Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (762)

Search Parameters:
Keywords = hazardous releases

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2077 KiB  
Article
Quantitative Risk Assessment of Liquefied Natural Gas Bunkering Hoses in Maritime Operations: A Case of Shenzhen Port
by Yimiao Gu, Yanmin Zeng and Hui Shan Loh
J. Mar. Sci. Eng. 2025, 13(8), 1494; https://doi.org/10.3390/jmse13081494 - 2 Aug 2025
Viewed by 267
Abstract
The widespread adoption of liquefied natural gas (LNG) as a marine fuel has driven the development of LNG bunkering operations in global ports. Major international hubs, such as Shenzhen Port, have implemented ship-to-ship (STS) bunkering practices. However, this process entails unique safety risks, [...] Read more.
The widespread adoption of liquefied natural gas (LNG) as a marine fuel has driven the development of LNG bunkering operations in global ports. Major international hubs, such as Shenzhen Port, have implemented ship-to-ship (STS) bunkering practices. However, this process entails unique safety risks, particularly hazards associated with vapor cloud dispersion caused by bunkering hose releases. This study employs the Phast software developed by DNV to systematically simulate LNG release scenarios during STS operations, integrating real-world meteorological data and storage conditions. The dynamic effects of transfer flow rates, release heights, and release directions on vapor cloud dispersion are quantitatively analyzed under daytime and nighttime conditions. The results demonstrate that transfer flow rate significantly regulates dispersion range, with recommendations to limit the rate below 1500 m3/h and prioritize daytime operations to mitigate risks. Release heights exceeding 10 m significantly amplify dispersion effects, particularly at night (nighttime dispersion area at a height of 20 m is 3.5 times larger than during the daytime). Optimizing release direction effectively suppresses dispersion, with vertically downward releases exhibiting minimal impact. Horizontal releases require avoidance of downwind alignment, and daytime operations are prioritized to reduce lateral dispersion risks. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 3224 KiB  
Article
Design of Experiments Approach for Efficient Heavy Metals Stabilization Using Metakaolin-Based Geopolymers
by Raffaele Emanuele Russo, Elisa Santoni, Martina Fattobene, Mattia Giovini, Francesco Genua, Cristina Leonelli, Isabella Lancellotti, Ana Herrero and Mario Berrettoni
Molecules 2025, 30(15), 3235; https://doi.org/10.3390/molecules30153235 - 1 Aug 2025
Viewed by 211
Abstract
Alkali-activated aluminosilicate matrices are increasingly studied for their ability to stabilize hazardous metal contaminants via alkali activation at room temperature. In this study, metakaolin-based geopolymers were used to immobilize chromium and nickel salts, with systematic variation of key synthesis parameters, Na/Al molar ratio, [...] Read more.
Alkali-activated aluminosilicate matrices are increasingly studied for their ability to stabilize hazardous metal contaminants via alkali activation at room temperature. In this study, metakaolin-based geopolymers were used to immobilize chromium and nickel salts, with systematic variation of key synthesis parameters, Na/Al molar ratio, metal concentration, anion type, and alkaline solution aging time, which have not been previously studied. A Design of Experiments approach was employed to study the effect of factors on metal leaching behavior and to better understand the underlying immobilization mechanisms. The analysis revealed that higher Na/Al ratios significantly enhance geopolymerization and reduce metal release, as supported by FTIR spectral shifts and decreased shoulder intensity. Notably, aging time had an influence on chromium behavior due to its effect on early silicate network formation, which can hinder the incorporation of chromium species. All tested formulations achieved metal immobilization rates of 98.8% or higher for both chromium and nickel. Overall, this study advances our understanding of geopolymer-based heavy metal immobilization. Full article
(This article belongs to the Special Issue Green Chemistry Approaches to Analysis and Environmental Remediation)
Show Figures

Figure 1

13 pages, 609 KiB  
Article
Leaching of Potentially Toxic Elements from Paper and Plastic Cups in Hot Water and Their Health Risk Assessment
by Mahmoud Mohery, Kholoud Ahmed Hamam, Sheldon Landsberger, Israa J. Hakeem and Mohamed Soliman
Toxics 2025, 13(8), 626; https://doi.org/10.3390/toxics13080626 - 26 Jul 2025
Viewed by 389
Abstract
This study aims to investigate the release of potentially toxic elements from disposable paper and plastic cups when exposed to hot water, simulating the scenario of their use in hot beverage consumption, and to assess the associated health risks. By using ICP-MS, twelve [...] Read more.
This study aims to investigate the release of potentially toxic elements from disposable paper and plastic cups when exposed to hot water, simulating the scenario of their use in hot beverage consumption, and to assess the associated health risks. By using ICP-MS, twelve potentially toxic elements, namely As, Ba, Cd, Co, Cr, Cu, Mn, Mo, Pb, Sb, V, and Zn, were determined in leachates, revealing significant variability in mass fractions between paper and plastic cups, with plastic cups demonstrating greater leaching potential. Health risk assessments, including hazard quotient (HQ) and excess lifetime cancer risk (ELCR), indicated minimal non-carcinogenic and carcinogenic risks for most elements, except Pb, which posed elevated non-carcinogenic risk, especially in plastic cups. Children showed higher relative exposure levels compared to adults due to their lower body weights (the HQ in children is two times greater than in adults). Overall, the findings of the current study underscore the need for stricter monitoring and regulation of materials used in disposable cups, especially plastic ones, to mitigate potential health risks. Future investigations should assess the leaching behavior of potentially toxic elements under conditions that accurately mimic real-world usage. Such investigations ought to incorporate a systematic evaluation of diverse temperature regimes, varying exposure durations, and different beverage types. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Figure 1

21 pages, 2902 KiB  
Article
Research on Thermochemical and Gas Emissions Analysis for the Sustainable Co-Combustion of Petroleum Oily Sludge and High-Alkali Lignite
by Yang Guo, Jie Zheng, Demian Wang, Pengtu Zhang, Yixin Zhang, Meng Lin and Shiling Yuan
Sustainability 2025, 17(15), 6703; https://doi.org/10.3390/su17156703 - 23 Jul 2025
Viewed by 297
Abstract
Petroleum oily sludge (OLS), a hazardous by-product of the petroleum industry, and high-alkali lignite (HAL), an underutilized low-rank coal, pose significant challenges to sustainable waste management and resource efficiency. This study systematically investigated the combustion behavior, reaction pathways, and gaseous-pollutant-release mechanisms across varying [...] Read more.
Petroleum oily sludge (OLS), a hazardous by-product of the petroleum industry, and high-alkali lignite (HAL), an underutilized low-rank coal, pose significant challenges to sustainable waste management and resource efficiency. This study systematically investigated the combustion behavior, reaction pathways, and gaseous-pollutant-release mechanisms across varying blend ratios, utilizing integrated thermogravimetric-mass spectrometry analysis (TG-MS), interaction analysis, and kinetic modeling. The key findings reveal that co-combustion significantly enhances the combustion performance compared to individual fuels. This is evidenced by reduced ignition and burnout temperatures, as well as an improved comprehensive combustion index. Notably, an interaction analysis revealed coexisting synergistic and antagonistic effects, with the synergistic effect peaking at a blending ratio of 50% OLS due to the complementary properties of the fuels. The activation energy was found to be at its minimum value of 32.5 kJ/mol at this ratio, indicating lower reaction barriers. Regarding gas emissions, co-combustion at a 50% OLS blending ratio reduces incomplete combustion products while increasing CO2, indicating a more complete reaction. Crucially, sulfur-containing pollutants (SO2, H2S) are suppressed, whereas nitrogen-containing emissions (NH3, NO2) increase but remain controllable. This study provides novel insights into the synergistic mechanisms between OLS and HAL during co-combustion, offering foundational insights for the optimization of OLS-HAL combustion systems toward efficient energy recovery and sustainable industrial waste management. Full article
(This article belongs to the Special Issue Harmless Disposal and Valorisation of Solid Waste)
Show Figures

Figure 1

18 pages, 1052 KiB  
Article
Assessment of Tailings Contamination Potential in One of the Most Important Gold Mining Districts of Ecuador
by Daniel Garcés, Samantha Jiménez-Oyola, Yolanda Sánchez-Palencia, Fredy Guzmán-Martínez, Raúl Villavicencio-Espinoza, Sebastián Jaramillo-Zambrano, Victoria Rosado, Bryan Salgado-Almeida and Josué Marcillo-Guillén
Minerals 2025, 15(8), 767; https://doi.org/10.3390/min15080767 - 22 Jul 2025
Viewed by 388
Abstract
Mining waste presents significant environmental and public health risks due to the potential release of toxic substances when improperly managed. In this study, four tailings samples were taken to evaluate the environmental risks in the Ponce Enríquez mining area in Ecuador. Chemical characterization [...] Read more.
Mining waste presents significant environmental and public health risks due to the potential release of toxic substances when improperly managed. In this study, four tailings samples were taken to evaluate the environmental risks in the Ponce Enríquez mining area in Ecuador. Chemical characterization and X-ray Fluorescence Spectrometry (XRF) were used to analyze the content of potentially toxic elements (PTEs) of interest (As, Cd, Cr, Cu, Ni, Pb, and Zn), and X-ray Diffraction (XRD) for mineralogical characterization. The contamination index (IC) was calculated to assess the potential hazard associated with the content of PTEs in the mining wastes. To assess environmental risks, leaching tests were carried out to evaluate the potential release of PTEs, and Acid-Base Accounting (ABA) tests were conducted to determine the likelihood of acid mine drainage formation. The results revealed that the PETs concentration exceeded the maximum permissible limits in all samples, according to Ecuadorian regulations: As, Pb, and Cd were identified as critical contaminants. Mineralogically, quartz was the dominant phase, followed by carbonates (calcite, dolomite and magnesite), phyllosilicates (chlorite and illite), and minor amounts of pyrite and talc. The IC indicated high to very high contamination risk levels, with As being the predominant contributor. Although leaching tests met the established limits for non-hazardous mining waste, the ABA test showed that all samples had a high potential for long-term acid generation. These results underscore the need for implementing management strategies to mitigate the environmental impacts and the development of plans to protect local ecosystems and communities from the adverse effects of mining activities. Full article
Show Figures

Figure 1

21 pages, 2430 KiB  
Article
Mechanisms and Genesis of Acidic Goaf Water in Abandoned Coal Mines: Insights from Mine Water–Surrounding Rock Interaction
by Zhanhui Wu, Xubo Gao, Chengcheng Li, Hucheng Huang, Xuefeng Bai, Lihong Zheng, Wanpeng Shi, Jiaxin Han, Ting Tan, Siyuan Chen, Siyuan Ma, Siyu Li, Mengyun Zhu and Jiale Li
Minerals 2025, 15(7), 753; https://doi.org/10.3390/min15070753 - 18 Jul 2025
Viewed by 233
Abstract
The formation of acidic goaf water in abandoned coal mines poses significant environmental threats, especially in karst regions where the risk of groundwater contamination is heightened. This study investigates the geochemical processes responsible for the generation of acidic water through batch and column [...] Read more.
The formation of acidic goaf water in abandoned coal mines poses significant environmental threats, especially in karst regions where the risk of groundwater contamination is heightened. This study investigates the geochemical processes responsible for the generation of acidic water through batch and column leaching experiments using coal mine surrounding rocks (CMSR) from Yangquan, China. The coal-bearing strata, primarily composed of sandstone, mudstone, shale, and limestone, contain high concentrations of pyrite (up to 12.26 wt%), which oxidizes to produce sulfuric acid, leading to a drastic reduction in pH (approximately 2.5) and the mobilization of toxic elements. The CMSR samples exhibit elevated levels of arsenic (11.0 mg/kg to 18.1 mg/kg), lead (69.5 mg/kg to 113.5 mg/kg), and cadmium (0.6 mg/kg to 2.6 mg/kg), all of which exceed natural crustal averages and present significant contamination risks. The fluorine content varies widely (106.1 mg/kg to 1885 mg/kg), with the highest concentrations found in sandstone. Sequential extraction analyses indicate that over 80% of fluorine is bound in residual phases, which limits its immediate release but poses long-term leaching hazards. The leaching experiments reveal a three-stage release mechanism: first, the initial oxidation of sulfides rapidly lowers the pH (to between 2.35 and 2.80), dissolving heavy metals and fluorides; second, slower weathering of aluminosilicates and adsorption by iron and aluminum hydroxides reduce the concentrations of dissolved elements; and third, concentrations stabilize as adsorption and slow silicate weathering regulate the long-term release of contaminants. The resulting acidic goaf water contains extremely high levels of metals (with aluminum at 191.4 mg/L and iron at 412.0 mg/L), which severely threaten groundwater, particularly in karst areas where rapid cross-layer contamination can occur. These findings provide crucial insights into the processes that drive the acidity of goaf water and the release of contaminants, which can aid in the development of effective mitigation strategies for abandoned mines. Targeted management is essential to safeguard water resources and ecological health in regions affected by mining activities. Full article
Show Figures

Graphical abstract

13 pages, 793 KiB  
Article
Environmental Risk and Management of Iron Tailings in Road Subgrade
by Xiaowei Xu, Dapeng Zhang, Jie Cao, Chaoyue Wu, Yi Wang, Jing Hua, Zehua Zhao, Jun Zhang and Qi Yu
Toxics 2025, 13(7), 603; https://doi.org/10.3390/toxics13070603 - 17 Jul 2025
Viewed by 272
Abstract
The utilization of iron tailings in road construction poses significant environmental risks due to the complex release mechanisms of pollutants and varying regional conditions. This study integrates an exponential decay model with an instantaneous pollutant transport model, employing Monte Carlo simulations to assess [...] Read more.
The utilization of iron tailings in road construction poses significant environmental risks due to the complex release mechanisms of pollutants and varying regional conditions. This study integrates an exponential decay model with an instantaneous pollutant transport model, employing Monte Carlo simulations to assess risks and regional characteristics. Results show high Potential Hazard Indices (PHIs) for arsenic, manganese, barium, nickel, and lead, with PHI values between 4.2 and 22.7. Simulations indicate that manganese and nickel concentrations may exceed groundwater standards, particularly in humid areas. The study recommends controlling the iron tailings mixing ratio based on climate, suggesting limits of 35% in humid, 60% in semi-humid, and more lenient ratios in arid and semi-arid regions. It also underscores the need for improved risk assessment methodologies and region-specific management strategies at the national level. Full article
(This article belongs to the Special Issue Soil Heavy Metal Pollution and Human Health)
Show Figures

Figure 1

13 pages, 3158 KiB  
Article
Process Safety Assessment of the Entire Nitration Process of Benzotriazole Ketone
by Yingxia Sheng, Qianjin Xiao, Hui Hu, Tianya Zhang and Guofeng Guan
Processes 2025, 13(7), 2201; https://doi.org/10.3390/pr13072201 - 9 Jul 2025
Viewed by 419
Abstract
To ensure the inherent safety of fine chemical nitration processes, the nitration reaction of benzotriazole ketone was selected as the research object. The thermal decomposition and reaction characteristics of the nitration system were studied using a combination of differential scanning calorimetry (DSC), reaction [...] Read more.
To ensure the inherent safety of fine chemical nitration processes, the nitration reaction of benzotriazole ketone was selected as the research object. The thermal decomposition and reaction characteristics of the nitration system were studied using a combination of differential scanning calorimetry (DSC), reaction calorimetry (RC1), and accelerating rate calorimetry (ARC). The results showed that the nitration product released 455.77 kJ/kg of heat upon decomposition, significantly higher than the 306.86 kJ/kg of the original material, indicating increased thermal risk. Through process hazard analysis based on GB/T 42300-2022, key parameters such as the temperature at which the time to maximum rate is 24 h under adiabatic conditions (TD24), maximum temperature of the synthesis reaction (MTSR), and maximum temperature for technical reason (MTT) were determined, and the reaction was classified as hazard level 5, suggesting a high risk of runaway and secondary explosion. Process intensification strategies were then proposed and verified by dynamic calorimetry: the adiabatic temperature increase (ΔTad) was reduced from 86.70 °C in the semi-batch reactor to 19.95 °C in the optimized continuous process, effectively improving thermal safety. These findings provide a reliable reference for the quantitative risk evaluation and safe design of nitration processes in fine chemical manufacturing. Full article
Show Figures

Figure 1

21 pages, 3369 KiB  
Article
Thermal Runaway Critical Threshold and Gas Release Safety Boundary of 18,650 Lithium-Ion Battery in State of Charge
by Jingyu Zhao, Kexin Xing, Xinrong Jiang, Chi-Min Shu and Xiangrong Sun
Processes 2025, 13(7), 2175; https://doi.org/10.3390/pr13072175 - 8 Jul 2025
Viewed by 725
Abstract
In this study, we systematically investigated the characteristic parameter evolution laws of thermal runaway with respect to 18,650 lithium-ion batteries (LIBs) under thermal abuse conditions at five state-of-charge (SOC) levels: 0%, 25%, 50%, 75%, and 100%. In our experiments, we combined infrared thermography, [...] Read more.
In this study, we systematically investigated the characteristic parameter evolution laws of thermal runaway with respect to 18,650 lithium-ion batteries (LIBs) under thermal abuse conditions at five state-of-charge (SOC) levels: 0%, 25%, 50%, 75%, and 100%. In our experiments, we combined infrared thermography, mass loss analysis, temperature monitoring, and gas composition detection to reveal the mechanisms by which SOC affects the trigger time, critical temperature, maximum temperature, mass loss, and gas release characteristics of thermal runaway. The results showed that as the SOC increases, the critical and maximum temperatures of thermal runaway increase notably. At a 100% SOC, the highest temperature on the positive electrode side reached 1082.1 °C, and the mass loss increased from 6.90 g at 0% SOC to 25.75 g at 100% SOC, demonstrating a salient positive correlation. Gas analysis indicated that under high-SOC conditions (75% and 100%), the proportion of flammable gases such as CO and CH4 produced during thermal runaway significantly increases, with the CO/CO2 ratio exceeding 1, indicating intensified incomplete combustion and a significant increase in fire risk. In addition, flammability limit analysis revealed that the lower explosive limit for gases is lower (17–21%) at a low SOC (0%) and a high SOC (100%), indicating greater explosion risks. We also found that the composition of gases released during thermal runaway varies substantially at different SOC levels, with CO, CO2, and CH4 accounting for over 90% of the total gas volume, while toxic gases, such as HF, although present in smaller proportions, pose noteworthy hazards. Unlike prior studies that relied on post hoc analysis, this work integrates real-time multi-parameter monitoring (temperature, gas composition, and mass loss) and quantitative explosion risk modeling (flammability limits via the L-C formula). This approach reveals the unique dynamic SOC-dependent mechanisms of thermal runaway initiation and gas hazards. This study provides theoretical support for the source tracing of thermal runaway fires and the development of preventive LIB safety technology and emphasizes the critical influence of the charge state on the thermal safety of batteries. Full article
(This article belongs to the Special Issue Machine Learning Optimization of Chemical Processes)
Show Figures

Figure 1

10 pages, 206 KiB  
Review
Chemicals in Medical Laboratory and Its Impact on Healthcare Workers and Biotic Factors: Analysis Through the Prism of Environmental Bioethics
by Manjeshwar Shrinath Baliga, Rashmi T. D’souza, Lal P. Madathil, Russell F. DeSouza, Arnadi R. Shivashankara and Princy L. Palatty
Laboratories 2025, 2(3), 14; https://doi.org/10.3390/laboratories2030014 - 4 Jul 2025
Viewed by 390
Abstract
From an occupational health perspective, if not stored, handled, and disposed of properly, laboratory chemicals exhibit hazardous properties such as flammability, corrosion, and explosibility. Additionally, they can also cause a range of health effects in handlers, including irritation, sensitization, and carcinogenicity. Additionally, the [...] Read more.
From an occupational health perspective, if not stored, handled, and disposed of properly, laboratory chemicals exhibit hazardous properties such as flammability, corrosion, and explosibility. Additionally, they can also cause a range of health effects in handlers, including irritation, sensitization, and carcinogenicity. Additionally, the chemical waste generated during the planned assay is a significant byproduct and, if left untreated, can cause detrimental effects on both living organisms and non-living elements when released into the environment. Chemically, laboratory waste contains reagents, organic and inorganic compounds, and diagnostic stains. These agents are more toxic and hazardous than residential waste and affect the personnel handling them and the environments in which they are released. Considering this, it is crucial to adhere to waste management regulations during the various stages including generation, segregation, collection, storage, transportation, and treatment. This is extremely important and necessary if we are to avoid harm to individuals and environmental contamination. This review encompasses the examination of laboratory medical waste, various categories of chemical waste, and strategies to minimize and ensure the safe disposal of these toxic agents. As far as the authors are aware, this is the first review that focuses on the effects of laboratory-generated chemical wastes and environmental ethics. This is a neglected topic in healthcare education, and this review will serve as a valuable resource for students. Full article
(This article belongs to the Special Issue Exposure and Risk in the Laboratory)
26 pages, 23518 KiB  
Article
Avalanche Hazard Dynamics and Causal Analysis Along China’s G219 Corridor: A Case Study of the Wenquan–Khorgas Section
by Xuekai Wang, Jie Liu, Qiang Guo, Bin Wang, Zhiwei Yang, Qiulian Cheng and Haiwei Xie
Atmosphere 2025, 16(7), 817; https://doi.org/10.3390/atmos16070817 - 4 Jul 2025
Viewed by 353
Abstract
Investigating avalanche hazards is a fundamental preliminary task in avalanche research. This work is critically important for establishing avalanche warning systems and designing mitigation measures. Primary research data originated from field investigations and UAV aerial surveys, with avalanche counts and timing identified through [...] Read more.
Investigating avalanche hazards is a fundamental preliminary task in avalanche research. This work is critically important for establishing avalanche warning systems and designing mitigation measures. Primary research data originated from field investigations and UAV aerial surveys, with avalanche counts and timing identified through image interpretation. Snowpack properties were primarily acquired via in situ field testing within the study area. Methodologically, statistical modeling and RAMMS::AVALANCHE simulations revealed spatiotemporal and dynamic characteristics of avalanches. Subsequent application of the Certainty Factor (CF) model and sensitivity analysis determined dominant controlling factors and quantified zonal influence intensity for each parameter. This study, utilizing field reconnaissance and drone aerial photography, identified 86 avalanche points in the study area. We used field tests and weather data to run the RAMMS::AVALANCHE model. Then, we categorized and summarized regional avalanche characteristics using both field surveys and simulation results. Furthermore, the Certainty Factor Model (CFM) and the parameter Sensitivity Index (Sa) were applied to assess the influence of elevation, slope gradient, aspect, and maximum snow depth on the severity of avalanche disasters. The results indicate the following: (1) Avalanches exhibit pronounced spatiotemporal concentration: temporally, they cluster between February and March and during 13:00–18:00 daily; spatially, they concentrate within the 2100–3000 m elevation zone. Chute-confined avalanches dominate the region, comprising 73.26% of total events; most chute-confined avalanches feature multiple release areas; therefore the number of release areas exceeds avalanche points; in terms of scale, medium-to-large-scale avalanches dominate, accounting for 86.5% of total avalanches. (2) RAMMS::AVALANCHE simulations yielded the following maximum values for the region: flow height = 15.43 m, flow velocity = 47.6 m/s, flow pressure = 679.79 kPa, and deposition height = 10.3 m. Compared to chute-confined avalanches, unconfined slope avalanches exhibit higher flow velocities and pressures, posing greater hazard potential. (3) The Certainty Factor Model and Sensitivity Index identify elevation, slope gradient, and maximum snow depth as the key drivers of avalanches in the study area. Their relative impact ranks as follows: maximum snow depth > elevation > slope gradient > aspect. The sensitivity index values were 1.536, 1.476, 1.362, and 0.996, respectively. The findings of this study provide a scientific basis for further research on avalanche hazards, the development of avalanche warning systems, and the design of avalanche mitigation projects in the study area. Full article
(This article belongs to the Special Issue Climate Change in the Cryosphere and Its Impacts)
Show Figures

Figure 1

26 pages, 739 KiB  
Review
Research and Prospects of Airtightness of Biological Laboratory Enclosures: Influencing Factors and Evaluation Methods
by Geqing Peng, Xiaoshuang Shi, Ruihan Hu, Xiaoli Wang and Jinsheng Zhan
Buildings 2025, 15(13), 2314; https://doi.org/10.3390/buildings15132314 - 1 Jul 2025
Viewed by 388
Abstract
The airtightness of enclosures in biological laboratories is paramount for effective isolation between internal and external environments, ensuring containment of hazardous pathogens and mitigating accidental release risks. Consequently, studying and enhancing the airtightness of these enclosures significantly contributes to maintaining laboratory safety, safeguarding [...] Read more.
The airtightness of enclosures in biological laboratories is paramount for effective isolation between internal and external environments, ensuring containment of hazardous pathogens and mitigating accidental release risks. Consequently, studying and enhancing the airtightness of these enclosures significantly contributes to maintaining laboratory safety, safeguarding personnel health, and preventing disease. This paper examines the critical role of the enclosure structure in biological laboratories and how airtightness impacts the laboratory environment. It analyzes the current state of research on the airtightness of high-level biological laboratory enclosures, drawing on domestic and international sources. This includes exploring issues and challenges related to material properties, process methods, and evaluation methods for the airtightness of concrete structural materials as well as steel structures. The paper also studies the airtightness of enclosure structures of biological laboratories, highlighting the shortcomings in this important field of research and its future prospects. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

19 pages, 3827 KiB  
Article
Pyrolysis Kinetics and Gas Evolution of Flame-Retardant PVC and PE: A TG-FTIR-GC/MS Study
by Wen-Wei Su, Yang Li, Peng-Rui Man, Ya-Wen Sheng and Jian Wang
Fire 2025, 8(7), 262; https://doi.org/10.3390/fire8070262 - 30 Jun 2025
Viewed by 482
Abstract
The insulation layer of flame-retardant cables plays a critical role in mitigating fire hazards by influencing toxic gas emissions and the accuracy of fire modeling. This study systematically explores the pyrolysis kinetics and volatile gas evolution of flame-retardant polyvinyl chloride (PVC) and polyethylene [...] Read more.
The insulation layer of flame-retardant cables plays a critical role in mitigating fire hazards by influencing toxic gas emissions and the accuracy of fire modeling. This study systematically explores the pyrolysis kinetics and volatile gas evolution of flame-retardant polyvinyl chloride (PVC) and polyethylene (PE) insulation materials using advanced TG-FTIR-GC/MS techniques. Distinct pyrolysis stages were identified through thermogravimetric analysis (TGA) at heating rates of 10–40 K/min, while the KAS model-free method and Málek fitting function quantified activation energies and reaction mechanisms. Results revealed that flame-retardant PVC undergoes two major stages: (1) dehydrochlorination, characterized by the rapid release of HCl and low activation energy, and (2) main-chain scission, producing aromatic compounds that contribute to fire toxicity. In contrast, flame-retardant PE demonstrates a more stable pyrolysis process dominated by random chain scission and the formation of a dense char layer, significantly enhancing its flame-retardant performance. FTIR and GC/MS analyses further highlighted distinct gas evolution behaviors: PVC primarily generates HCl and aromatic hydrocarbons, whereas PE releases olefins and alkanes with significantly lower toxicity. Additionally, the application of a classification and regression tree (CART) model accurately predicted mass loss behavior under various heating rates, achieving exceptional fitting accuracy (R2 > 0.98). This study provides critical insights into the pyrolysis mechanisms of flame-retardant cable insulation and offers a robust data framework for optimizing fire modeling and improving material design. Full article
Show Figures

Figure 1

15 pages, 536 KiB  
Review
Advancements in Composting Technologies for Efficient Soil Remediation of Polycyclic Aromatic Hydrocarbons (PAHs): A Mini Review
by Tony Hadibarata, Muhammad Syafrudin, Norma Latif Fitriyani and Seung Won Lee
Sustainability 2025, 17(13), 5881; https://doi.org/10.3390/su17135881 - 26 Jun 2025
Viewed by 353
Abstract
The release of polycyclic aromatic hydrocarbons (PAHs) into the environment has become a serious concern with rapidly increasing human activities. PAHs are one of the hazardous pollutants generated primarily from the incomplete combustion of fossil fuels, industrial emissions, and the expenditure of vehicles. [...] Read more.
The release of polycyclic aromatic hydrocarbons (PAHs) into the environment has become a serious concern with rapidly increasing human activities. PAHs are one of the hazardous pollutants generated primarily from the incomplete combustion of fossil fuels, industrial emissions, and the expenditure of vehicles. These toxic compounds are very dangerous to ecosystems and human health due to being persistent, bioaccumulative, and carcinogenic. Composting is considered a form of bioremediation for eliminating PAHs in contaminated soils. The method utilizes microbial communities to break down organic pollutants and is low-cost and environmentally friendly. The efficiency factor depends on many aspects, including soil pH, oxygen, temperature provision, and the diversity of microbes, among others. Thermophilic conditions help in the decomposition of both low- and high-molecular-weight PAHs. This paper focuses on the effectiveness of composting as a bioremediation technology for remediating PAH-contaminated soils and its impact on the environment and human health. Due to its safety and high efficiency, composting should be improved and prioritized for its widespread application as a principal remediation technology for PAH pollution at the earliest opportunity. Full article
(This article belongs to the Special Issue Effects of Soil and Water Conservation on Sustainable Agriculture)
Show Figures

Figure 1

29 pages, 28225 KiB  
Review
Toxic Legacy—Environmental Impacts of Historic Metal Mining and Metallurgy in the Harz Region (Germany) at Local, Regional and Supra-Regional Levels
by Louisa Friederike Steingräber, Friedhart Knolle, Horst Kierdorf, Catharina Ludolphy and Uwe Kierdorf
Environments 2025, 12(7), 215; https://doi.org/10.3390/environments12070215 - 26 Jun 2025
Viewed by 1349
Abstract
As a legacy of historical metal mining and the processing and smelting of metalliferous ores, metal pollution is a serious environmental problem in many areas around the globe. This review summarizes the history, technical development and environmental hazards of historic metal mining and [...] Read more.
As a legacy of historical metal mining and the processing and smelting of metalliferous ores, metal pollution is a serious environmental problem in many areas around the globe. This review summarizes the history, technical development and environmental hazards of historic metal mining and metallurgical activities in the Harz Region (Germany), one of the oldest and most productive mining landscapes in Central Europe. The release of large amounts of metal-containing waste into rivers during historic ore processing and the ongoing leaching of metals from slag heaps, tailings dumps and contaminated soils and sediments are the main sources of metal pollution in the Harz Mountains and its foreland. This pollution extends along river systems with tributaries from the Harz Mountains and can even be detected in mudflats of the North Sea. In addition to fluvial discharges, atmospheric pollution by smelter smoke has led to long-term damage to soils and vegetation in the Harz Region. Currently, the ecological hazards caused by the legacy pollution from historical metal mining and metallurgy in the Harz Region are only partially known, particularly regarding the effects of changes in river ecosystems as a consequence of climate change. This review discusses the complexity and dynamics of human–environment interactions in the Harz Mountains and its surroundings, with a focus on lead (Pb) pollution. The paper also identifies future research directions with respect to metal contamination. Full article
Show Figures

Figure 1

Back to TopTop