Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,385)

Search Parameters:
Keywords = harvesting strategy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
48 pages, 2328 KB  
Review
A Systematic Review of Integrated Management in Blueberry (Vaccinium spp.): Technological Innovation, Sustainability, and Practices in Propagation, Physiology, Agronomy, Harvest, and Postharvest
by David Alejandro Pinzon, Gina Amado, Jader Rodriguez and Edwin Villagran
Crops 2026, 6(1), 15; https://doi.org/10.3390/crops6010015 - 29 Jan 2026
Abstract
The cultivation of blueberry (Vaccinium spp.) has undergone an unprecedented global expansion, driven by its nutraceutical value and the diversification of production zones across the Americas, Europe, and Asia. Its consolidation as a strategic crop has prompted intensive scientific activity aimed at [...] Read more.
The cultivation of blueberry (Vaccinium spp.) has undergone an unprecedented global expansion, driven by its nutraceutical value and the diversification of production zones across the Americas, Europe, and Asia. Its consolidation as a strategic crop has prompted intensive scientific activity aimed at optimizing every stage of management from propagation and physiology to harvest, postharvest, and environmental sustainability. However, the available evidence remains fragmented, limiting the integration of results and the formulation of knowledge-based, comparative production strategies. The objective of this systematic review was to synthesize scientific and technological advances related to the integrated management of blueberry cultivation, incorporating physiological, agronomic, technological, and environmental dimensions. The PRISMA 2020 methodology (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) was applied to ensure transparency and reproducibility in the search, selection, and analysis of scientific literature indexed in the Scopus database. After screening, 367 articles met the inclusion criteria and were analyzed comparatively and thematically. The results reveal significant progress in propagation using hydrogel and micropropagation techniques, efficient fertigation practices, and the integration of climate control operations within greenhouses, leading to improved yield and fruit quality. Likewise, non-thermal technologies, edible coatings, and harvest automation enhance postharvest quality and reduce losses. In terms of sustainability, the incorporation of water reuse and waste biorefinery has emerged as key strategies to reduce the environmental footprint and promote circular systems. Among the main limitations are the lack of methodological standardization, the scarce economic evaluation of innovations, and the weak linkage between experimental and commercial scales. It is concluded that integrating physiology, technology, and sustainability within a unified management framework is essential to consolidate a resilient, low-carbon, and technologically advanced fruit-growing system. Full article
Show Figures

Figure 1

29 pages, 2662 KB  
Article
The Oxidative Extraction of Starch from Chestnut (Castanea sativa Mill.) Byproducts: A Valorization Strategy for a Sustainable Food Industry
by Luís Moreira, Juliana Milheiro, Fernanda Cosme and Fernando M. Nunes
Polymers 2026, 18(3), 356; https://doi.org/10.3390/polym18030356 - 28 Jan 2026
Abstract
Global chestnut production is rising. However, the Portuguese chestnut industry still experiences annual post-harvest losses, largely due to microbial spoilage. Recovering high-value starch from spoiled chestnuts offers a promising strategy to reduce waste and increase economic returns. Yet, starch extracted from spoiled kernels [...] Read more.
Global chestnut production is rising. However, the Portuguese chestnut industry still experiences annual post-harvest losses, largely due to microbial spoilage. Recovering high-value starch from spoiled chestnuts offers a promising strategy to reduce waste and increase economic returns. Yet, starch extracted from spoiled kernels is typically dark brown, limiting its industrial applications. This study aimed to enhance the sustainability of the chestnut sector by converting industrial byproducts into useful ingredients. We evaluated whether hypochlorite-mediated oxidative extraction at pHs around 8 and 12 could produce starch with functional properties suitable for industrial applications. Both native and bleached starches showed similar lightness (L* 84–91), though a slight yellow hue remained (ΔE* 12–19). The degree of crystallinity was higher in bleached starches (13–16%) while preserving the characteristic CB-type crystalline pattern of native chestnut starch. The degree of oxidation was 0.88% and 0.43% for bleached starches isolated at pHs 8 and 12, respectively. Starch bleached at pH 8 exhibited moderate viscosity (breakdown 0.103) and greater swelling capacity at 50 °C than corn starch. In contrast, extraction under alkaline conditions markedly reduced gelatinization and retrogradation performance. Therefore, oxidative extraction at middle pH proved to be the most effective method for recovering functional starch from spoiled chestnuts. Full article
(This article belongs to the Section Circular and Green Sustainable Polymer Science)
28 pages, 6418 KB  
Article
Normalized Difference Vegetation Index Monitoring for Post-Harvest Canopy Recovery of Sweet Orange: Response to an On-Farm Residue-Based Organic Biostimulant
by Walter Dimas Florez Ponce De León, Dante Ulises Morales Cabrera, Hernán Rolando Salinas Palza, Luis Johnson Paúl Mori Sosa and Edith Eva Cruz Pérez
Sustainability 2026, 18(3), 1324; https://doi.org/10.3390/su18031324 - 28 Jan 2026
Abstract
Unmanned aerial vehicle (UAV)-based multispectral monitoring has become an increasingly important tool for assessing crop vigor and stress under commercial agricultural conditions. However, most UAV-based studies using the normalized difference vegetation index (NDVI) in citrus systems have focused on yield estimation, disease detection, [...] Read more.
Unmanned aerial vehicle (UAV)-based multispectral monitoring has become an increasingly important tool for assessing crop vigor and stress under commercial agricultural conditions. However, most UAV-based studies using the normalized difference vegetation index (NDVI) in citrus systems have focused on yield estimation, disease detection, or canopy characterization during active growth phases, while the immediate post-harvest recovery period remains poorly documented. In this study, UAV-derived NDVI products were used to evaluate the canopy response in a commercial ‘Washington Navel’ orange orchard located in La Yarada Los Palos district (Tacna, Peru) following harvest. The study specifically assessed the effect of an on-farm, residue-based organic biostimulant produced from local organic wastes within a circular economy framework. The results indicate that treated plots exhibited a faster and more pronounced recovery of canopy vigor compared to untreated controls during the early post-harvest period. By integrating high-resolution UAV-based multispectral monitoring with a residue-derived biostimulant strategy, this work advances current NDVI-based applications in citrus by shifting the analytical focus from productive stages to post-harvest physiological recovery. The proposed approach provides a scalable and non-invasive framework for evaluating post-harvest canopy dynamics under water-limited, hyper-arid conditions and highlights the potential of locally sourced biostimulants as complementary management tools in precision agriculture systems. Full article
Show Figures

Figure 1

16 pages, 1492 KB  
Article
Seawater Temperature at Harvest Shapes Fillet Proteolytic Activity at Chilled Storage in Three Mediterranean-Farmed Fish
by Rafael Angelakopoulos, Alexia E. Fytsili, Arkadios Dimitroglou, Leonidas Papaharisis and Katerina A. Moutou
Aquac. J. 2026, 6(1), 2; https://doi.org/10.3390/aquacj6010002 - 28 Jan 2026
Abstract
Fish is highly prone to spoilage due to a combination of intrinsic biochemical processes and microbial proliferation, which together drive rapid quality deterioration during post-harvest handling and storage. These processes are further accelerated by factors such as elevated temperatures, mechanical damage, and suboptimal [...] Read more.
Fish is highly prone to spoilage due to a combination of intrinsic biochemical processes and microbial proliferation, which together drive rapid quality deterioration during post-harvest handling and storage. These processes are further accelerated by factors such as elevated temperatures, mechanical damage, and suboptimal handling. In Mediterranean aquaculture, ice slurry is the standard harvesting method. This study aimed to characterize the initial post-harvest enzymatic activity of key proteolytic enzymes, calpain, collagenase, cathepsin B (CTSB), and cathepsin L (CTSL), in the white muscle of three commercially important species (Sparus aurata, Dicentrarchus labrax, and Pagrus major) harvested under standard practices across three seawater harvest temperatures (low, medium, and high). Muscle samples were collected over a 13-day chilled storage period post-harvest, and enzymatic activity was assessed using standardized fluorometric assays. Our findings establish the basal post-mortem proteolytic profiles for each species and reveal marked species-specific differences in enzyme activity patterns. Calpain and collagenase exhibited early and parallel activation, while CTSB and CTSL showed a coordinated increase during storage. Harvest temperature emerged as a critical factor, with the highest enzymatic activities consistently observed during the moderate temperature period. These results underscore the importance of species-specific physiology and seasonal conditions in shaping post-harvest filet degradation, offering a basis for refining harvest strategies to enhance quality management in Mediterranean aquaculture. Full article
Show Figures

Figure 1

20 pages, 5301 KB  
Article
Toward Sustainable Ready-to-Eat Salads: Integrating Substrate Management and Eco-Friendly Packaging in Wild Rocket Production
by Rachida Rania Benaissa, Perla A. Gómez, Almudena Giménez, Victor M. Gallegos-Cedillo, Jesús Ochoa, Juan A. Fernández and Catalina Egea-Gilabert
Horticulturae 2026, 12(2), 149; https://doi.org/10.3390/horticulturae12020149 - 28 Jan 2026
Abstract
The demand for ready-to-eat salads made from leafy vegetables such as wild rocket (Diplotaxis tenuifolia L.) continues to increase, driven by consumer preference for convenience foods with high levels of bioactive compounds. However, reducing the environmental impact of wild rocket production requires [...] Read more.
The demand for ready-to-eat salads made from leafy vegetables such as wild rocket (Diplotaxis tenuifolia L.) continues to increase, driven by consumer preference for convenience foods with high levels of bioactive compounds. However, reducing the environmental impact of wild rocket production requires both organically enriched growing substrates and sustainable alternatives to conventional plastic packaging. This study assessed the effects of three cultivation substrates and three biodegradable packaging materials (polylactic acid (PL), cellulose kraft (CK), and kraft-reinforced polylactic acid (PLK)) on the postharvest performance of wild rocket stored at 4 °C for 7 and 14 days. Plants were grown in coco peat (CP), coco peat supplemented with livestock compost (90:10; CP+LC), and coco peat mixed with mushroom compost (50:50; CP+MC). Yield and key pre- and postharvest quality attributes, including nitrate accumulation, phenolic content, antioxidant capacity, colour, and weight loss, were evaluated. The CP+LC substrate resulted in the highest harvest yield, whereas CP promoted higher phenolic content and antioxidant capacity. Among the packaging materials, PLK provided the most balanced internal atmosphere, effectively reducing dehydration and condensation while preserving superior sensory quality after 14 days of storage. Overall, the combination of organic compost amendments, particularly CP+LC, with PLK bio-based packaging represents a promising and sustainable strategy for maintaining postharvest quality and reduce the environmental footprint of minimally processed wild rocket within short food supply chains. Full article
Show Figures

Graphical abstract

21 pages, 26913 KB  
Article
Regional Assessment of Arsenic Accumulation in Rice (Oryza sativa L.) Agroecosystems of the Tejo, Almansor and Sorraia Valleys, Portugal
by Manuela Simões, David Ferreira, Ana Coelho Marques and Ana Rita F. Coelho
Sci 2026, 8(2), 26; https://doi.org/10.3390/sci8020026 - 27 Jan 2026
Viewed by 35
Abstract
Arsenic (As) accumulation in rice (Oryza sativa L.) is considered a major environmental and food safety concern, particularly in flooded agroecosystems where reducing conditions mobilize As from soils. Portugal is one of Europe’s rice producers, especially in the Tejo, Almansor, and Sorraia [...] Read more.
Arsenic (As) accumulation in rice (Oryza sativa L.) is considered a major environmental and food safety concern, particularly in flooded agroecosystems where reducing conditions mobilize As from soils. Portugal is one of Europe’s rice producers, especially in the Tejo, Almansor, and Sorraia valleys. As such, this study evaluates As pathways across 5000 ha of rice fields in the Tagus, Sorraia, and Almansor alluvial plains by combining soil, water, and plant analyses with a geostatistical approach. The soils exhibited consistently elevated As concentrations (mean of 18.9 mg/kg), exceeding national reference values for agricultural soils (11 mg/kg) and forming a marked east–west gradient with the highest levels in the Tagus alluvium. Geochemical analysis showed that As is strongly correlated with Fe (r = 0.686), indicating an influence of Fe-oxyhydroxides under oxidizing conditions. The irrigation waters showed low As (mean of 2.84 μg/L for surface water and 3.51 μg/L for groundwater) and predominantly low sodicity facies, suggesting that irrigation water is not the main contamination vector. In rice plants, As accumulation follows the characteristic organ hierarchy roots > stems/leaves > grains, with root concentrations reaching up to 518 mg/kg and accumulating progressively in the maturity phase. Arsenic content in harvested rice grains was 266 μg/kg (with a maximum of 413.9 μg/kg), being close to EU maximum limits when considering typical inorganic As proportions, assuming 60 to 90% inorganic fraction. Together, the findings highlight that a combined approach is essential, and identify soil geochemistry (and not irrigation water) as the primary source of As transfer in those agroecosystems, due to the flooded conditions that trigger the reductive dissolution of Fe oxides, releasing As. Additionally, the results also identified the need for targeted monitoring in areas of elevated As content in soils and support future mitigation through As speciation analysis, cultivar selection, improved fertilization strategies, and water-management practices such as Alternate Wetting and Drying (AWD), to ensure the long-term food safety. Full article
Show Figures

Figure 1

54 pages, 1561 KB  
Review
Black Soldier Fly (Hermetia illucens) Larvae and Frass: Sustainable Organic Waste Conversion, Circular Bioeconomy Benefits, and Nutritional Valorization
by Nicoleta Ungureanu and Nicolae-Valentin Vlăduț
Agriculture 2026, 16(3), 309; https://doi.org/10.3390/agriculture16030309 - 26 Jan 2026
Viewed by 75
Abstract
The rapid increase in organic waste generation poses significant environmental challenges and highlights the limitations of conventional waste management practices. In this context, black soldier fly (Hermetia illucens) larvae (BSFL) have emerged as a promising biological tool for valorizing organic residues [...] Read more.
The rapid increase in organic waste generation poses significant environmental challenges and highlights the limitations of conventional waste management practices. In this context, black soldier fly (Hermetia illucens) larvae (BSFL) have emerged as a promising biological tool for valorizing organic residues within circular bioeconomy frameworks. This review provides an integrated analysis of BSFL-based bioconversion systems, focusing on the biological characteristics of BSFL, suitable organic waste streams, and the key process parameters influencing waste reduction efficiency, larval biomass production, and frass (the residual material from larval bioconversion) yield. The performance of BSFL in converting organic waste is assessed with emphasis on substrate characteristics, environmental conditions, larval density, and harvesting strategies. Environmental and economic implications are discussed in comparison with conventional treatments such as landfilling, composting, and anaerobic digestion. Special attention is given to the nutritional composition of BSFL and the valorization of larvae as sustainable protein and lipid sources for animal feed and emerging human food applications, while frass is highlighted as a nutrient-rich organic fertilizer and soil amendment. Finally, current challenges related to scalability, safety, regulation, and social acceptance are highlighted. By linking waste management, resource recovery, and sustainable protein production, this review clarifies the role of BSFL and frass in resilient and resource-efficient food and waste management systems. Full article
19 pages, 1456 KB  
Article
Effect of Chemical Management on Weed Diversity and Community Structure in Soybean–Corn Succession in Brazil’s Triângulo Mineiro Region
by Júlia Resende Oliveira Silva, Décio Karam and Kassio Ferreira Mendes
Ecologies 2026, 7(1), 12; https://doi.org/10.3390/ecologies7010012 - 26 Jan 2026
Viewed by 131
Abstract
Knowledge of weed community structure in agricultural systems is important for sustainable management, especially for evaluating the effects of different herbicides on soybean–corn succession crops. This study evaluated, over two crop seasons, weed community structure in response to chemical weed management strategies for [...] Read more.
Knowledge of weed community structure in agricultural systems is important for sustainable management, especially for evaluating the effects of different herbicides on soybean–corn succession crops. This study evaluated, over two crop seasons, weed community structure in response to chemical weed management strategies for soybean–corn succession in Brazil’s Triângulo Mineiro region. Phytosociological surveys of the weed community were conducted during harvest periods throughout the experimental phase, with referenced data for generating spatial distribution maps of biomass and density of the main present species. The survey identified 33 weed species, predominantly from the Poaceae and Asteraceae families. Regardless of the management system, the total weed biomass was lower in corn crops compared to soybean crops. In management systems using six different herbicides, the IVI of Commelina benghalensis was the lowest due to greater diversification of herbicide mechanisms of action. The results demonstrate that chemical weed management strategies strongly influence weed community structure, with significant effects on weed community structure and evenness in intensive agricultural regions. These changes also have implications for resistance management. Full article
Show Figures

Figure 1

29 pages, 7701 KB  
Review
Recent Advances in Piezoelectric and Triboelectric Nanogenerators for Ocean Current Energy Harvesting
by Yaning Chen, Mengwei Wu, Yuzhuo Tian, Rongming Zhang, Weitao Zhao, Hengxu Du, Chunyu Zhang, Yimeng Du, Taili Du, Haichao Yuan, Jicang Si and Minyi Xu
J. Mar. Sci. Eng. 2026, 14(3), 249; https://doi.org/10.3390/jmse14030249 - 25 Jan 2026
Viewed by 198
Abstract
Ocean current energy, owing to its predictability and stability, is regarded as an ideal power source for distributed marine observation networks and underwater intelligent equipment. However, conventional ocean current energy devices that rely on rigid turbines and electromagnetic generators generally suffer from high [...] Read more.
Ocean current energy, owing to its predictability and stability, is regarded as an ideal power source for distributed marine observation networks and underwater intelligent equipment. However, conventional ocean current energy devices that rely on rigid turbines and electromagnetic generators generally suffer from high cut-in flow velocity, bulky size, high maintenance costs, and significant environmental disturbance, making them unsuitable for deep-sea, miniaturized, and long-duration power supply scenarios. These limitations highlight the urgent need for flexible and low-speed energy harvesters capable of autonomous, long-term operation. In recent years, nanogenerator technology has provided new opportunities for distributed and low-power ocean current energy harvesting. PENGs and TENGs can directly convert weak mechanical energy into electricity, enabling energy harvesting in small-scale and low-velocity flow fields. PENGs offer high durability and mechanical robustness, whereas TENGs exhibit superior output performance in low-speed and intermittent flows. This paper provides a comprehensive review of structural designs, material innovations, interface engineering, hybrid energy-conversion architectures, and power-management strategies for PENG- and TENG-based ocean current energy harvesters. Overall, future progress will rely on the integration of intelligent materials, multi-field coupling mechanisms, and system-level engineering strategies to achieve durable, scalable, and autonomous ocean current energy harvesting for distributed marine systems. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

21 pages, 10041 KB  
Review
Research Advances in Conjugated Polymer-Based Optical Sensor Arrays for Early Diagnosis of Clinical Diseases
by Qiuting Ye, Shijie Fan, Jieling Lao, Jiawei Xu, Xiyu Liu and Pan Wu
Polymers 2026, 18(3), 310; https://doi.org/10.3390/polym18030310 - 23 Jan 2026
Viewed by 178
Abstract
Early and accurate diagnosis is critical for disease surveillance, therapeutic guidance, and relapse monitoring. Sensor arrays have emerged as a multi-analyte detection tool via non-specific interactions to generate unique fingerprint patterns with high levels of selectivity and discrimination. Conjugated polymers (CPs), with their [...] Read more.
Early and accurate diagnosis is critical for disease surveillance, therapeutic guidance, and relapse monitoring. Sensor arrays have emerged as a multi-analyte detection tool via non-specific interactions to generate unique fingerprint patterns with high levels of selectivity and discrimination. Conjugated polymers (CPs), with their tunable π-conjugated backbones, exceptional light-harvesting capability, and efficient “molecular wire effect,” provide an ideal and versatile material platform for such arrays, enabling significant optical signal amplification and high sensitivity. This review systematically outlines the rational design and functionalization strategies of CPs for constructing high-performance sensor arrays. It delves into the structure–property relationships that govern their sensing performance, covering main-chain engineering, side-chain functionalization, and microenvironmental regulation. Representative applications are discussed, including non-small cell lung cancer, breast cancer, bacterial and viral infections, Alzheimer’s disease, and diabetic nephropathy, highlighting the remarkable diagnostic capabilities achieved through tailored CP materials. Finally, future perspectives are focused on novel material designs and device integration to advance this vibrant field. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

54 pages, 3083 KB  
Review
A Survey on Green Wireless Sensing: Energy-Efficient Sensing via WiFi CSI and Lightweight Learning
by Rod Koo, Xihao Liang, Deepak Mishra and Aruna Seneviratne
Energies 2026, 19(2), 573; https://doi.org/10.3390/en19020573 - 22 Jan 2026
Viewed by 105
Abstract
Conventional sensing expends energy at three stages: powering dedicated sensors, transmitting measurements, and executing computationally intensive inference. Wireless sensing re-purposes WiFi channel state information (CSI) inherent in every packet, eliminating extra sensors and uplink traffic, though reliance on deep neural networks (DNNs) often [...] Read more.
Conventional sensing expends energy at three stages: powering dedicated sensors, transmitting measurements, and executing computationally intensive inference. Wireless sensing re-purposes WiFi channel state information (CSI) inherent in every packet, eliminating extra sensors and uplink traffic, though reliance on deep neural networks (DNNs) often trained and run on graphics processing units (GPUs) can negate these gains. This review highlights two core energy efficiency levers in CSI-based wireless sensing. First ambient CSI harvesting cuts power use by an order of magnitude compared to radar and active Internet of Things (IoT) sensors. Second, integrated sensing and communication (ISAC) embeds sensing functionality into existing WiFi links, thereby reducing device count, battery waste, and carbon impact. We review conventional handcrafted and accuracy-first methods to set the stage for surveying green learning strategies and lightweight learning techniques, including compact hybrid neural architectures, pruning, knowledge distillation, quantisation, and semi-supervised training that preserve accuracy while reducing model size and memory footprint. We also discuss hardware co-design from low-power microcontrollers to edge application-specific integrated circuits (ASICs) and WiFi firmware extensions that align computation with platform constraints. Finally, we identify open challenges in domain-robust compression, multi-antenna calibration, energy-proportionate model scaling, and standardised joules per inference metrics. Our aim is a practical battery-friendly wireless sensing stack ready for smart home and 6G era deployments. Full article
Show Figures

Graphical abstract

41 pages, 7490 KB  
Review
Research Progress and Application Status of Evaporative Cooling Technology
by Lin Xia, Haogen Li, Suoying He, Zhe Geng, Shuzhen Zhang, Feiyang Long, Zongjun Long, Jisheng Li, Wujin Yuan and Ming Gao
Energies 2026, 19(2), 570; https://doi.org/10.3390/en19020570 - 22 Jan 2026
Viewed by 57
Abstract
This review systematically examines the latest research progress and diverse applications of direct evaporative cooling and indirect evaporative cooling across five core sectors: industrial and energy engineering, the built environment, agriculture and food preservation, transportation and aerospace, and emerging interdisciplinary fields. While existing [...] Read more.
This review systematically examines the latest research progress and diverse applications of direct evaporative cooling and indirect evaporative cooling across five core sectors: industrial and energy engineering, the built environment, agriculture and food preservation, transportation and aerospace, and emerging interdisciplinary fields. While existing research often focuses on single application silos, this paper distills two common foundational challenges: climate adaptability and water resource management. Quantitative analysis demonstrates significant performance gains. Hybrid systems in data centers increase annual energy-saving potential by 14% to 41%, while precision root-zone cooling in greenhouses boosts crop yields by 13.22%. Additionally, passive cooling blankets reduce post-harvest losses by up to 45%, and integrated desalination cycles achieve 18.64% lower energy consumption compared to conventional systems. Innovative strategies to overcome humidity bottlenecks include vacuum-assisted membranes, advanced porous materials, and hybrid radiative-evaporative systems. The paper also analyzes sustainable water management through rainwater harvesting, seawater utilization, and atmospheric water capture. Collectively, these advancements provide a comprehensive framework to guide the future development and commercialization of sustainable cooling technologies. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Graphical abstract

18 pages, 2924 KB  
Article
Path Planning for a Cartesian Apple Harvesting Robot Using the Improved Grey Wolf Optimizer
by Dachen Wang, Huiping Jin, Chun Lu, Xuanbo Wu, Qing Chen, Lei Zhou, Xuesong Jiang and Hongping Zhou
Agronomy 2026, 16(2), 272; https://doi.org/10.3390/agronomy16020272 - 22 Jan 2026
Viewed by 100
Abstract
As a high-value fruit crop grown worldwide, apples require efficient harvesting solutions to maintain a stable supply. Intelligent harvesting robots represent a promising approach to address labour shortages. This study introduced a Cartesian robot integrated with a continuous-picking end-effector, providing a cost-effective and [...] Read more.
As a high-value fruit crop grown worldwide, apples require efficient harvesting solutions to maintain a stable supply. Intelligent harvesting robots represent a promising approach to address labour shortages. This study introduced a Cartesian robot integrated with a continuous-picking end-effector, providing a cost-effective and mechanically simpler alternative to complex articulated arms. The system employed a hand–eye calibration model to enhance positioning accuracy. To overcome the inefficiencies resulting from disordered harvesting sequences and excessive motion trajectories, the harvesting process was treated as a travelling salesman problem (TSP). The conventional fixed-plane return trajectory of Cartesian robots was enhanced using a three-dimensional continuous picking path strategy based on a fixed retraction distance (H). The value of H was determined through mechanical characterization of the apple stem’s brittle fracture, which eliminated redundant horizontal displacements and improved operational efficiency. Furthermore, an improved grey wolf optimizer (IGWO) was proposed for multi-fruit path planning. Simulations demonstrated that the IGWO achieved shorter path lengths compared to conventional algorithms. Laboratory experiments validated that the system successfully achieved vision-based localization and fruit harvesting through optimal path planning, with a fruit picking success rate of 89%. The proposed methodology provides a practical framework for automated continuous harvesting systems. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

38 pages, 4278 KB  
Review
Fibrous Biomaterial Scaffold for Tympanic Membrane Repair: Microarchitectural Engineering and Structure Function Performance
by Lea Jiang, Chokri Cherif and Michael Wöltje
J. Funct. Biomater. 2026, 17(1), 53; https://doi.org/10.3390/jfb17010053 - 21 Jan 2026
Viewed by 204
Abstract
Tympanic membrane (TM) perforations, arising from infections, injuries, or chronic otitis media, remain a frequent clinical finding and can lead to hearing problems when the tissue does not regenerate adequately. Although autologous grafts are still the standard option for repairing persistent defects, they [...] Read more.
Tympanic membrane (TM) perforations, arising from infections, injuries, or chronic otitis media, remain a frequent clinical finding and can lead to hearing problems when the tissue does not regenerate adequately. Although autologous grafts are still the standard option for repairing persistent defects, they come with well-known limitations. Beyond the need for additional harvesting procedures, these grafts rarely reproduce the intricate, fibrous layering of the native TM, which can compromise sound transmission after healing. In search of alternatives, fibre-based scaffolds have attracted considerable interest. The primary advantage of this material is the level of structural control it affords. The fibre orientation, porosity, and overall microarchitecture can be adjusted to replicate the organisation and mechanical behaviour of the natural membrane. A range of biocompatible polymers—among them silk fibroin, poly(ε-caprolactone), poly(lactic acid), and poly(vinyl alcohol) and their composites—provide options for tuning stiffness, degradation rates, and interactions with cells, making them suitable building blocks for TM repair constructs. This review provides a comprehensive overview of contemporary fabrication methodologies, namely electrospinning, additive manufacturing, melt electrowriting, and hybrid strategies. In addition, it offers a detailed discussion of the evaluation procedures employed for these scaffolds and discusses how scaffold structure affects later performance. Mechanical testing, microstructural imaging, and in vitro biocompatibility assays help to determine how closely a construct can approach the performance of the native tissue. Bringing these elements together may support the gradual translation of fibre-based TM scaffolds into clinical practice. Full article
(This article belongs to the Section Biomaterials and Devices for Healthcare Applications)
Show Figures

Figure 1

21 pages, 4373 KB  
Article
Functionalization of BaTiO3 Nanoparticles to Optimize the Dielectric Performance of Electroactive Polymer Nanocomposites Based on PDMS Matrix
by Nico Zamperlin, Alain Sylvestre, Alessandro Pegoretti, Marco Fontana and Sandra Dirè
J. Compos. Sci. 2026, 10(1), 58; https://doi.org/10.3390/jcs10010058 - 21 Jan 2026
Viewed by 144
Abstract
The growing demand for portable and wireless electronic devices, along with the necessity to reduce reliance on non-renewable energy sources, has driven the need for energy harvesting materials. Nanocomposites, combining a polymeric matrix and a high-performance dielectric ceramic phase, are a promising solution. [...] Read more.
The growing demand for portable and wireless electronic devices, along with the necessity to reduce reliance on non-renewable energy sources, has driven the need for energy harvesting materials. Nanocomposites, combining a polymeric matrix and a high-performance dielectric ceramic phase, are a promising solution. In such systems, the design of a hybrid matrix–filler interface is critical for achieving desired properties. Here, nanocomposites (NCs) were prepared by adding various amounts of hydrothermally synthesized BaTiO3 (BT) nanoparticles (NPs) to polydimethysiloxane (PDMS). To investigate hybrid interfaces, NPs were used either bare or surface-functionalized with two silanes, 3-glycidyloxypropyltrimethoxysilane (GPTMS) or 2-[acetoxy(polyethyleneoxy)propyl]triethoxysilane (APEOPTES). NC films (80–100 μm thick) were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDXS), and thermogravimetric analysis (TGA). Dielectric properties and breakdown strength (EBD) were measured, and the theoretical volumetric energy density was calculated as a function of the filler loading and functionalization. The results demonstrate that hybrid interface design is pivotal for enhancing dielectric performance in NCs. APEOPTES-functionalized NPs significantly improved the dielectric response at a low filler loading (3.5%vol.), increasing permittivity from 2.8 to 7.5, EBD from 33.8 to 42.1 kV/mm and energy density from 30 to >100 mJ/cm3. These findings underscore that designing hybrid interfaces through NP functionalization provides an effective strategy to achieve superior dielectric performance in PDMS-based NCs, retaining the advantages of the elastomeric matrix by reducing the amount of ceramic fillers. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

Back to TopTop