Tissue-Specific Accumulation Profiles of Phorbol Esters in Response to Abiotic and Biotic Stresses in Jatropha curcas
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Growth Condition
2.2. Extraction of Phorbol Esters from Diverse J. curcas Tissues
2.3. High-Performance Liquid Chromatography
2.4. Total RNA Extraction and Quantitative RT-PCR Analysis
2.5. Statistical Analysis
3. Results
3.1. Phorbol Ester Metabolic Profiling Shows a Tissue-Specific Pattern
3.2. Phorbol Esters Prefer to Accumulate in Plant Reproductive and Young Tissues
3.3. Terpenoids Pathways Showed a Tissue-Specific Pattern
3.4. Cold and Drought Stressors Increased but Salinity Decreased Many Transcript Levels of Terpenoid Biosynthetic Genes in J. curcas
3.5. Attacking by Biotrophic and Necrotrophic Fungal Pathogens Had Different Effects on Transcript Levels of Terpenoid Biosynthetic Genes in J. curcas
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Montes, J.M.; Melchinger, A.E. Domestication and Breeding of Jatropha curcas L. Trends Plant Sci. 2016, 21, 1045–1057. [Google Scholar] [CrossRef] [PubMed]
- Krishnamurthy, L.; Zaman-Allah, M.; Marimuthu, S.; Wani, S.; Rao, A. Root growth in Jatropha and its implications for drought adaptation. Biomass Bioenergy 2012, 39, 247–252. [Google Scholar] [CrossRef]
- Devappa, R.; Maes, J.; Makkar, H.; De Greyt, W.; Becker, K. Quality of Biodiesel Prepared from Phorbol Ester Extracted Jatropha curcas Oil. J. Am. Oil Chem. Soc. 2010, 87, 697–704. [Google Scholar] [CrossRef]
- Berchmans, H.J.; Hirata, S. Biodiesel production from crude Jatropha curcas L. seed oil with a high content of free fatty acids. Bioresour. Technol. 2008, 99, 1716–1721. [Google Scholar] [CrossRef] [PubMed]
- King, A.J.; He, W.; Cuevas, J.A.; Freudenberger, M.; Ramiaramanana, D.; Graham, I.A. Potential of Jatropha curcas as a source of renewable oil and animal feed. J. Exp. Bot. 2009, 60, 2897–2905. [Google Scholar] [CrossRef] [PubMed]
- Makkar, H.; Francis, G.; Becker, K. Protein concentrate from Jatropha curcas screw-pressed seed cake and toxic and antinutritional factors in protein concentrate. J. Sci. Food Agric. 2008, 88, 1542–1548. [Google Scholar] [CrossRef]
- Saetae, D.; Suntornsuk, W. Toxic Compound, Anti-Nutritional Factors and Functional Properties of Protein Isolated from Detoxified Jatropha curcas Seed Cake. Int. J. Mol. Sci. 2011, 12, 66–77. [Google Scholar] [CrossRef]
- Hirota, M.; Suttajit, M.; Suguri, H.; Endo, Y.; Shudo, K.; Wongchai, V.; Hecker, E.; Fujiki, H. A new tumor promoter from the seed oil of Jatropha curcas L., an intramolecular diester of 12-deoxy-16-hydroxyphorbol. Cancer Res. 1988, 48, 5800–5804. [Google Scholar] [PubMed]
- Makkar, H.; Becker, K.; Sporer, F.; Wink, M. Studies on nutritive potential and toxic constituents of different provenances of Jatropha curcas. J. Agric. Food Chem. 1997, 45, 3152–3157. [Google Scholar] [CrossRef]
- Haas, W.; Sterk, H.; Mittelbach, M. Novel 12-deoxy-16-hydroxyphorbol diesters isolated from the seed oil of Jatropha curcas. J. Nat. Prod. 2002, 65, 1434–1440. [Google Scholar] [CrossRef]
- Rug, M.; Ruppel, A. Toxic activities of the plant Jatropha curcas against intermediate snail hosts and larvae of schistosomes. Trop. Med. Int. Health 2000, 5, 423–430. [Google Scholar] [CrossRef] [PubMed]
- Devappa, R.; Rajesh, S.; Kumar, V.; Makkar, H.; Becker, K. Activities of Jatropha curcas phorbol esters in various bioassays. Ecotoxicol. Environ. Saf. 2012, 78, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Devappa, R.; Liu, J.; Lv, J.; Makkar, H.; Becker, K. Toxicity of Jatropha curcas phorbol esters in mice. Food Chem. Toxicol. 2010, 48, 620–625. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.; Makkar, H. Effects of phorbol esters in carp (Cyprinus carpio L). Vet. Hum. Toxicol. 1998, 40, 82–86. [Google Scholar] [PubMed]
- Katole, S.; Saha, S.; Sastry, V.; Lade, M.; Prakash, B. Intake, blood metabolites and hormonal profile in sheep fed processed Jatropha (Jatropha curcas) meal. Anim. Feed Sci. Technol. 2011, 170, 21–26. [Google Scholar] [CrossRef]
- Devappa, R.K.; Malakar, C.C.; Makkar, H.P.; Becker, K. Pharmaceutical potential of phorbol esters from Jatropha curcas oil. Nat. Prod. Res. 2013, 27, 1459–1462. [Google Scholar] [CrossRef] [PubMed]
- Fujiki, H.; Suttajit, M.; Rawangkan, A.; Iida, K.; Limtrakul, P.; Umsumarng, S.; Suganuma, M. Phorbol esters in seed oil of Jatropha curcas L. (saboodam in Thai) and their association with cancer prevention: From the initial investigation to the present topics. J. Cancer Res. Clin. Oncol. 2017, 143, 1359–1369. [Google Scholar] [CrossRef]
- Wei, L.; Zhang, W.; Yin, L.; Yan, F.; Xu, Y.; Chen, F. Extraction optimization of total triterpenoids from Jatropha curcas leaves using response surface methodology and evaluations of their antimicrobial and antioxidant capacities. Electron. J. Biotechnol. 2015, 18, 88–95. [Google Scholar] [CrossRef]
- Kosasi, S.; Vandersluis, W.; Boelens, R.; Thart, L.; Labadie, R. Labaditin, a Novel Cyclic Decapeptide from the Latex of Jatropha-multifida L. (Euphorbiaceae). FEBS Lett. 1989, 256, 91–96. [Google Scholar] [CrossRef]
- Ravindranath, N.; Ravinder Reddy, M.; Ramesh, C.; Ramu, R.; Prabhakar, A.; Jagadeesh, B.; Das, B. New lathyrane and podocarpane diterpenoids from Jatropha curcas. Chem. Pharm. Bull. 2004, 52, 608–611. [Google Scholar] [CrossRef]
- Devappa, R.; Makkar, H.; Becker, K. Nutritional, Biochemical, and Pharmaceutical Potential of Proteins and Peptides from Jatropha: Review. J. Agric. Food Chem. 2010, 58, 6543–6555. [Google Scholar] [CrossRef]
- Igbinosa, O.; Igbinosa, I.; Chigor, V.; Uzunuigbe, O.; Oyedemi, S.; Odjadjare, E.; Okoh, A.; Igbinosa, E. Polyphenolic Contents and Antioxidant Potential of Stem Bark Extracts from Jatropha curcas (Linn). Int. J. Mol. Sci. 2011, 12, 2958–2971. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Li, Y.X.; Zhou, X.W.; Tang, K.X.; Chen, F. Cloning and characterization of a curcin gene encoding a ribosome inactivating protein from Jatropha curcas. DNA Seq. 2003, 14, 311–317. [Google Scholar] [CrossRef]
- Qin, W.; Ming-Xing, H.; Ying, X.; Xin-Shen, Z.; Fang, C. Expression of a ribosome inactivating protein (curcin 2) in Jatropha curcas is induced by stress. J. Biosci. 2005, 30, 351–357. [Google Scholar] [CrossRef]
- Insanu, M.; Dimaki, C.; Wilkins, R.; Brooker, J.; van der Linde, P.; Kayser, O. Rational use of Jatropha curcas L. in food and medicine: From toxicity problems to safe applications. Phytochem. Rev. 2013, 12, 107–119. [Google Scholar] [CrossRef]
- Sabandar, C.; Ahmat, N.; Jaafar, F.; Sahidin, I. Medicinal property, phytochemistry and pharmacology of several Jatropha species (Euphorbiaceae): A review. Phytochemistry 2013, 85, 7–29. [Google Scholar] [CrossRef] [PubMed]
- Joseph, G.V. Pharmacognostic studies on the fruits of Jatropha curcas Linn. Anc. Sci. Life 2001, 21, 128–134. [Google Scholar]
- Debnath, M.; Bisen, P.S. Jatropha curcas L., a multipurpose stress resistant plant with a potential for ethnomedicine and renewable energy. Curr. Pharm. Biotechnol. 2008, 9, 288–306. [Google Scholar] [CrossRef]
- King, A.; Brown, G.; Gilday, A.; Larson, T.; Grahama, I. Production of Bioactive Diterpenoids in the Euphorbiaceae Depends on Evolutionarily Conserved Gene Clusters. Plant Cell 2014, 26, 3286–3298. [Google Scholar] [CrossRef]
- Lange, B.M.; Rujan, T.; Martin, W.; Croteau, R. Isoprenoid biosynthesis: The evolution of two ancient and distinct pathways across genomes. Proc. Natl. Acad. Sci. USA 2000, 97, 13172–13177. [Google Scholar] [CrossRef]
- Vranová, E.; Coman, D.; Gruissem, W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu. Rev. Plant Biol. 2013, 64, 665–700. [Google Scholar] [CrossRef] [PubMed]
- Tholl, D. Biosynthesis and biological functions of terpenoids in plants. Adv. Biochem. Eng. Biotechnol. 2015, 148, 63–106. [Google Scholar] [CrossRef] [PubMed]
- Nakano, Y.; Ohtani, M.; Polsri, W.; Usami, T.; Sambongi, K.; Demura, T. Characterization of the casbene synthase homolog from Jatropha (Jatropha curcas L.). Plant Biotechnol. 2012, 29, 185–189. [Google Scholar] [CrossRef]
- Li, C.; Ng, A.; Xie, L.; Mao, H.; Qiu, C.; Srinivasan, R.; Yin, Z.; Hong, Y. Engineering low phorbol ester Jatropha curcas seed by intercepting casbene biosynthesis. Plant Cell Rep. 2016, 35, 103–114. [Google Scholar] [CrossRef]
- Zerbe, P.; Bohlmann, J. Plant diterpene synthases: Exploring modularity and metabolic diversity for bioengineering. Trends Biotechnol. 2015, 33, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Yazaki, K.; Arimura, G.I.; Ohnishi, T. ‘Hidden’ Terpenoids in Plants: Their Biosynthesis, Localization and Ecological Roles. Plant Cell Physiol. 2017, 58, 1615–1621. [Google Scholar] [CrossRef]
- Pichersky, E.; Raguso, R.A. Why do plants produce so many terpenoid compounds? New Phytol. 2018, 220, 692–702. [Google Scholar] [CrossRef]
- Neto, D.F.M.; Garrett, R.; Domont, G.B.; Campos, F.A.P.; Nogueira, F.C.S. Untargeted Metabolomic Analysis of Leaves and Roots of Jatropha curcas Genotypes with Contrasting Levels of Phorbol Esters. Physiol. Plant. 2024, 176, e14274. [Google Scholar] [CrossRef]
- Ramadan Hassanien, M.F. (Ed.) Bioactive Phytochemicals from Jatropha (Jatropha curcas L.) Oil Processing By-products. In Bioactive Phytochemicals from Vegetable Oil and Oilseed Processing By-Products; Reference Series in Phytochemistry; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Rodrigues, D.A.; Demuner, A.J.; Barbosa, L.C.A.; Pereira, G.A.M.; Fabris, J.D.; Siqueira, F.G.; Pereira, M.T.; Silva, A.J.; Carvalho, O.V. Removing phorbol esters from the biomass to add extra value to the byproduct from deoiling seeds of Jatropha curcas in the biodiesel industry. Biomass Conv. Bioref. 2023, 13, 1779–1791. [Google Scholar] [CrossRef]
- Wang, Z.; Tang, L.; Hu, H.; Guo, Y.; Peng, T.; Yan, F.; Chen, F. Metabolic Profiling Assisted Quality Control of Phorbolesters in Jatropha curcas Seed by High-Performance Liquid Chromatography Using a Fused-Core Column. J. Agric. Food Chem. 2012, 60, 9567–9572. [Google Scholar] [CrossRef]
- Liu, X.; Li, L.; Li, W.; Lu, D.; Chen, F.; Li, J. Quantitative determination of phorbol ester derivatives in Chinese Jatropha curcas seeds by high-performance liquid chromatography/mass spectrometry. Ind. Crops Prod. 2013, 47, 29–32. [Google Scholar] [CrossRef]
- Devappa, R.; Bingham, J.; Khanal, S. High performance liquid chromatography method for rapid quantification of phorbol esters in Jatropha curcas seed. Ind. Crops Prod. 2013, 49, 211–219. [Google Scholar] [CrossRef]
- Hua, W.; Hu, H.; Chen, F.; Tangy, L.; Peng, T.; Wang, Z. Rapid Isolation and Purification of Phorbol Esters from Jatropha curcas by High-Speed Countercurrent Chromatography. J. Agric. Food Chem. 2015, 63, 2767–2772. [Google Scholar] [CrossRef] [PubMed]
- Karlen, Y.; McNair, A.; Perseguers, S.; Mazza, C.; Mermod, N. Statistical significance of quantitative PCR. BMC Bioinform. 2007, 8, 131. [Google Scholar] [CrossRef] [PubMed]
- Heid, C.A.; Stevens, J.; Livak, K.J.; Williams, P.M. Real time quantitative PCR. Genome Res. 1996, 6, 986–994. [Google Scholar] [CrossRef] [PubMed]
- Seki, M.; Narusaka, M.; Ishida, J.; Nanjo, T.; Fujita, M.; Oono, Y.; Kamiya, A.; Nakajima, M.; Enju, A.; Sakurai, T.; et al. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J. 2002, 31, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Xiong, L.; Schumaker, K.S.; Zhu, J.K. Cell signaling during cold, drought, and salt stress. Plant Cell 2002, 14 (Suppl. 1), S165–S183. [Google Scholar] [CrossRef] [PubMed]
- Krasensky, J.; Jonak, C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 2012, 63, 1593–1608. [Google Scholar] [CrossRef] [PubMed]
- Kunkel, B.N.; Brooks, D.M. Cross talk between signaling pathways in pathogen defense. Curr. Opin. Plant Biol. 2002, 5, 325–331. [Google Scholar] [CrossRef]
- Spoel, S.H.; Johnson, J.S.; Dong, X. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc. Natl. Acad. Sci. USA 2007, 104, 18842–18847. [Google Scholar] [CrossRef]
- Zhang, W.; Corwin, J.A.; Copeland, D.; Feusier, J.; Eshbaugh, R.; Chen, F.; Atwell, S.; Kliebenstein, D.J. Plastic Transcriptomes Stabilize Immunity to Pathogen Diversity: The Jasmonic Acid and Salicylic Acid Networks within the Arabidopsis/Botrytis Pathosystem. Plant Cell 2017, 29, 2727–2752. [Google Scholar] [CrossRef] [PubMed]
- Wicker, T.; Oberhaensli, S.; Parlange, F.; Buchmann, J.P.; Shatalina, M.; Roffler, S.; Ben-David, R.; Doležel, J.; Šimková, H.; Schulze-Lefert, P.; et al. The wheat powdery mildew genome shows the unique evolution of an obligate biotroph. Nat. Genet. 2013, 45, 1092–1096. [Google Scholar] [CrossRef] [PubMed]
- Atwell, S.; Corwin, J.A.; Soltis, N.; Zhang, W.; Copeland, D.; Feusier, J.; Eshbaugh, R.; Kliebenstein, D.J. Resequencing and association mapping of the generalist pathogen Botrytis cinerea. bioRxiv 2018. [Google Scholar] [CrossRef]
- Zhang, W.; Kwon, S.T.; Chen, F.; Kliebenstein, D.J. Isolate Dependency of Brassica rapa Resistance QTLs to Botrytis cinerea. Front. Plant Sci. 2016, 7, 161. [Google Scholar] [CrossRef] [PubMed]
- Reubens, B.; Achten, W.; Maes, W.; Danjon, F.; Aerts, R.; Poesen, J.; Muys, B. More than biofuel? Jatropha curcas root system symmetry and potential for soil erosion control. J. Arid Environ. 2011, 75, 201–205. [Google Scholar] [CrossRef]
- Valdés-Rodríguez, O.A.; Sánchez-Sánchez, O.; Pérez-Vázquez, A.; Caplan, J.S.; Danjon, F. Jatropha curcas L. root structure and growth in diverse soils. Sci. World J. 2013, 2013, 827295. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, J.; Al Basir, F.; Takeuchi, Y.; Ghosh, M.; Roy, P. A mathematical model for pest management in Jatropha curcas with integrated pesticides—An optimal control approach. Ecol. Complex. 2019, 37, 24–31. [Google Scholar] [CrossRef]
- Nagegowda, D.A. Plant volatile terpenoid metabolism: Biosynthetic genes, transcriptional regulation and subcellular compartmentation. FEBS Lett. 2010, 584, 2965–2973. [Google Scholar] [CrossRef]
- Wisecaver, J.H.; Borowsky, A.T.; Tzin, V.; Jander, G.; Kliebenstein, D.J.; Rokas, A. A Global Coexpression Network Approach for Connecting Genes to Specialized Metabolic Pathways in Plants. Plant Cell 2017, 29, 944–959. [Google Scholar] [CrossRef]
- Schläpfer, P.; Zhang, P.; Wang, C.; Kim, T.; Banf, M.; Chae, L.; Dreher, K.; Chavali, A.K.; Nilo-Poyanco, R.; Bernard, T.; et al. Genome-Wide Prediction of Metabolic Enzymes, Pathways, and Gene Clusters in Plants. Plant Physiol. 2017, 173, 2041–2059. [Google Scholar] [CrossRef]
- Zhang, W.; Corwin, J.A.; Copeland, D.; Feusier, J.; Eshbaugh, R.; Cook, D.E.; Atwell, S.; Kliebenstein, D.J. Plant-necrotroph co-transcriptome networks illuminate a metabolic battlefield. Elife 2019, 8, e44279. [Google Scholar] [CrossRef] [PubMed]
- Soltis, N.E.; Caseys, C.; Zhang, W.; Corwin, J.A.; Atwell, S.; Kliebenstein, D.J. Pathogen Genetic Control of Transcriptome Variation in the Arabidopsis thaliana—Botrytis cinerea Pathosystem. Genetics 2020, 215, 253–266. [Google Scholar] [CrossRef] [PubMed]
Genes | Forward Primer (5′-3′) | Reverse Primer (5′-3′) | Efficiency R2 |
---|---|---|---|
18S RNA | CAACCATAAACGATGCCGACC | CAGCCTTGCGACCATACTCCC | 0.963 |
1-deoxy-d-xylulose 5-phosphate synthase (DXS) | CAATGGGAGGAGGAACAGGC | GCTCTGTCCATCGCAAATCTTAC | 0.987 |
1-deoxy-D-xylulose 5-phosphate reductoisomerase (DXR) | GCCTCGCCTTGATCTTTG | ATTCTGCCCGATGCTTATT | 0.939 |
Geranyl pyrophosphate synthase (GPPs) | GGGTTCATTATCTGACATTCG | TGTATTCCACGGCTCTTTCCAAGGT | 0.999 |
Geranylgeranyl pyrophosphate synthase (GGPPs) | CATTCGAGCACATAGCTAGAGCAA | CAACAAGTCCTTCTGACCCAACA | 0.964 |
3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) | GTGAGGCAATTATCAAGGAAGAG | CCACCAAGACCTATTGCTCTG | 0.997 |
Farnesyl pyrophosphate synthase (FPPs) | TGTGCCTGGAGGGAAGC | TGGAGCCATTCAATACACC | 0.993 |
4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR) | TGGAATACCGTTGAGAAGC | CAAGTTGACCACCAAGAATGT | 0.999 |
Isopentenyl diphosphate isomerase (IDI) | GTAAATCCAAACCCTAATGA | GTTTGCATGTCAACCACA | 0.999 |
Squalene synthase (SQS) | GATGAGGCGTGGTCTAACTG | GCAGAATTGTATCTTGGCTTACT | 0.996 |
Squalene epoxidase (SE) | CCCGTGGCATCAACAATC | TCAGCCTAGCACCAATCC | 0.98 |
Casbene synthase (CAS) | CCGTCTGGTGAATGATGTA | GTGGACCGCACGATGA | 0.964 |
Cytochrome P450 reductase (CPR) | CAACCAGAAGGAACGGAGAA | AGAGGAGGAGGGAGGGAAC | 0.996 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Wei, L.; Li, S.; Chen, F.; Xu, Y. Tissue-Specific Accumulation Profiles of Phorbol Esters in Response to Abiotic and Biotic Stresses in Jatropha curcas. Seeds 2024, 3, 324-340. https://doi.org/10.3390/seeds3030024
Zhang W, Wei L, Li S, Chen F, Xu Y. Tissue-Specific Accumulation Profiles of Phorbol Esters in Response to Abiotic and Biotic Stresses in Jatropha curcas. Seeds. 2024; 3(3):324-340. https://doi.org/10.3390/seeds3030024
Chicago/Turabian StyleZhang, Wei, Lei Wei, Shijuan Li, Fang Chen, and Ying Xu. 2024. "Tissue-Specific Accumulation Profiles of Phorbol Esters in Response to Abiotic and Biotic Stresses in Jatropha curcas" Seeds 3, no. 3: 324-340. https://doi.org/10.3390/seeds3030024
APA StyleZhang, W., Wei, L., Li, S., Chen, F., & Xu, Y. (2024). Tissue-Specific Accumulation Profiles of Phorbol Esters in Response to Abiotic and Biotic Stresses in Jatropha curcas. Seeds, 3(3), 324-340. https://doi.org/10.3390/seeds3030024