S.-M.; Ko, E.-J. Functional NK Cell Activation by Ovalbumin Immunization with a Monophosphoryl Lipid A and Poly I:C Combination Adjuvant Promoted Dendritic Cell Maturation. Vaccines 2021, 9, 1061. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.-Y.; Fu, T.; Jiang, Y.-Z.; Shao, Z.-M. Natural killer cells in cancer biology and therapy. Mol. Cancer 2020, 19, 120. [Google Scholar] [CrossRef]
- Roth, M.; Usemann, J.; Bisig, C.; Comte, P.; Czerwinski, J.; Mayer, A.C.R.; Beier, K.; Rothen-Rutishauser, B.; Latzin, P.; Müller, L. Effects of gasoline and ethanol-gasoline exhaust exposure on human bronchial epithelial and natural killer cells in vitro. Toxicol. Vitr. 2017, 45, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Wong, P.K.; Ghadikolaei, M.A.; Chen, S.H.; Fadairo, A.A.; Ng, K.W.; Lee, S.M.Y.; Xu, J.C.; Lian, Z.D.; Li, S.; Wong, H.C.; et al. Physicochemical and cell toxicity properties of particulate matter (PM) from a diesel vehicle fueled with diesel, spent coffee ground biodiesel, and ethanol. Sci. Total Environ. 2022, 842, 153873. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.-M.; Wang, C.-C.; Lin, Y.-C.; Jhang, S.-R.; Lin, L.-J.; Lin, Y.-C. Development of novel alternative biodiesel fuels for reducing PM emissions and PM-related genotoxicity. Environ. Res. 2017, 156, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Landwehr, K.R.; Nabi, M.N.; Rasul, M.G.; Kicic, A.; Mullins, B.J. Biodiesel Exhaust Toxicity with and without Diethylene Glycol Dimethyl Ether Fuel Additive in Primary Airway Epithelial Cells Grown at the Air–Liquid Interface. Environ. Sci. Technol. 2022, 56, 14640–14648. [Google Scholar] [CrossRef] [PubMed]
- Pereira, S.P.; Santos, S.M.A.; Fernandes, M.A.S.; Deus, C.M.; Martins, J.D.; Pedroso de Lima, M.C.; Vicente, J.A.F.; Videira, R.A.; Jurado, A.S. Improving pollutants environmental risk assessment using a multi model toxicity determination with in vitro, bacterial, animal and plant model systems: The case of the herbicide Alachlor. Environ. Pollut. 2021, 286, 117239. [Google Scholar] [CrossRef] [PubMed]
- Viegas, C.A. Microbial bioassays in environmental toxicity testing. Adv. Appl. Microbiol. 2021, 115, 115–158. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.-F.; Wang, S.-L.; Lee, D.-C.; Hsiao, S.S.-Y.; Hashimoto, Y.; Yeh, K.-C. Assessment of indium toxicity to the model plant Arabidopsis. J. Hazard. Mater. 2019, 387, 121983. [Google Scholar] [CrossRef]
- Bahl, A.; Loitsch, S.M.; Kahl, G. Transcriptional activation of plant defence genes by short-term air pollutant stress. Environ. Pollut. 1995, 89, 221–227. [Google Scholar] [CrossRef]
- Anand, P.; Mina, U.; Khare, M.; Kumar, P.; Kota, S.H. Air pollution and plant health response-current status and future directions. Atmos. Pollut. Res. 2022, 13, 101508. [Google Scholar] [CrossRef]
- Lee, J.; Hong, S.; An, S.-A.; Khim, J.S. Methodological advances and future directions of microalgal bioassays for evaluation of potential toxicity in environmental samples: A review. Environ. Int. 2023, 173, 107869. [Google Scholar] [CrossRef]
- Li, Y.; Liu, S.; Ji, Z.; Sun, J.; Liu, X. Distinct responses of Chlorella vulgaris upon combined exposure to microplastics and bivalent zinc. J. Hazard. Mater. 2022, 442, 130137. [Google Scholar] [CrossRef]
- Bendtsen, K.M.; Gren, L.; Malmborg, V.B.; Shukla, P.C.; Tunér, M.; Essig, Y.J.; Krais, A.M.; Clausen, P.A.; Berthing, T.; Loeschner, K.; et al. Particle characterization and toxicity in C57BL/6 mice following instillation of five different diesel exhaust particles designed to differ in physicochemical properties. Part. Fibre Toxicol. 2020, 17, 38. [Google Scholar] [CrossRef]
- Noël, A.; Ashbrook, D.G.; Xu, F.; Cormier, S.A.; Lu, L.; O’Callaghan, J.P.; Menon, S.K.; Zhao, W.; Penn, A.L.; Jones, B.C. Genomic Basis for Individual Differences in Susceptibility to the Neurotoxic Effects of Diesel Exhaust. Int. J. Mol. Sci. 2022, 23, 12461. [Google Scholar] [CrossRef]
- Posgai, R.; Ahamed, M.; Hussain, S.M.; Rowe, J.J.; Nielsen, M.G. Inhalation method for delivery of nanoparticles to the Drosophila respiratory system for toxicity testing. Sci. Total Environ. 2009, 408, 439–443. [Google Scholar] [CrossRef]
- Yan, C.; Wu, X.; Cao, X.; Li, M.; Zhou, L.; Xiu, G.; Zeng, J. In vitro and in vitro toxicity study of diesel exhaust particles using BEAS-2B cell line and the nematode Caenorhabditis elegans as biological models. Environ. Sci. Pollut. Res. 2021, 28, 60704–60716. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Huang, Z.; Zhang, W.; Ren, Y. Investigating the neurotoxicity of environmental pollutants using zebrafish as a model organism: A review and recommendations for future work. NeuroToxicology 2022, 94, 235–244. [Google Scholar] [CrossRef]
- Diego Stéfani, T.M.; Laura-Jayne, A.E.; Gabriela, H.D.S.; Romana, P.; Aline, M.Z.M.; Hossein Hayat, D.; Anastasios, G.P.; Adalberto, F.; Antreas, A.; Georgia, M.; et al. Daphnia magna and mixture toxicity with nanomaterials—Current status and perspectives in data-driven risk prediction. Nano Today 2022, 43, 101430. [Google Scholar] [CrossRef]
- Pikula, K.; Tretyakova, M.; Zakharenko, A.; Johari, S.A.; Ugay, S.; Chernyshev, V.; Chaika, V.; Kalenik, T.; Golokhvast, K. Environmental Risk Assessment of Vehicle Exhaust Particles on Aquatic Organisms of Different Trophic Levels. Toxics 2021, 9, 261. [Google Scholar] [CrossRef] [PubMed]
- Robinson, N.B.; Krieger, K.; Khan, F.M.; Huffman, W.; Chang, M.; Naik, A.; Yongle, R.; Hameed, I.; Krieger, K.; Girardi, L.N.; et al. The current state of animal models in research: A review. Int. J. Surg. 2019, 72, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Yoon, J.-Y. Organ-on-a-chip for assessing environmental toxicants. Curr. Opin. Biotechnol. 2017, 45, 34–42. [Google Scholar] [CrossRef]
- Castro-Gálvez, Z.; Garrido-Armas, M.; Palacios-Arreola, M.I.; Torres-Flores, U.; Rivera-Torruco, G.; Valle-Rios, R.; Amador-Muñoz, O.; Hernández-Hernández, A.; Arenas-Huertero, F. Cytotoxic and genotoxic effects of Benzo[ghi]perylene on the human bronchial cell line NL-20. Toxicol. Vitr. 2019, 61, 104645. [Google Scholar] [CrossRef] [PubMed]
- Tan, K.S.; Gamage, A.M.; Liu, J. Human Nasal Epithelial Cells (hNECs) Generated by Air-Liquid Interface (ALI) Culture as a Model System for Studying the Pathogenesis of SARS-CoV-2. Methods Mol. Biol. 2022, 2452, 213–224. [Google Scholar] [CrossRef]
- Cidem, A.; Bradbury, P.; Traini, D.; Ong, H.X. Modifying and Integrating in vitro and ex vivo Respiratory Models for Inhalation Drug Screening. Front. Bioeng. Biotechnol. 2020, 8, 581995. [Google Scholar] [CrossRef]
- Vegard Sæ ter, G.; Elisabeth, K.; Tonje, S.; Magne, R.; Johan, Ø.; Mats, G.; Marit, L. 76 Combined Exposure to road wear Particles and Diesel Exhaust Particles Induces Enhanced pro-Inflammatory Responses in Cells of the Human Airways. Ann. Work Expo. Health 2023, 67, i94. [Google Scholar] [CrossRef]
- Ke, S.; Liu, Q.; Zhang, X.; Yao, Y.; Yang, X.; Sui, G. Cytotoxicity analysis of biomass combustion particles in human pulmonary alveolar epithelial cells on an air–liquid interface/dynamic culture platform. Part. Fibre Toxicol. 2021, 18, 31. [Google Scholar] [CrossRef]
- Lee, E.; Kim, H.-J.; Lee, M.; Jin, S.H.; Hong, S.H.; Ahn, S.; Kim, S.O.; Shin, D.W.; Lee, S.-T.; Noh, M. Cystathionine metabolic enzymes play a role in the inflammation resolution of human keratinocytes in response to sub-cytotoxic formaldehyde exposure. Toxicol. Appl. Pharmacol. 2016, 310, 185–194. [Google Scholar] [CrossRef]
- Shah, U.-K.; Seager, A.L.; Fowler, P.; Doak, S.H.; Johnson, G.E.; Scott, S.J.; Scott, A.D.; Jenkins, G.J.S. A comparison of the genotoxicity of benzo[a]pyrene in four cell lines with differing metabolic capacity. Mutation research. Genet. Toxicol. Environ. Mutagen. 2016, 808, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, C.; Zhang, X.; Kang, X.; Li, Y.; Zhang, W.; Chen, Y.; Liu, Y.; Wang, W.; Ge, M.; et al. Exposure to PM2.5 aggravates Parkinson’s disease via inhibition of autophagy and mitophagy pathway. Toxicology 2021, 456, 152770. [Google Scholar] [CrossRef]
- Sim, H.; Noh, Y.; Choo, S.; Kim, N.; Lee, T.; Bae, J.-S. Suppressive Activities of Fisetin on Particulate Matter-induced Oxidative Stress. Biotechnol. Bioprocess Eng. 2021, 26, 568–574. [Google Scholar] [CrossRef]
- Xie, W.; You, J.; Zhi, C.; Li, L. The toxicity of ambient fine particulate matter (PM2.5) to vascular endothelial cells. J. Appl. Toxicol. 2021, 41, 713–723. [Google Scholar] [CrossRef] [PubMed]
- Guastadisegni, C.; Kelly, F.J.; Cassee, F.R.; Gerlofs-Nijland, M.E.; Janssen, N.A.H.; Pozzi, R.; Brunekreef, B.; Sandström, T.; Mudway, I. Determinants of the proinflammatory action of ambient particulate matter in immortalized murine macrophages. Environ. Health Perspect. 2010, 118, 1728–1734. [Google Scholar] [CrossRef]
- Upadhyay, S.; Palmberg, L. Air-liquid interface: Relevant in vitro models for investigating air pollutant-induced pulmonary toxicity. Toxicol. Sci. 2018, 164, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Lenz, A.G.; Karg, E.; Brendel, E.; Hinze-Heyn, H.; Maier, K.L.; Eickelberg, O.; Stoeger, T.; Schmid, O. Inflammatory and oxidative stress responses of an alveolar epithelial cell line to airborne zinc oxide nanoparticles at the air-liquid interface: A comparison with conventional, submerged cell-culture conditions. BioMed Res. Int. 2013, 2013, 652632. [Google Scholar] [CrossRef]
- Zarcone, M.C.; Duistermaat, E.; Alblas, M.J.; van Schadewijk, A.; Ninaber, D.K.; Clarijs, V.; Moerman, M.M.; Vaessen, D.; Hiemstra, P.S.; Kooter, I.M. Effect of diesel exhaust generated by a city bus engine on stress responses and innate immunity in primary bronchial epithelial cell cultures. Toxicol. Vitr. 2018, 48, 221–231. [Google Scholar] [CrossRef]
- Guénette, J.; Breznan, D.; Thomson, E.M. Establishing an air-liquid interface exposure system for exposure of lung cells to gases. Inhal. Toxicol. 2022, 34, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, P.; Qin, J. Microfluidic Organs-on-a-Chip for Modeling Human Infectious Diseases. Acc. Chem. Res. 2021, 54, 3550–3562. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yin, F.; Li, Z.; Su, W.; Li, D. Advances of microfluidic lung chips for assessing atmospheric pollutants exposure. Environ. Int. 2023, 172, 107801. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Chen, X.; Dowbaj, A.M.; Sljukic, A.; Bratlie, K.; Lin, L.; Fong, E.L.S.; Balachander, G.M.; Chen, Z.; Soragni, A.; et al. Organoids. Nat. Rev. Methods Primers 2022, 2, 94. [Google Scholar] [CrossRef]
- Stegmayr, J.; Wagner, D.E. The dawn of the omics era in human precision-cut lung slices. Eur. Respir. J. 2021, 58, 2100203. [Google Scholar] [CrossRef]
- Yang, Z.; Xiao, Y.; Jiao, T.; Zhang, Y.; Chen, J.; Gao, Y. Effects of Copper Oxide Nanoparticles on the Growth of Rice (Oryza sativa L.) Seedlings and the Relevant Physiological Responses. Int. J. Environ. Res. Public Health 2020, 17, 1260. [Google Scholar] [CrossRef]
- Delias, D.S.; Da-Silva, C.J.; Martins, A.C.; de Oliveira, D.S.C.; do Amarante, L. Iron toxicity increases oxidative stress and impairs mineral accumulation and leaf gas exchange in soybean plants during hypoxia. Environ. Sci. Pollut. Res. 2021, 29, 22427–22438. [Google Scholar] [CrossRef]
- Song, U.; Kim, J. Assessment of the potential risk of 1,2-hexanediol using phytotoxicity and cytotoxicity testing. Ecotoxicol. Environ. Saf. 2020, 201, 110796. [Google Scholar] [CrossRef]
- Shahbaz, M.; Akram, A.; Mehak, A.; Haq, E.U.; Fatima, N.; Wareen, G.; Fitriatin, B.N.; Sayyed, R.Z.; Ilyas, N.; Sabullah, M.K. Evaluation of Selenium Nanoparticles in Inducing Disease Resistance against Spot Blotch Disease and Promoting Growth in Wheat under Biotic Stress. Plants 2023, 12, 761. [Google Scholar] [CrossRef]
- Villarini, M.; Fatigoni, C.; Dominici, L.; Maestri, S.; Ederli, L.; Pasqualini, S.; Monarca, S.; Moretti, M. Assessing the genotoxicity of urban air pollutants using two in situ plant bioassays. Environ. Pollut. 2009, 157, 3354–3356. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Song, B.; Xiao, R.; Zeng, G.; Gong, J.; Chen, M.; Xu, P.; Zhang, P.; Shen, M.; Yi, H. Assessing the human health risks of perfluorooctane sulfonate by in vivo and in vitro studies. Environ. Int. 2019, 126, 598–610. [Google Scholar] [CrossRef] [PubMed]
- Zavala, J.; Freedman, A.N.; Szilagyi, J.T.; Jaspers, I.; Wambaugh, J.F.; Higuchi, M.; Rager, J.E. New Approach Methods to Evaluate Health Risks of Air Pollutants: Critical Design Considerations for In Vitro Exposure Testing. Int. J. Environ. Res. Public Health 2020, 17, 2124. [Google Scholar] [CrossRef] [PubMed]
- Ding, T.; Wei, L.; Hou, Z.; Li, J.; Zhang, C.; Lin, D. Microplastics altered contaminant behavior and toxicity in natural waters. J. Hazard. Mater. 2021, 425, 127908. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Shi, T.; Li, X.; Sun, H.; Xia, X.; Ji, X.; Zhang, J.; Liu, M.; Lin, Y.; Zhang, R.; et al. Inhaled tire-wear microplastic particles induced pulmonary fibrotic injury via epithelial cytoskeleton rearrangement. Environ. Int. 2022, 164, 107257. [Google Scholar] [CrossRef]
- Lundbäck, M.; Mills, N.L.; Lucking, A.; Barath, S.; Donaldson, K.; Newby, D.E.; Sandström, T.; Blomberg, A. Experimental exposure to diesel exhaust increases arterial stiffness in man. Part. Fibre Toxicol. 2009, 6, 7. [Google Scholar] [CrossRef] [PubMed]
- Naughton, S.X.; Pasinetti, G.M. Role of diesel exhaust exposure in promoting Alzheimer’s disease susceptibility by impairing glymphatic drainage of amyloid beta (aβ) and other toxic metabolites from the brain. Alzheimer’s Dement. 2021, 17, e056165. [Google Scholar] [CrossRef]
- Hesterberg, T.W.; Bunn, W.B.; McClellan, R.O.; Hart, G.A.; Lapin, C.A. Carcinogenicity studies of diesel engine exhausts in laboratory animals: A review of past studies and a discussion of future research needs. Crit. Rev. Toxicol. 2005, 35, 379–411. [Google Scholar] [CrossRef]
- Asma, S.T.; Imre, K.; Morar, A.; Herman, V.; Acaroz, U.; Mukhtar, H.; Arslan-Acaroz, D.; Shah, S.R.A.; Gerlach, R. An Overview of Biofilm Formation–Combating Strategies and Mechanisms of Action of Antibiofilm Agents. Life 2022, 12, 1110. [Google Scholar] [CrossRef]
- Gupta, G.; Cappellini, F.; Farcal, L.; Gornati, R.; Bernardini, G.; Fadeel, B. Copper oxide nanoparticles trigger macrophage cell death with misfolding of Cu/Zn superoxide dismutase 1 (SOD1). Part. Fibre Toxicol. 2022, 19, 33. [Google Scholar] [CrossRef] [PubMed]
- Mandavilli, B.S.; Yan, M.; Clarke, S. Cell-Based High Content Analysis of Cell Proliferation and Apoptosis. Methods Mol. Biol. 2017, 1683, 47–57. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Xu, Y.; Wang, M.; Zhu, Q.; Li, W.; Wang, X.; Liu, J.; Ma, B.; Wu, K. Neurotransmitter noradrenaline downregulate cytoskeletal protein expression of VSMCs. Exp. Mol. Pathol. 2012, 94, 79–83. [Google Scholar] [CrossRef]
- Barcellini-Couget, S.; de Sousa, G.; Rahmani, R. The use of Real-Time Cell Analyzer (RTCA) in in vitro toxicology. Toxicol. Lett. 2013, 221, S163. [Google Scholar] [CrossRef]
- Xiong, P.; Huang, X.; Ye, N.; Lu, Q.; Zhang, G.; Peng, S.; Wang, H.; Liu, Y. Cytotoxicity of Metal-Based Nanoparticles: From Mechanisms and Methods of Evaluation to Pathological Manifestations. Adv. Sci. 2022, 9, 2106049. [Google Scholar] [CrossRef]
- Oshima, A.; Nakashima, H.; Sumitomo, K. Evaluation of Lateral Diffusion of Lipids in Continuous Membranes between Freestanding and Supported Areas by Fluorescence Recovery after Photobleaching. Langmuir 2019, 35, 11725–11734. [Google Scholar] [CrossRef]
- Liu, X.; Xia, J.; Tang, J.; Zhou, M.; Chen, D.; Liu, Z. Ginsenoside Rh_2 induces apoptosis and autophagy of K562 cells by activating p38. China J. Chin. Mater. Med. 2017, 42, 146–151. [Google Scholar] [CrossRef]
- Meng, D.; Zhang, P.; Zhang, L.; Wang, H.; Ho, C.-T.; Li, S.; Shahidi, F.; Zhao, H. Detection of cellular redox reactions and antioxidant activity assays. J. Funct. Foods 2017, 37, 467–479. [Google Scholar] [CrossRef]
- Chiorcea-Paquim, A.-M. 8-oxoguanine and 8-oxodeoxyguanosine Biomarkers of Oxidative DNA Damage: A Review on HPLC–ECD Determination. Molecules 2022, 27, 1620. [Google Scholar] [CrossRef] [PubMed]
- Buss, H.; Chan, T.P.; Sluis, K.B.; Domigan, N.M.; Winterbourn, C.C. Protein carbonyl measurement by a sensitive ELISA method. Free Radic. Biol. Med. 1997, 24, 1352. [Google Scholar] [CrossRef] [PubMed]
- Moreau, C.; Issakidis-Bourguet, E. A Simplified Method to Assay Protein Carbonylation by Spectrophotometry. Methods Mol. Biol. 2022, 2526, 135–141. [Google Scholar] [CrossRef]
- Pesez, M. 2:4-Dinitrophenylhydrazine, a suitable reagent for the colorimetric determination of carbonyl compounds. J. Pharm. Pharmacol. 1959, 11, 475–476. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Ma, J.; Cai, K.; Chen, H.; Xie, K.; Xu, B.; Quan, D.; Du, J. Isoflavones from Semen Sojae Preparatum Improve Atherosclerosis and Oxidative Stress by Modulating Nrf2 Signaling Pathway through Estrogen-Like Effects. Evid. Based Complement. Altern. Med. 2022, 2022, 4242099. [Google Scholar] [CrossRef] [PubMed]
- Favier, A. Oxidative stress: Value of its demonstration in medical biology and problems posed by the choice of a marker. Ann. Biol. Clin. 1997, 55, 9–16. [Google Scholar]
- Cordelli, E.; Bignami, M.; Pacchierotti, F. Comet assay: A versatile but complex tool in genotoxicity testing. Toxicol. Res. 2021, 10, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Libalova, H.; Rossner, P.; Vrbova, K.; Brzicova, T.; Sikorova, J.; Vojtisek-Lom, M.; Beranek, V.; Klema, J.; Ciganek, M.; Neca, J.; et al. Comparative Analysis of Toxic Responses of Organic Extracts from Diesel and Selected Alternative Fuels Engine Emissions in Human Lung BEAS-2B Cells. Int. J. Mol. Sci. 2016, 17, 1833. [Google Scholar] [CrossRef] [PubMed]
- Tutty, M.A.; Vella, G.; Vennemann, A.; Wiemann, M.; Prina-Mello, A. Evaluating nanobiomaterial-induced DNA strand breaks using the alkaline comet assay. Drug Deliv. Transl. Res. 2022, 12, 2243–2258. [Google Scholar] [CrossRef]
- Hamouchene, H.; Arlt, V.M.; Giddings, I.; Phillips, D.H. Influence of cell cycle on responses of MCF-7 cells to benzo[a]pyrene. BMC Genom. 2011, 12, 333. [Google Scholar] [CrossRef]
Product Type | Alcohols | Ethers | Biodiesel |
---|---|---|---|
Conventional Products | CO, CO2, H2O, NOx, HC | CO, CO2, H2O, NOx, HC | CO, CO2, H2O, NOx, HC |
Aldehydes | formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, acrolein, etc. | formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, acrolein, etc. | formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, acrolein, etc. |
Alcohols 1 | methanol, ethanol, propanol, butanol, etc. | methanol, ethanol, propanol, butanol, etc. | methanol, ethanol, propanol, butanol, etc. |
Acids | formic acid, acetic acid, etc. | formic acid, acetic acid, etc. | formic acid, acetic acid, etc. |
Ketones | acetone | acetone | acetone |
Olefins | ethylene, propylene, etc. | ethylene, propylene, etc. | ethylene, propylene, etc. |
Ethers 2 | alkyl ethers | methyl tert-butyl ether, dimethyl ether, etc. | alkyl ethers |
Esters | methyl formate, ethyl formate, etc. | methyl formate, ethyl formate, etc. | methyl formate, ethyl formate, methyl 3-butenoate, methyl 4-pentenoate, methyl hexanoate, methyl enanthate, methyl heptanoate, methyl nonanoate, 2-methyl propyl 2-acrylate, butyl acetate, etc. |
Peroxide | - | H2O2, HPMF, etc. | - |
MAHs | - | - | benzene, toluene, xylene, methylbenzene, dimethylbenzene, mesitylene, ethylbenzene, styrene, propylbenzene, etc. |
PAHs | - | - | naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)anthracene chrysene, benzo(b)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene, dibenzo(a, h)anthracene, benzo(g, hi)perylene, etc. |
PM | SOF | SOF | soot, SOF, sulfate, metal particles, PAHs, etc. |
Trends | Gasoline/Diesel– Alcohol/Ether | Gasoline/Diesel– Biodiesel | Biodiesel– Alcohol/Ether 1 | Gasoline/Diesel –Biodiesel –Alcohol/Ether 2 | Gasoline/Diesel –Biodiesel –Alcohol/Ether 3 | |||||
---|---|---|---|---|---|---|---|---|---|---|
CO | ↓ ↑ | [101,102,103,104,105,106,107,108] [109,110,111] | ↓ ↑ | [112,113,114,115,116,117,118,119,120] [121,122] | ↓ | [123,124] | ↓ | [125,126,127] | ↓ | [106,110,125,128,129,130] |
CO2 | ↓ ↑ | [101,102,110] [104,106,131,132] | ↓ ↑ | [133] [112,117] | - | - | ↓ ↑ | [125] [132] | ↓ | [110,128,130,134] |
NOx | ↓ ↑ | [101,102,107,109,110,111,135,136,137,138,139] [106] | ↓ ↑ | [121] [112,117,118,119,120] | ↓ | [123,124,138,140] | ↓ | [127] | ↓ ↑ | [125,128,130,134,141] [121] |
HC | ↓ ↑ | [101,102,104,106,108,109,110,131,132,136,137] [111] | ↓ ↑ | [112,113,114,115,117,118,119,120] [121,122] | ↓ | [123,124] | ↓ | [126,127,132] | ↓ | [106,110] |
PM | ↓ | [107,108,110,111,142] | ↓ ↑ | [112,114,115,119,143,144,145] [121] | ↓ | [123,146,147] | - | - | ↓ | [110,128,129,134,144,145,148,149,150] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, C.; Li, X.; Xu, T.; Dong, J.; Geng, Z.; Liu, J.; Ding, C.; Hu, J.; El ALAOUI, A.; Zhao, Q.; et al. Zero-Carbon and Carbon-Neutral Fuels: A Review of Combustion Products and Cytotoxicity. Energies 2023, 16, 6507. https://doi.org/10.3390/en16186507
Jin C, Li X, Xu T, Dong J, Geng Z, Liu J, Ding C, Hu J, El ALAOUI A, Zhao Q, et al. Zero-Carbon and Carbon-Neutral Fuels: A Review of Combustion Products and Cytotoxicity. Energies. 2023; 16(18):6507. https://doi.org/10.3390/en16186507
Chicago/Turabian StyleJin, Chao, Xiaodan Li, Teng Xu, Juntong Dong, Zhenlong Geng, Jia Liu, Chenyun Ding, Jingjing Hu, Ahmed El ALAOUI, Qing Zhao, and et al. 2023. "Zero-Carbon and Carbon-Neutral Fuels: A Review of Combustion Products and Cytotoxicity" Energies 16, no. 18: 6507. https://doi.org/10.3390/en16186507
APA StyleJin, C., Li, X., Xu, T., Dong, J., Geng, Z., Liu, J., Ding, C., Hu, J., El ALAOUI, A., Zhao, Q., & Liu, H. (2023). Zero-Carbon and Carbon-Neutral Fuels: A Review of Combustion Products and Cytotoxicity. Energies, 16(18), 6507. https://doi.org/10.3390/en16186507