Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (92)

Search Parameters:
Keywords = harmonic injection design

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3977 KB  
Article
Research on Line Selection Method Based on Active Injection Under DC Feeder Single-Pole Grounding Fault
by Xinghua Huang, Yuanliang Fan, Wenqi Li, Jiayang Fei and Jianhua Wang
Energies 2025, 18(18), 4958; https://doi.org/10.3390/en18184958 - 18 Sep 2025
Viewed by 320
Abstract
Due to the “low damping” characteristics of the DC distribution system, the traditional passive scheme is not suitable for DC fault detection and positioning. Therefore, this paper proposes an active injection fault identification method suitable for DC feeder line under single-pole grounding faults. [...] Read more.
Due to the “low damping” characteristics of the DC distribution system, the traditional passive scheme is not suitable for DC fault detection and positioning. Therefore, this paper proposes an active injection fault identification method suitable for DC feeder line under single-pole grounding faults. Based on the high controllability of converters, this method uses the oscillation circuit characteristics of the DC side single-pole grounding fault to superimpose the harmonics of fixed frequency into the converter modulated wave, and derives the selection principles of harmonic amplitude and frequency. After the fault, the positive and negative current signals are extracted from the feeder lines, and the zero-mode current components are extracted by the Karrenbauer transformation and band-pass filter, the current phases are compared to achieve the fault feeder line selection. According to simulation verification, the power quality of the actively injected harmonics is within the standard range under the condition of global injection, and the single-pole grounding faults in each feeder line can be identified. Full article
(This article belongs to the Topic Power System Protection)
Show Figures

Figure 1

31 pages, 15363 KB  
Article
Battery Power Interface to Mitigate Load Transients and Reduce Current Harmonics for Increasing Sustainability in DC Microgrids
by Carlos Andrés Ramos-Paja, Sergio Ignacio Serna-Garcés and Andrés Julián Saavedra-Montes
Sustainability 2025, 17(17), 7987; https://doi.org/10.3390/su17177987 - 4 Sep 2025
Viewed by 716
Abstract
In microgrids, battery chargers/dischargers are used to manage power flow between the battery and the DC bus and to regulate the DC bus voltage, ensuring safe operating conditions for sources and loads. These actions contribute to enhancing the sustainability of the microgrid by [...] Read more.
In microgrids, battery chargers/dischargers are used to manage power flow between the battery and the DC bus and to regulate the DC bus voltage, ensuring safe operating conditions for sources and loads. These actions contribute to enhancing the sustainability of the microgrid by improving energy efficiency, extending battery life, and ensuring reliable operation. The classical converter adopted to implement the battery chargers/dischargers is the boost converter, which avoids high current harmonic injection into the battery because of its continuous input current. But due to the discontinuous output current, it introduces high current harmonics into the DC bus. This also occurs in Sepic, Zeta, or other DC/DC converters with discontinuous input or output currents. One exception is the Cuk converter, which has both continuous input and output currents. However, in the Cuk converter, the intermediate capacitor voltage is higher than the input and output voltages, thus imposing high stress on the semiconductors and requiring a costly capacitor with high energy storage. Therefore, this paper proposes the design of a battery charger/discharger based on a non-electrolytic capacitor boost converter. This topology provides continuous input and output currents, which reduces harmonic component injection, extends battery life, and increases operation efficiency. Moreover, it requires a lower intermediate capacitor voltage, thereby enhancing reliability. The design of this battery charger/discharger requires an adaptive sliding-mode controller to ensure global stability and accurate bus voltage regulation. A formal stability analysis and design equations are provided. The proposed solution is validated through detailed simulations, while the adaptive sliding-mode controller is specifically tested using a detailed software-in-the-loop approach. Full article
Show Figures

Figure 1

20 pages, 3657 KB  
Article
Design and Optimization of a High-Efficiency Lightweight Permanent Magnet In-Wheel Motor with Torque Performance Improvement
by Zixuan Xiang, Yu Miao, Yuting Zhou and Feng Li
Energies 2025, 18(17), 4509; https://doi.org/10.3390/en18174509 - 25 Aug 2025
Viewed by 677
Abstract
In this paper, a lightweight permanent magnet in-wheel (LW-PMIW) motor is proposed. This research focuses on using a multi-modulation design to enhance the amplitude of the fundamental wave while suppressing high-order harmonics, thereby enabling the motor to achieve high output torque, a light [...] Read more.
In this paper, a lightweight permanent magnet in-wheel (LW-PMIW) motor is proposed. This research focuses on using a multi-modulation design to enhance the amplitude of the fundamental wave while suppressing high-order harmonics, thereby enabling the motor to achieve high output torque, a light weight, and a high efficiency. Firstly, a combined trade-off factor related to motor mass, losses, and torque is defined specifically to provide guidance for the design. Secondly, a dual-rotor structure is adopted, and a harmonic injection (HI) design is applied to the permanent magnets (PMs). By designing a targeted harmonic injection ratio coefficient, the non-working harmonics of the PM magnetomotive force (MMF) can be weakened. Then, two iron modulating blocks are introduced to asynchronously modulate the PM MMF, which can further enhance the fundamental amplitude and improve the distribution of the airgap magnetic field. Finally, to verify the effectiveness of the multi-modulation design, the electromagnetic performance of the motor is evaluated and analyzed. The analytical and simulation results show that the torque of the proposed motor can reach 35.4 Nm, which is an increase of 19.6% while the torque ripple remains unchanged compared with the initial motor. Meanwhile, the output power increased by 0.37 kW. Hence, the rationality and effectiveness of the motor design are verified. Full article
Show Figures

Figure 1

15 pages, 4556 KB  
Article
Vibration Suppression Algorithm for Electromechanical Equipment in Distributed Energy Supply Systems
by Huan Wang, Fangxu Han, Bo Zhang and Guilin Zhao
Energies 2025, 18(14), 3757; https://doi.org/10.3390/en18143757 - 16 Jul 2025
Cited by 1 | Viewed by 359
Abstract
In recent years, distributed energy power supply systems have been widely used in remote areas and extreme environments. However, the intermittent and uncertain output power may cause power grid fluctuations, leading to higher harmonics in electromechanical equipment, especially motors. For permanent magnet synchronous [...] Read more.
In recent years, distributed energy power supply systems have been widely used in remote areas and extreme environments. However, the intermittent and uncertain output power may cause power grid fluctuations, leading to higher harmonics in electromechanical equipment, especially motors. For permanent magnet synchronous motor (PMSM) systems, an electromagnetic (EM) vibration can cause problems such as energy loss and mechanical wear. Therefore, it is necessary to design control algorithms that can effectively suppress EM vibration. To this end, a vibration suppression algorithm for fractional-slot permanent magnet synchronous motors based on a d-axis current injection is proposed in this paper. Firstly, this paper analyzes the radial electromagnetic force of the fractional-slot PMSM to identify the main source of EM vibration in fractional-slot PMSMs. Based on this, the intrinsic relationship between the EM vibration of fractional-slot PMSMs and the d-axis and q-axis currents is explored, and a method for calculating the d-axis current to suppress the vibration is proposed. Experimental verification shows that the proposed algorithm can effectively suppress EM vibration. Full article
Show Figures

Figure 1

14 pages, 4108 KB  
Article
Losses and Efficiency Evaluation of the Shunt Active Filter for Renewable Energy Generation
by Adrien Voldoire, Tanguy Phulpin and Mohamad Alaa Eddin Alali
Electronics 2025, 14(10), 1972; https://doi.org/10.3390/electronics14101972 - 12 May 2025
Cited by 1 | Viewed by 612
Abstract
The Shunt Active Filter (SAF) is an effective solution for mitigating electrical perturbations in power networks. SAFs usually consist of a voltage source inverter (VSI) with lossy transistors and bulky inductors. In this context, this article proposes analytical models to evaluate the losses [...] Read more.
The Shunt Active Filter (SAF) is an effective solution for mitigating electrical perturbations in power networks. SAFs usually consist of a voltage source inverter (VSI) with lossy transistors and bulky inductors. In this context, this article proposes analytical models to evaluate the losses and efficiency of a SAF. The models include conduction and switching losses in the transistors and diodes and are valid for both IGBT and SiC MOSFET transistors. The methodology consists of analysing the current waveform to separate the portion flowing through the transistor or diode. IGBT and SiC MOSFET are compared in two cases: firstly, the classic SAF operation with harmonic and reactive power compensation and, secondly, in the case of power injection by a photovoltaic panel or batteries, in addition to the classic SAF operation. The results are validated with real manufacturer data. A step-by-step comparison shows a good accuracy of the model. Therefore, the developed methodology is useful for a SAF designer to select relevant components for the converter and to estimate the efficiency of the system accurately and quickly. Full article
(This article belongs to the Special Issue Power Electronics and Renewable Energy System)
Show Figures

Figure 1

14 pages, 6551 KB  
Article
Design Analysis of a Modified Current-Reuse Low-Power Wideband Single-Ended CMOS LNA
by Farshad Shirani Bidabadi, Mahalingam Nagarajan, Thangarasu Bharatha Kumar and Yeo Kiat Seng
Chips 2025, 4(2), 21; https://doi.org/10.3390/chips4020021 - 6 May 2025
Viewed by 1209
Abstract
This paper presents the design analysis of a low-power wideband single-ended CMOS low-noise amplifier (LNA). The proposed topology is based on a modified current- reuse circuit, in which two-stage common-source (CS) amplifiers consume the same DC current and are isolated from each other [...] Read more.
This paper presents the design analysis of a low-power wideband single-ended CMOS low-noise amplifier (LNA). The proposed topology is based on a modified current- reuse circuit, in which two-stage common-source (CS) amplifiers consume the same DC current and are isolated from each other by large MIMCAPs, which results in good performance with low power consumption. The proposed circuit achieves a bandwidth of 2.5 GHz, suitable for several wireless communication standards such as GSM, WLAN, and Bluetooth. In the first stage, a current-reuse circuit with shunt feedback is used to satisfy input impedance matching and signal amplification with minimal noise injection. A common source (CS) with a source follower circuit forms the second stage to improve the noise figure (NF), harmonic distortion, and output impedance matching. The proposed LNA is designed in 65 nm CMOS technology and covers a frequency range of 0.17–2.68 GHz. The proposed LNA achieves a maximum gain of 17.24 dB, a minimum NF of 2.67 dB, a maximum IIP3 of −14.9 dBm, and input and output return losses of less than −10 dB. The power consumption of the proposed LNA is 3.52 mW from a 1 V power supply, and the core area is 0.3 mm2. Full article
(This article belongs to the Special Issue IC Design Techniques for Power/Energy-Constrained Applications)
Show Figures

Figure 1

35 pages, 19616 KB  
Article
Frequency-Adaptive Current Control of a Grid-Connected Inverter Based on Incomplete State Observation Under Severe Grid Conditions
by Min Kang, Sung-Dong Kim and Kyeong-Hwa Kim
Energies 2025, 18(8), 1879; https://doi.org/10.3390/en18081879 - 8 Apr 2025
Viewed by 777
Abstract
Grid-connected inverter (GCI) plays a crucial role in facilitating stable and efficient power delivery, especially under severe and complex grid conditions. Harmonic distortions and imbalance of the grid voltages may degrade the grid-injected current quality. Moreover, inductive-capacitance (LC) grid impedance and the grid [...] Read more.
Grid-connected inverter (GCI) plays a crucial role in facilitating stable and efficient power delivery, especially under severe and complex grid conditions. Harmonic distortions and imbalance of the grid voltages may degrade the grid-injected current quality. Moreover, inductive-capacitance (LC) grid impedance and the grid frequency fluctuation also degrade the current control performance or stability. In order to overcome such an issue, this study presents a frequency-adaptive current control strategy of a GCI based on incomplete state observation under severe grid conditions. When LC grid impedance exists, it introduces additional states in a GCI system model. However, since the state for the grid inductance current is unmeasurable, it yields a limitation in the state feedback control design. To overcome such a limitation, this study adopts a state feedback control approach based on incomplete state observation by designing the controller only with the available states. The proposed control strategy incorporates feedback controllers with ten states, an integral controller, and resonant controllers for the robustness of the inverter operation. To reduce the reliance on additional sensing devices, a discrete-time full-state current observer is utilized. Particularly, with the aim of avoiding the grid frequency dependency of the system model, as well as the complex online discretization process, observer design is developed in the stationary reference frame. Additionally, a moving average filter (MAF)-based phase-locked loop (PLL) is incorporated for accurate frequency detection against distortions of grid voltages. For evaluating the performance of the designed control strategy, simulations and experiments are executed with severe grid conditions, including grid frequency changes, unbalanced grid voltage, harmonic distortion, and LC grid impedance. Full article
Show Figures

Figure 1

24 pages, 30044 KB  
Article
Minimum-Fuel Trajectories and Near-Optimal Explicit Guidance for Pinpoint Landing from Low Lunar Orbit
by Matteo Caruso, Giulio De Angelis, Edoardo Maria Leonardi and Mauro Pontani
Aerospace 2025, 12(3), 183; https://doi.org/10.3390/aerospace12030183 - 25 Feb 2025
Viewed by 938
Abstract
This research addresses minimum-fuel pinpoint lunar landing at the South Pole, focusing on trajectory design and near-optimal guidance aimed at driving a spacecraft from a circular low lunar orbit (LLO) to an instantaneous hovering state above the lunar surface. Orbit dynamics is propagated [...] Read more.
This research addresses minimum-fuel pinpoint lunar landing at the South Pole, focusing on trajectory design and near-optimal guidance aimed at driving a spacecraft from a circular low lunar orbit (LLO) to an instantaneous hovering state above the lunar surface. Orbit dynamics is propagated in a high-fidelity ephemeris-based framework, which employs spherical coordinates as the state variables and includes several harmonics of the selenopotential, as well as third-body gravitational perturbations due to the Earth and Sun. Minimum-fuel two-impulse descent transfers are identified using Lambert problem solutions as initial guesses, followed by refinement in the high-fidelity model, for a range of initial LLO inclinations. Then, a feedback Lambert-based impulsive guidance algorithm is designed and tested through a Monte Carlo campaign to assess the effectiveness under non-nominal conditions related to injection and actuation errors. Because the last braking maneuver is relatively large, a finite-thrust, locally flat, near-optimal guidance is introduced and applied. Simplified dynamics is assumed for the purpose of defining a minimum-time optimal control problem along the last thrust arc. This admits a closed-form solution, which is iteratively used until the desired instantaneous hovering condition is reached. The numerical results in non-nominal flight conditions testify to the effectiveness of the guidance approach at hand in terms of propellant consumption and precision at landing. Full article
(This article belongs to the Special Issue Advances in Lunar Exploration)
Show Figures

Figure 1

15 pages, 2285 KB  
Article
A New Impedance Measurement Method for Wind Farms Considering the Influence of Background Harmonics
by Teng Xue, Ze Wei, Xiong Du and Junliang Liu
Electronics 2025, 14(3), 501; https://doi.org/10.3390/electronics14030501 - 26 Jan 2025
Viewed by 640
Abstract
The impedance of renewable energy stations is crucial for determining system stability. Typically, the impedance is obtained using a measurement method. However, in actual operation, background harmonics at the point of common coupling (PCC) affect the accuracy of the impedance measurement results, which [...] Read more.
The impedance of renewable energy stations is crucial for determining system stability. Typically, the impedance is obtained using a measurement method. However, in actual operation, background harmonics at the point of common coupling (PCC) affect the accuracy of the impedance measurement results, which could cause unstable analysis results. Therefore, this paper first analyzes the impact of background harmonics at the PCC on impedance measurement. Then, a novel impedance measurement method, based on the adaptive adjustment coefficient, is proposed. In addition, the design process for the coefficient is presented. By adaptively adjusting the amplitude of the injected perturbation using this coefficient, the proposed measurement method mitigates the effect of background harmonics on the impedance measurement. Finally, simulation results are given to validate the effectiveness of the proposed method. Full article
(This article belongs to the Topic Integration of Renewable Energy)
Show Figures

Figure 1

21 pages, 11372 KB  
Article
Design and Practical Implementation of Microgrid Inverter Control Using TMS320F28335 Microcontroller with Improvement in Electrical Power Quality
by Nicolás Magro, Jesús R. Vázquez and Reyes Sánchez-Herrera
Electronics 2025, 14(2), 319; https://doi.org/10.3390/electronics14020319 - 15 Jan 2025
Viewed by 1394
Abstract
Nowadays, the proliferation of distributed renewable energy sources is a fact. A microgrid is a good solution to self-manage the energy generation and consumption of electrical loads and sources from the point of view of the consumer as well as the power system [...] Read more.
Nowadays, the proliferation of distributed renewable energy sources is a fact. A microgrid is a good solution to self-manage the energy generation and consumption of electrical loads and sources from the point of view of the consumer as well as the power system operator. To make a microgrid as versatile as necessary to carry that out, a flexible inverter is necessary. In this paper, an algorithm is presented to control an inverter and make it complete and versatile to work in grid-connected and in isolated modes, injecting or receiving power from the grid and always compensating the harmonics generated by the loads in the microgrid. With this inverter, the microgrid can work while optimizing its energy consumption or according to the power system operator instructions. The inverter proposed is tested in a designed Matlab/Simulink simulation platform. After that, an experimental platform designed and built ad hoc, including a DC source, AC linear and non-linear loads, and a Semikron power inverter, is used to test the proposed control strategies. The results corroborate the good system performance. The replicability of the system is guaranteed by the use of low-cost devices in the implementation of the control. Full article
(This article belongs to the Special Issue Advances in Power Converter Design, Control and Applications)
Show Figures

Figure 1

18 pages, 8696 KB  
Article
Traction Synchronous Machine with Rotor Field Winding and Two-Phase Harmonic Field Exciter
by Vladimir Prakht, Vladimir Dmitrievskii, Vadim Kazakbaev, Aleksey Paramonov and Victor Goman
World Electr. Veh. J. 2025, 16(1), 25; https://doi.org/10.3390/wevj16010025 - 6 Jan 2025
Cited by 1 | Viewed by 2003
Abstract
Many modern electric drives for cars, trucks, ships, etc., use permanent magnet synchronous motors because of their compact size. At the same time, permanent magnets are expensive, and their uncontrolled flux is a problem when it is necessary to provide a wide constant [...] Read more.
Many modern electric drives for cars, trucks, ships, etc., use permanent magnet synchronous motors because of their compact size. At the same time, permanent magnets are expensive, and their uncontrolled flux is a problem when it is necessary to provide a wide constant power speed range in the field weakening region. An alternative to permanent magnet motors is synchronous motors with field windings. This article presents a novel design of a traction brushless synchronous motor with a field winding and a two-phase harmonic exciter winding on the rotor and zero-sequence signal injection. The two-phase harmonic exciter winding increases the electromotive force on the field winding compared to a single-phase one and makes it possible to start the motor at any rotor position. This article discusses the advantages of the proposed design over conventional solutions. A simplified mathematical model based on the finite element method for steady state simulation is presented. The machine performance of a hysteresis current controller and a field-oriented PI current controller are compared using the model. Full article
Show Figures

Figure 1

14 pages, 51619 KB  
Article
Current Harmonics Suppression of Six-Phase Permanent-Magnet Synchronous Motor Drives Using Back-Electromotive Force Harmonics Compensation
by Po-Sheng Huang, Cheng-Ting Tsai, Jonq-Chin Hwang, Cheng-Tsung Lin and Yu-Ting Lin
Energies 2024, 17(24), 6280; https://doi.org/10.3390/en17246280 - 12 Dec 2024
Cited by 1 | Viewed by 1895
Abstract
This paper investigates a back-electromotive force (EMF) harmonic compensation strategy for six-phase permanent-magnet synchronous motors (PMSMs) to reduce current harmonics and improve system performance. Ideally, the back-EMF waveform should be perfectly sinusoidal. However, manufacturing imperfections such as suboptimal magnetic circuit design, uneven winding [...] Read more.
This paper investigates a back-electromotive force (EMF) harmonic compensation strategy for six-phase permanent-magnet synchronous motors (PMSMs) to reduce current harmonics and improve system performance. Ideally, the back-EMF waveform should be perfectly sinusoidal. However, manufacturing imperfections such as suboptimal magnetic circuit design, uneven winding distribution, and mechanical eccentricity introduce low-order spatial harmonics, particularly the 5th, 7th, 11th, and 13th orders, which distort the back-EMF, increase current harmonics, complicate control, and reduce efficiency. To address these issues, this study proposes a compensation strategy utilizing common-mode and differential-mode current control. By injecting the 6th and 12th harmonics into the decoupled voltage commands along the d-axis and q-axis, the strategy significantly reduces current harmonic distortion. Experimental validation was conducted using a TMS320F28386D microcontroller, which controlled dual inverters via PWM signals and processed real-time current feedback. Rotor position feedback was provided by a resolver to ensure precise and responsive motor control. At a rotational speed of 900 rpm, with a peak phase current Im of 200 A and an IGBT switching frequency of 10 kHz, the phase-a current total harmonic distortion (THD) was reduced from 11.86% (without compensation) to 6.83% (with compensation). This study focused on mitigating harmonics below the 14th order. The experimental results demonstrate that the proposed back-EMF harmonic compensation strategy effectively minimizes current THD, highlighting its potential for improving the performance and efficiency of multi-phase motor systems. Full article
Show Figures

Figure 1

16 pages, 3829 KB  
Article
Research on Radial Vibration Model and Low-Frequency Vibration Suppression Method in PMSM by Injecting Multiple Symmetric Harmonic Currents
by Le Kang, He Zhang, Jiakuan Xia, Meijun Qi and Yunqi Zhao
Actuators 2024, 13(11), 448; https://doi.org/10.3390/act13110448 - 8 Nov 2024
Viewed by 1509
Abstract
Driven by frequency conversion, the windings of a three-phase permanent magnet synchronous motor (PMSM) contain both odd and even harmonic currents. Due to the motor’s pole–slot conductance modulation, the interaction between the magnetic fields generated by these harmonic currents and the permanent magnet [...] Read more.
Driven by frequency conversion, the windings of a three-phase permanent magnet synchronous motor (PMSM) contain both odd and even harmonic currents. Due to the motor’s pole–slot conductance modulation, the interaction between the magnetic fields generated by these harmonic currents and the permanent magnet field results in harmonic radial vibrations of the motor. This paper analyzes the three-phase currents of the prototype and derives the radial magnetomotive force (MMF) spatiotemporal models for symmetric harmonic currents. By integrating Maxwell’s magnetic force formula and vibration response formula, the radial vibration models for symmetric harmonic currents are developed. The characteristics of vibrations caused by odd and even harmonic currents, as well as positive sequence and negative sequence harmonic currents, are analyzed separately. A cyclic sequence, low-frequency vibration suppression control method incorporating multiple harmonic current injections was designed. Experimental results of this method are compared with those obtained using an ideal sinusoidal current. Except for the second harmonic vibration, all other vibrations are significantly suppressed, with a maximum suppression rate of 92.28%. The total vibration level is reduced by 12.7619 dB, and the average torque is reduced by 0.67% with the total harmonic distortion of the current at 2.89%. The experimental results show that the vibration method in this paper has little influence on the average torque of the motor, the current distortion rate is small, and the vibration suppression effect is good. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

18 pages, 4381 KB  
Article
Active Vibration Control via Current Injection in Electric Motors
by Marco Bassani, Daniel Pinardi, Andrea Toscani, Elisabetta Manconi and Carlo Concari
Electronics 2024, 13(17), 3442; https://doi.org/10.3390/electronics13173442 - 30 Aug 2024
Cited by 4 | Viewed by 2763
Abstract
This work presents a technique to actively reduce the vibrations generated by magnetic anisotropy in sinusoidal brushless motors through current injection. These vibrations are an unwanted phenomenon mainly generated by the interaction between the rotor magnets and the stator teeth. These produce vibrations [...] Read more.
This work presents a technique to actively reduce the vibrations generated by magnetic anisotropy in sinusoidal brushless motors through current injection. These vibrations are an unwanted phenomenon mainly generated by the interaction between the rotor magnets and the stator teeth. These produce vibrations which are then transmitted to the frame and other mechanical parts such as bearings, gearboxes, transmissions, and joints, thus reducing the life, performance, and reliability of these components. First, different design strategies and control algorithms to passively and actively attenuate the vibrations are reviewed. Then, a narrowband active method that attenuates a harmonic vibration through the injection of a harmonic current is presented. The effectiveness of the proposed method was demonstrated on a prototype of a Surface Permanent Magnet Synchronous Motor (SPMSM). For the motor under test, an attenuation of −13.5 dB at 650 rpm and −29 dB at 800 rpm was achieved on the main frequency component, caused by the magnetic anisotropy, which in turn corresponds to the 72nd harmonic of the rotor mechanical speed. Full article
(This article belongs to the Section Industrial Electronics)
Show Figures

Figure 1

13 pages, 4221 KB  
Article
Design, Analysis, and Comparison of Electric Vehicle Drive Motor Rotors Using Injection-Molded Carbon-Fiber-Reinforced Plastics
by Huai Cong Liu, Jang Soo Park and Il Hwan An
World Electr. Veh. J. 2024, 15(7), 283; https://doi.org/10.3390/wevj15070283 - 25 Jun 2024
Cited by 2 | Viewed by 4988
Abstract
Due to their excellent mechanical strength, corrosion resistance, and ease of processing, carbon fiber and carbon-fiber-reinforced plastics are finding wide application in diverse fields, including aerospace, industry, and automobiles. This research explores the feasibility of integrating carbon fiber solutions into the rotors of [...] Read more.
Due to their excellent mechanical strength, corrosion resistance, and ease of processing, carbon fiber and carbon-fiber-reinforced plastics are finding wide application in diverse fields, including aerospace, industry, and automobiles. This research explores the feasibility of integrating carbon fiber solutions into the rotors of 85-kilowatt electric vehicle interior permanent magnet synchronous motors. Two novel configurations are proposed: a carbon fiber wire-wound rotor and a carbon fiber injection-molded rotor. A finite element analysis compares the performance of these models against a basic designed rotor, considering factors like no-load back electromotive force, no-load voltage harmonics, cogging torque, load torque, torque ripple, efficiency, and manufacturing cost. Additionally, a comprehensive analysis of system efficiency and energy loss based on hypothetical electric vehicle parameters is presented. Finally, mechanical strength simulations assess the feasibility of the proposed carbon fiber composite rotor designs. Full article
Show Figures

Figure 1

Back to TopTop