Losses and Efficiency Evaluation of the Shunt Active Filter for Renewable Energy Generation
Abstract
:1. Introduction
2. Electrical Structure Specifications
3. Current Waveforms
4. SAF Loss Computation
4.1. VSI Loss Computation in the SAF-Only Condition
4.2. VSI Loss Computation in the SAF-REG Condition
4.3. Design Considerations
5. Efficiency Comparison Between IGBT and SiC MOSFET
6. Efficiency Comparison for Different DC Voltages
- Vdc = 800 V, with MOSFET SiC 1200 V rating (reference case);
- Vdc = 1000 V, with MOSFET SiC 1700 V rating;
- Vdc = 1200 V, with MOSFET SiC 1700 V rating.
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fujita, H.; Akagi, H. The unified power quality conditioner: The integration of series- and shunt-active filters. IEEE Trans. Power Electron. 1998, 13, 315–322. [Google Scholar] [CrossRef]
- Schaffner. “ECOsine® Active Harmonics Compensation in Real-Time”. August 2015. Available online: https://www.schaffner.com/fileadmin/user_upload/Media/Downloads/installation-manual-operating-instructions-ecosine-activ-REV6.pdf (accessed on 1 April 2025).
- Tareen, W.U.; Mekhilef, S.; Seyedmahmoudian, M.; Horan, B. Active power filter (APF) for mitigation of power quality issues in grid integration of wind and photovoltaic energy conversion system. Renew. Sustain. Energy Rev. 2017, 70, 635–655. [Google Scholar] [CrossRef]
- Gomes, C.C.; Cupertino, A.F.; Pereira, H.A. Damping techniques for grid-connected voltage source converters based on LCL filter: An overview. Renew. Sustain. Energy Rev. 2018, 81, 116–135. [Google Scholar] [CrossRef]
- Alali, M.A.E.; Shtessel, Y.B.; Barbot, J.-P. Grid-Connected Shunt Active LCL Control via Continuous Sliding Modes. IEEEASME Trans. Mechatron. 2019, 24, 729–740. [Google Scholar] [CrossRef]
- Jayasankar, V.N.; Vinatha, U. Advanced Control Approach for Shunt Active Power Filter Interfacing Wind- Solar Hybrid Renewable System to Distribution Grid. EBSCOhost 2018, 14, 88. Available online: https://openurl.ebsco.com/contentitem/gcd:129864541?sid=ebsco:plink:crawler&id=ebsco:gcd:129864541 (accessed on 1 April 2025).
- Reznik, A.; Simões, M.G.; Al-Durra, A.; Muyeen, S.M. LCL Filter Design and Performance Analysis for Grid-Interconnected Systems. IEEE Trans. Ind. Appl. 2014, 50, 1225–1232. [Google Scholar] [CrossRef]
- Imam, A.A.; Sreerama Kumar, R.; Al-Turki, Y.A. Modeling and Simulation of a PI Controlled Shunt Active Power Filter for Power Quality Enhancement Based on P-Q Theory. Electronics 2020, 9, 637. [Google Scholar] [CrossRef]
- Raman, R.; Sadhu, P.K.; Kumar, R.; Rangarajan, S.S.; Subramaniam, U.; Collins, E.R.; Senjyu, T. Feasible Evaluation and Implementation of Shunt Active Filter for Harmonic Mitigation in Induction Heating System. Electronics 2022, 11, 3464. [Google Scholar] [CrossRef]
- Hoon, Y.; Mohd Radzi, M.A.; Mohd Zainuri, M.A.A.; Zawawi, M.A.M. Shunt Active Power Filter: A Review on Phase Synchronization Control Techniques. Electronics 2019, 8, 791. [Google Scholar] [CrossRef]
- Alali, M.A.E.; Sabiri, Z.; Shtessel, Y.B.; Barbot, J.-P. Study of a common control strategy for grid-connected shunt active photovoltaic filter without DC/DC converter. Sustain. Energy Technol. Assess. 2021, 45, 101149. [Google Scholar] [CrossRef]
- Acquaviva, A.; Rodionov, A.; Kersten, A.; Thiringer, T.; Liu, Y. Analytical Conduction Loss Calculation of a MOSFET Three-Phase Inverter Accounting for the Reverse Conduction and the Blanking Time. IEEE Trans. Ind. Electron. 2021, 68, 6682–6691. [Google Scholar] [CrossRef]
- Madhusoodhanan, S.; Mainali, K.; Tripathi, A.K.; Kadavelugu, A.; Patel, D.; Bhattacharya, S. Power Loss Analysis of Medium-Voltage Three-Phase Converters Using 15-kV/40-A SiC N-IGBT. IEEE J. Emerg. Sel. Top. Power Electron. 2016, 4, 902–917. [Google Scholar] [CrossRef]
- Costa, P.; Pinto, S.; Silva, J.F. A Novel Analytical Formulation of SiC-MOSFET Losses to Size High-Efficiency Three-Phase Inverters. Energies 2023, 16, 818. [Google Scholar] [CrossRef]
- Wong, M.-C.; Pang, Y.; Xiang, Z.; Wang, L.; Lam, C.-S. Assessment of Active and Hybrid Power Filters Under Space Vector Modulation. IEEE Trans. Power Electron. 2021, 36, 2947–2963. [Google Scholar] [CrossRef]
- Wang, L.; Lam, C.-S.; Wong, M.-C. The Analysis of DC-link Voltage, Compensation Range, Cost, Reliability and Power Loss for Shunt (Hybrid) Active Power Filters. In Proceedings of the 2018 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Sabah, Malaysia, 7–10 October 2018; pp. 640–645. [Google Scholar]
- Muñoz, J.; Baier, C.; Espinoza, J.; Rivera, M.; Guzmán, J.; Rohten, J. Switching losses analysis of an asymmetric multilevel Shunt Active Power Filter. In Proceedings of the IECON 2013—39th Annual Conference of the IEEE Industrial Electronics Society, Vienna, Austria, 10–13 November 2013; pp. 8534–8539. [Google Scholar]
- Wolfspeed. “C3M0021120K Datasheet”. Available online: https://assets.wolfspeed.com/uploads/2024/01/Wolfspeed_C3M0021120K_data_sheet.pdf (accessed on 1 April 2025).
- Infineon. “IKQ50N120CH3-DataSheet”. Available online: https://www.infineon.com/dgdl/Infineon-IKQ50N120CH3-DataSheet-v02_04-EN.pdf?fileId=5546d4625bd71aa0015bd817b0150536 (accessed on 1 April 2025).
- Nitzsche, M.; Cheshire, C.; Fischer, M.; Ruthardt, J.; Roth-Stielow, J. Comprehensive Comparison of a SiC MOSFET and Si IGBT Based Inverter. In Proceedings of the PCIM Europe 2019; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, Nuremberg, Germany, 7–9 May 2019; pp. 1–7. Available online: https://ieeexplore.ieee.org/abstract/document/8767737 (accessed on 1 April 2025).
- Loncarski, J.; Giuseppe Monopoli, V.; Leuzzi, R.; Zanchetta, P.; Cupertino, F. Efficiency, Cost and Volume Comparison of Si-IGBT Based T-NPC and 2-Level SiC-MOSFET Based Topology with dv/dt Filter for High Speed Drives. In Proceedings of the 2020 IEEE Energy Conversion Congress and Exposition (ECCE), Detroit, MI, USA, 11–15 October 2020; pp. 3718–3724. [Google Scholar]
- Sivkov, O.; Novak, M.; Novak, J. Comparison between Si IGBT and SiC MOSFET Inverters for AC Motor Drive. In Proceedings of the 2018 18th International Conference on Mechatronics—Mechatronika (ME), Brno, Czech Republic, 5–7 December 2018; pp. 1–5. Available online: https://ieeexplore.ieee.org/abstract/document/8624759 (accessed on 1 April 2025).
Symbol | Parameter | Unit | Value |
---|---|---|---|
Vdc | DC voltage | V | 800 |
Vs | RMS phase-to-neutral PCC voltage | V | 230 |
Vfund | Fundamental/grid frequency | Hz | 50 |
Vsw | Switching frequency | kHz | 16 and 100 |
Iload | RMS current in the non-linear load | A | 61 |
ISAF | RMS current in the SAF | A | 72 |
Igrid | RMS current from or to the grid | A | +61 without power injection −11 with power injection |
Parameter | Model | Simulation | Error [%] |
---|---|---|---|
SAF current | 15.8 A | 15.9 A | 0.3 |
RMS current in transistor + diode | 11.1 A | 11.1 A | 0.1 |
RMS current in transistor | 8.38 A | 8.27 A | 1.3 |
Average current in transistor | 3.59 A | 3.81 A | 5.8 |
RMS current in diode | 7.32 A | 7.48 A | 2.1 |
Average current in diode | 2.35 A | 3.00 A | 22 |
Diode conduction losses | 3.22 W | 3.61 W | 11 |
Diode recovery losses | neglected | neglected | - |
MOSFET solution at 100 kHz | |||
MOSFET conduction losses | 2.11 W | 2.22 W | 5.0 |
MOSFET switching losses | 21.0 W | 19.8 W | 6.0 |
MOSFET total losses | 23.1 W | 22.0 W | 5.0 |
Converter losses | 158 W | 154 W | 2.5 |
MOSFET solution at 16 kHz | |||
MOSFET conduction losses | 1.53 W | 1.60 W | 5.0 |
MOSFET switching losses | 3.43 W | 3.59 W | 4.5 |
MOSFET total losses | 4.96 W | 5.19 W | 4.4 |
Converter losses | 48.2 W | 51.8 W | 6.9 |
IGBT solution at 16 kHz | |||
IGBT conduction losses | 5.10 W | 4.51 W | 13 |
IGBT switching losses | 26.3 W | 25.2 W | 4.3 |
IGBT total losses | 31.4 W | 29.7 W | 5.7 |
Converter losses | 207 W | 200 W | 3.5 |
Parameter | Model | Simulation | Error [%] |
---|---|---|---|
SAF current | 72.2 A | 72.1 A | 0.1 |
RMS current in transistor + diode | 50.3 A | 51.2 A | 1.8 |
RMS current in transistor | 46.0 A | 46.2 A | 0.4 |
Average current in transistor | 25.8 A | 26.1 A | 1.1 |
RMS current in diode | 20.5 A | 22.2 A | 7.7 |
Average current in diode | 6.05 A | 7.20 A | 16 |
Diode conduction losses | 13.6 W | 13.8 W | 14 |
Diode recovery losses | neglected | Neglected | - |
MOSFET solution at 100 kHz | |||
MOSFET conduction losses | 75.6 W | 77.7 W | 2.7 |
MOSFET switching losses | 135 W | 133 W | 1.5 |
MOSFET total losses | 211 W | 211 W | 0.1 |
Converter losses | 1339 W | 1347 W | 0.6 |
Efficiency | 97.1% | 97.1% | - |
MOSFET solution at 16 kHz | |||
MOSFET conduction losses | 63.5 W | 62.7 W | 1.3 |
MOSFET switching losses | 21.6 W | 18.0 W | 20 |
MOSFET total losses | 85.1 W | 80.7 W | 5.4 |
Converter losses | 587 W | 570 W | 3.0 |
Efficiency | 98.7% | 98.8% | - |
IGBT solution at 16 kHz | |||
IGBT conduction losses | 78.7 | 76.2 | 3.3 |
IGBT switching losses | 165 | 166 | 0.6 |
IGBT total losses | 244 | 242 | 0.8 |
Converter losses | 1539 | 1537 | 0.1 |
Efficiency | 96.6% | 96.6% | - |
Parameter | Model | Simulation | Error [%] |
---|---|---|---|
800 Vdc solution | |||
MOSFET conduction losses | 2.11 W | 2.22 W | 5.0 |
MOSFET switching losses | 21.0 W | 19.8 W | 6.0 |
MOSFET total losses | 23.1 W | 22.0 W | 5.0 |
converter losses | 158 W | 154 W | 2.5 |
1000 Vdc solution | |||
MOSFET conduction losses | 2.91 W | 2.62 W | 11 |
MOSFET switching losses | 27.2 W | 28.7 W | 5.2 |
MOSFET total losses | 30.1 W | 31.3 W | 3.8 |
Converter losses | 204 W | 211 W | 3.1 |
1200 Vdc solution | |||
MOSFET conduction losses | 2.85 W | 2.54 W | 13 |
MOSFET switching losses | 32.9 W | 34.1 W | 3.5 |
MOSFET total losses | 35.8 W | 36.6 W | 2.2 |
Converter losses | 239 W | 243 W | 1.7 |
Parameter | Model | Simulation | Error [%] |
---|---|---|---|
800 Vdc solution | |||
MOSFET conduction losses | 75.6 W | 77.7 W | 2.7 |
MOSFET switching losses | 135 W | 133 W | 1.5 |
MOSFET total losses | 211 W | 211 W | 0.1 |
Converter losses | 1339 W | 1347 W | 0.6 |
Efficiency | 97.1% | 97.1% | - |
1000 Vdc solution | |||
MOSFET conduction losses | 146 W | 142 W | 2.8 |
MOSFET switching losses | 116 W | 120 W | 3.3 |
MOSFET total losses | 262 W | 262 W | 0.0 |
Converter losses | 1.66 kW | 1.66 kW | 0.0 |
Efficiency | 96.3% | 96.3% | - |
1200 Vdc solution | |||
MOSFET conduction losses | 138 W | 137 W | 0.7 |
MOSFET switching losses | 139 W | 146 W | 4.8 |
MOSFET total losses | 277 W | 283 W | 2.1 |
Converter losses | 1.75 kW | 1.79 kW | 2.2 |
Efficiency | 96.2% | 96.1% | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voldoire, A.; Phulpin, T.; Alali, M.A.E. Losses and Efficiency Evaluation of the Shunt Active Filter for Renewable Energy Generation. Electronics 2025, 14, 1972. https://doi.org/10.3390/electronics14101972
Voldoire A, Phulpin T, Alali MAE. Losses and Efficiency Evaluation of the Shunt Active Filter for Renewable Energy Generation. Electronics. 2025; 14(10):1972. https://doi.org/10.3390/electronics14101972
Chicago/Turabian StyleVoldoire, Adrien, Tanguy Phulpin, and Mohamad Alaa Eddin Alali. 2025. "Losses and Efficiency Evaluation of the Shunt Active Filter for Renewable Energy Generation" Electronics 14, no. 10: 1972. https://doi.org/10.3390/electronics14101972
APA StyleVoldoire, A., Phulpin, T., & Alali, M. A. E. (2025). Losses and Efficiency Evaluation of the Shunt Active Filter for Renewable Energy Generation. Electronics, 14(10), 1972. https://doi.org/10.3390/electronics14101972