Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (341)

Search Parameters:
Keywords = harmonic impedance

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5389 KiB  
Article
Novel Method of Estimating Iron Loss Equivalent Resistance of Laminated Core Winding at Various Frequencies
by Maxime Colin, Thierry Boileau, Noureddine Takorabet and Stéphane Charmoille
Energies 2025, 18(15), 4099; https://doi.org/10.3390/en18154099 (registering DOI) - 1 Aug 2025
Viewed by 153
Abstract
Electromagnetic and magnetic devices are increasingly prevalent in sectors such as transportation, industry, and renewable energy due to the ongoing electrification trend. These devices exhibit nonlinear behavior, particularly under signals rich in harmonics. They require precise and appropriate modeling for accurate sizing. Identifying [...] Read more.
Electromagnetic and magnetic devices are increasingly prevalent in sectors such as transportation, industry, and renewable energy due to the ongoing electrification trend. These devices exhibit nonlinear behavior, particularly under signals rich in harmonics. They require precise and appropriate modeling for accurate sizing. Identifying model-specific parameters, which depend on frequency, is crucial. This article focuses on a specific frequency range where a circuit model with series resistance and inductance, along with a parallel resistance to account for iron losses (Riron), is applicable. While the determination of series elements is well documented, the determination of Riron remains complex and debated, with traditional methods neglecting operating conditions such as magnetic saturation. To address these limitations, an innovative experimental method is proposed, comprising two main steps: determining the complex impedance of the magnetic device and extracting Riron from the model. This method aims to provide a more precise and representative estimation of Riron, improving the reliability and accuracy of electromagnetic and magnetic device simulations and designs. The obtained values of the iron loss equivalent resistance are different by at least 300% than those obtained by an impedance analyzer. The proposed method is expected to advance the understanding and modeling of losses in electromagnetic and magnetic devices, offering more robust tools for engineers and researchers in optimizing device performance and efficiency. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

22 pages, 1248 KiB  
Review
Navigating the Global Regulatory Landscape for Exosome-Based Therapeutics: Challenges, Strategies, and Future Directions
by Nagendra Verma and Swati Arora
Pharmaceutics 2025, 17(8), 990; https://doi.org/10.3390/pharmaceutics17080990 - 30 Jul 2025
Viewed by 336
Abstract
Extracellular vesicle (EV)-based therapies have attracted considerable attention as a novel class of biologics with broad clinical potential. However, their clinical translation is impeded by the fragmented and rapidly evolving regulatory landscape, with significant disparities between the United States, European Union, and key [...] Read more.
Extracellular vesicle (EV)-based therapies have attracted considerable attention as a novel class of biologics with broad clinical potential. However, their clinical translation is impeded by the fragmented and rapidly evolving regulatory landscape, with significant disparities between the United States, European Union, and key Asian jurisdictions. In this review, we systematically analyze regional guidelines and strategic frameworks governing EV therapeutics, emphasizing critical hurdles in quality control, safety evaluation, and efficacy demonstration. We further explore the implications of EVs’ heterogeneity on product characterization and the emerging direct-to-consumer market for EVs and secretome preparations. Drawing on these insights, in this review, we aim to provide a roadmap for harmonizing regulatory requirements, advancing standardized analytical approaches, and fostering ongoing collaboration among regulatory authorities, industry stakeholders, and academic investigators. Such coordinated efforts are essential to safeguard patient welfare, ensure product consistency, and accelerate the responsible integration of EV-based interventions into clinical practice. Full article
Show Figures

Graphical abstract

27 pages, 3280 KiB  
Article
Design and Implementation of a Robust Hierarchical Control for Sustainable Operation of Hybrid Shipboard Microgrid
by Arsalan Rehmat, Farooq Alam, Mohammad Taufiqul Arif and Syed Sajjad Haider Zaidi
Sustainability 2025, 17(15), 6724; https://doi.org/10.3390/su17156724 - 24 Jul 2025
Viewed by 395
Abstract
The growing demand for low-emission maritime transport and efficient onboard energy management has intensified research into advanced control strategies for hybrid shipboard microgrids. These systems integrate both AC and DC power domains, incorporating renewable energy sources and battery storage to enhance fuel efficiency, [...] Read more.
The growing demand for low-emission maritime transport and efficient onboard energy management has intensified research into advanced control strategies for hybrid shipboard microgrids. These systems integrate both AC and DC power domains, incorporating renewable energy sources and battery storage to enhance fuel efficiency, reduce greenhouse gas emissions, and support operational flexibility. However, integrating renewable energy into shipboard microgrids introduces challenges, such as power fluctuations, varying line impedances, and disturbances caused by AC/DC load transitions, harmonics, and mismatches in demand and supply. These issues impact system stability and the seamless coordination of multiple distributed generators. To address these challenges, we proposed a hierarchical control strategy that supports sustainable operation by improving the voltage and frequency regulation under dynamic conditions, as demonstrated through both MATLAB/Simulink simulations and real-time hardware validation. Simulation results show that the proposed controller reduces the frequency deviation by up to 25.5% and power variation improved by 20.1% compared with conventional PI-based secondary control during load transition scenarios. Hardware implementation on the NVIDIA Jetson Nano confirms real-time feasibility, maintaining power and frequency tracking errors below 5% under dynamic loading. A comparative analysis of the classical PI and sliding mode control-based designs is conducted under various grid conditions, such as cold ironing mode of the shipboard microgrid, and load variations, considering both the AC and DC loads. The system stability and control law formulation are verified through simulations in MATLAB/SIMULINK and practical implementation. The experimental results demonstrate that the proposed secondary control architecture enhances the system robustness and ensures sustainable operation, making it a viable solution for modern shipboard microgrids transitioning towards green energy. Full article
(This article belongs to the Special Issue Smart Grid Technologies and Energy Sustainability)
Show Figures

Figure 1

23 pages, 20707 KiB  
Article
Research on Energy Storage-Based DSTATCOM for Integrated Power Quality Enhancement and Active Voltage Support
by Peng Wang, Jianxin Bi, Fuchun Li, Chunfeng Liu, Yuanhui Sun, Wenhuan Cheng, Yilong Wang and Wei Kang
Electronics 2025, 14(14), 2840; https://doi.org/10.3390/electronics14142840 - 15 Jul 2025
Viewed by 254
Abstract
With the increasing penetration of distributed generation and the diversification of electrical equipment, distribution networks face issues like three-phase unbalance and harmonic currents, while the voltage stability and inertia of the grid-connected system also decrease. A certain amount of energy storage is needed [...] Read more.
With the increasing penetration of distributed generation and the diversification of electrical equipment, distribution networks face issues like three-phase unbalance and harmonic currents, while the voltage stability and inertia of the grid-connected system also decrease. A certain amount of energy storage is needed in a Distribution Static Synchronous Compensator (DSTATCOM) to manage power quality and actively support voltage and inertia in the network. This paper first addresses the limitations of traditional dq0 compensation algorithms in effectively filtering out negative-sequence twice-frequency components. An improved dq0 compensation algorithm is proposed to reduce errors in detecting positive-sequence fundamental current under unbalanced three-phase conditions. Second, considering the impedance ratio characteristics of the distribution network, while reactive power voltage regulation is common, active power regulation is more effective in high-resistance distribution networks. A grid-forming model-based active and reactive power coordinated voltage regulation method is proposed. This method uses synchronous control to establish a virtual three-phase voltage internal electromotive force, forming a comprehensive compensation strategy that combines power quality improvement and active voltage support, exploring the potential of energy storage DSTATCOM applications in distribution networks. Finally, simulation and experimental results demonstrate the effectiveness of the proposed control method. Full article
Show Figures

Figure 1

16 pages, 2159 KiB  
Article
A General Model Construction and Operating State Determination Method for Harmonic Source Loads
by Zonghua Zheng, Yanyi Kang and Yi Zhang
Symmetry 2025, 17(7), 1123; https://doi.org/10.3390/sym17071123 - 14 Jul 2025
Viewed by 280
Abstract
The widespread integration of power electronic devices and renewable energy sources into power systems has significantly exacerbated voltage and current waveform distortion issues, where asymmetric loads—including single-phase nonlinear equipment and unbalanced three-phase power electronic installations—serve as critical harmonic sources whose inherent nonlinear and [...] Read more.
The widespread integration of power electronic devices and renewable energy sources into power systems has significantly exacerbated voltage and current waveform distortion issues, where asymmetric loads—including single-phase nonlinear equipment and unbalanced three-phase power electronic installations—serve as critical harmonic sources whose inherent nonlinear and asymmetric characteristics increasingly compromise power quality. To enhance power quality management, this paper proposes a universal harmonic source modeling and operational state identification methodology integrating physical mechanisms with data-driven algorithms. The approach establishes an RL-series equivalent impedance model as its physical foundation, employing singular value decomposition and Z-score criteria to accurately characterize asymmetric load dynamics; subsequently applies Variational Mode Decomposition (VMD) to extract time-frequency features from equivalent impedance parameters while utilizing Density-Based Spatial Clustering (DBSCAN) for the high-precision identification of operational states in asymmetric loads; and ultimately constructs state-specific harmonic source models by partitioning historical datasets into subsets, substantially improving model generalizability. Simulation and experimental validations demonstrate that the synergistic integration of physical impedance modeling and machine learning methods precisely captures dynamic harmonic characteristics of asymmetric loads, significantly enhancing modeling accuracy, dynamic robustness, and engineering practicality to provide an effective assessment framework for power quality issues caused by harmonic source integration in distribution networks. Full article
Show Figures

Figure 1

15 pages, 5752 KiB  
Article
Coordinated Control of Grid-Forming Inverters for Adaptive Harmonic Mitigation and Dynamic Overcurrent Control
by Khaliqur Rahman, Jun Hashimoto, Kunio Koseki, Dai Orihara and Taha Selim Ustun
Electronics 2025, 14(14), 2793; https://doi.org/10.3390/electronics14142793 - 11 Jul 2025
Viewed by 257
Abstract
This paper proposes a coordinated control strategy for grid-forming inverters (GFMs) to address two critical challenges in evolving power systems. These are the active harmonic mitigation under nonlinear loading conditions and dynamic overcurrent control during grid disturbances. The proposed framework integrates a shunt [...] Read more.
This paper proposes a coordinated control strategy for grid-forming inverters (GFMs) to address two critical challenges in evolving power systems. These are the active harmonic mitigation under nonlinear loading conditions and dynamic overcurrent control during grid disturbances. The proposed framework integrates a shunt active filter (SAF) mechanism within the GFM control structure to achieve a real-time suppression of harmonic distortions from the inverter and grid currents. In parallel, a virtual impedance-based dynamic current limiting strategy is incorporated to constrain fault current magnitudes, ensuring the protection of power electronic components and maintaining system stability. The SAF operates in a current-injection mode aligned with harmonic components, derived via instantaneous reference frame transformations and selective harmonic extraction. The virtual impedance control (VIC) dynamically modulates the inverter’s output impedance profile based on grid conditions, enabling adaptive response during fault transients to limit overcurrent stress. A detailed analysis is performed for the coordinated control of the grid-forming inverter. Supported by simulations and analytical methods, the approach ensures system stability while addressing overcurrent limitations and active harmonic filtering under nonlinear load conditions. This establishes a viable solution for the next-generation inverter-dominated power systems where reliability, power quality, and fault resilience are paramount. Full article
Show Figures

Figure 1

30 pages, 954 KiB  
Article
Research on the Measurement and Enhancement Pathways of the Coupled and Coordinated Development of Digitalization and Greening in the Energy Industry
by Peng Zhang, Jun Liu, Lihong Guo and Xiaofei Wang
Sustainability 2025, 17(13), 6104; https://doi.org/10.3390/su17136104 - 3 Jul 2025
Viewed by 293
Abstract
The convergence of intelligent computational innovations—exemplified by cognitive intelligence—into the real economy is fundamentally transforming traditional industries and driving high-quality development. As a cornerstone of national economic growth, the energy sector faces mounting pressure to meet demands for green, low-carbon, and sustainable development, [...] Read more.
The convergence of intelligent computational innovations—exemplified by cognitive intelligence—into the real economy is fundamentally transforming traditional industries and driving high-quality development. As a cornerstone of national economic growth, the energy sector faces mounting pressure to meet demands for green, low-carbon, and sustainable development, particularly under “dual carbon” targets and tightening regulatory frameworks. This study examines how digital transformation in this sector facilitates or impedes carbon emission reduction and green growth. Focusing on five key energy subsectors, including coal mining and processing, a coupling coordination model assesses the interaction between digitalization and greening. Utilizing panel data spanning from 2014 to 2023, the study systematically evaluates the level of digital–green coordination across the sector. The results indicate notable inter-sectoral variation, alongside a consistent upward trend in the overall coupling coordination, reaching moderate to high levels. These findings offer critical strategic insights for policymakers and energy enterprises seeking to harmonize digital innovation with green transition goals. The empirical evidence underscores the potential of next-generation technologies to expedite intelligent system upgrades, embed green development practices, and enhance enterprise-level carbon reduction and sustainability performance. Full article
(This article belongs to the Special Issue Carbon Neutrality and Green Development)
Show Figures

Figure 1

17 pages, 2556 KiB  
Article
Novel Hybrid Islanding Detection Technique Based on Digital Lock-In Amplifier
by Muhammad Noman Ashraf, Abdul Shakoor Akram and Woojin Choi
Energies 2025, 18(13), 3449; https://doi.org/10.3390/en18133449 - 30 Jun 2025
Viewed by 251
Abstract
Islanding detection remains a critical challenge for grid-connected distributed generation systems, as passive techniques suffer from inherent non-detection zones (NDZ), and active methods often degrade power quality. This paper introduces a hybrid detection strategy based on monitoring inherent grid harmonics via a Digital [...] Read more.
Islanding detection remains a critical challenge for grid-connected distributed generation systems, as passive techniques suffer from inherent non-detection zones (NDZ), and active methods often degrade power quality. This paper introduces a hybrid detection strategy based on monitoring inherent grid harmonics via a Digital Lock-In Amplifier. By comparing real-time 5th and 7th harmonic amplitudes against their three-cycle-delayed values, the passive stage adaptively identifies potential islanding without fixed thresholds. Upon detecting significant relative variation, a brief injection of a non-characteristic 10th harmonic (limited to under 3% distortion for three line cycles) serves as active verification, ensuring robust discrimination between islanding and normal disturbances. Case studies demonstrate detection within 140 ms—faster than typical reclosing delays and well below the 2 s limit of IEEE std. 1547—while preserving current zero-crossings and enabling grid impedance estimation. The method’s resilience to grid disturbances and stiffness is validated through PSIM simulations and laboratory experiments, meeting IEEE 1547 and UL 1741 requirements. Comparative analysis shows superior accuracy and minimal power-quality impact relative to existing passive, active, and intelligent approaches. Full article
(This article belongs to the Special Issue Power Electronics and Power Quality 2025)
Show Figures

Figure 1

29 pages, 2460 KiB  
Review
A Survey on Design and Control Methodologies of High- Torque-Density Joints for Compliant Lower-Limb Exoskeleton
by Jingbo Xu, Silu Chen, Shupei Li, Yong Liu, Hongyu Wan, Zhuang Xu and Chi Zhang
Sensors 2025, 25(13), 4016; https://doi.org/10.3390/s25134016 - 27 Jun 2025
Viewed by 525
Abstract
The lower-limb assistance exoskeleton is increasingly being utilized in various fields due to its excellent performance in human body assistance. As a crucial component of robots, the joint is expected to be designed with a high-output torque to support hip and knee movement, [...] Read more.
The lower-limb assistance exoskeleton is increasingly being utilized in various fields due to its excellent performance in human body assistance. As a crucial component of robots, the joint is expected to be designed with a high-output torque to support hip and knee movement, and lightweight to enhance user experience. Contrasted with the elastic actuation with harmonic drive and other flexible transmission, the non-elastic quasi-direct actuation is more promising to be applied in exoskeleton due to its advanced dynamic performance and lightweight feature. Moreover, robot joints are commonly driven electrically, especially by a permanent magnet synchronous motor which is rapidly developed because of its compact structure and powerful output. Based on different topological structures, numerous research focus on torque density, ripple torque suppression, efficiency improvement, and thermal management to improve motor performance. Furthermore, the elaborated joint with powerful motors should be controlled compliantly to improve flexibility and interaction, and therefore, popular complaint control algorithms like impedance and admittance controls are discussed in this paper. Through the review and analysis of the integrated design from mechanism structure to control algorithm, it is expected to indicate developmental prospects of lower-limb assistance exoskeleton joints with optimized performance. Full article
Show Figures

Figure 1

33 pages, 10838 KiB  
Article
A Novel Control Method for Current Waveform Reshaping and Transient Stability Enhancement of Grid-Forming Converters Considering Non-Ideal Grid Conditions
by Tengkai Yu, Jifeng Liang, Shiyang Rong, Zhipeng Shu, Cunyue Pan and Yingyu Liang
Energies 2025, 18(11), 2834; https://doi.org/10.3390/en18112834 - 29 May 2025
Viewed by 336
Abstract
The proliferation of next-generation renewable energy systems has driven widespread adoption of electronic devices and nonlinear loads, causing grid distortion that degrades waveform quality in grid-forming (GFM) converters. Additionally, unbalanced grid faults exacerbate overcurrent risks and transient stability challenges when employing conventional virtual [...] Read more.
The proliferation of next-generation renewable energy systems has driven widespread adoption of electronic devices and nonlinear loads, causing grid distortion that degrades waveform quality in grid-forming (GFM) converters. Additionally, unbalanced grid faults exacerbate overcurrent risks and transient stability challenges when employing conventional virtual impedance strategies. While existing studies have separately examined these challenges, few have comprehensively addressed non-ideal grid conditions. To bridge this gap, a novel control strategy is proposed that reshapes the output current waveforms and enhances transient stability in GFM converters under such conditions. First, a sliding mode controller with an improved composite reaching law to achieve rapid reference tracking while eliminating chattering is designed. Second, a multi-quasi-resonance controller incorporating phase compensation is introduced to suppress harmonic distortion in the converter output current. Third, an individual-phase fuzzy adaptive virtual impedance strategy dynamically reshapes the current amplitude during unbalanced faults and improves the system’s transient stability. Validated through PSCAD/EMTDC simulations and hardware-in-the-loop experiments, the proposed strategy demonstrates superior transient stability and fault ride-through capability compared to state-of-the-art methods, ensuring reliable GFM converter operation under severe harmonic and unbalanced grid conditions. Full article
(This article belongs to the Special Issue Technology for Analysis and Control of Power Quality)
Show Figures

Figure 1

17 pages, 4009 KiB  
Article
Modeling and Control of Grid-Forming Active Power Filters for Harmonic Suppression and Enhanced Power Quality
by Muhammad Waqas Qaisar, Jiang Lai and Jingyang Fang
Appl. Sci. 2025, 15(11), 5927; https://doi.org/10.3390/app15115927 - 24 May 2025
Viewed by 498
Abstract
Grid-forming converters (GFMCs) have gained significant attention for their functionality in grid voltage formation and grid-supportive services. However, managing harmonic distortions caused by nonlinear loads remains a critical challenge in weak grids. This paper presents a novel grid-forming active power filter (GFMC APF) [...] Read more.
Grid-forming converters (GFMCs) have gained significant attention for their functionality in grid voltage formation and grid-supportive services. However, managing harmonic distortions caused by nonlinear loads remains a critical challenge in weak grids. This paper presents a novel grid-forming active power filter (GFMC APF) that integrates voltage and frequency regulation with effective harmonic control. The proposed control method generates harmonic voltage commands by detecting voltage at the point of common coupling. The GFMC APF compensates harmonic voltages by creating a near short-circuit impedance path for harmonics, thereby preventing harmonic currents from propagating into the grid. In addition to improving harmonic performances, the system enhances grid stability by enhancing inertia, damping, and short-circuit capacity while suppressing wide-frequency oscillations. The proposed method avoids complex parameter tuning, ensuring simplicity and scalability. Simulation results validate the effectiveness of the GFMC APF in delivering precise harmonic control, improved power quality, and enhanced grid-forming capabilities. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

14 pages, 6551 KiB  
Article
Design Analysis of a Modified Current-Reuse Low-Power Wideband Single-Ended CMOS LNA
by Farshad Shirani Bidabadi, Mahalingam Nagarajan, Thangarasu Bharatha Kumar and Yeo Kiat Seng
Chips 2025, 4(2), 21; https://doi.org/10.3390/chips4020021 - 6 May 2025
Viewed by 616
Abstract
This paper presents the design analysis of a low-power wideband single-ended CMOS low-noise amplifier (LNA). The proposed topology is based on a modified current- reuse circuit, in which two-stage common-source (CS) amplifiers consume the same DC current and are isolated from each other [...] Read more.
This paper presents the design analysis of a low-power wideband single-ended CMOS low-noise amplifier (LNA). The proposed topology is based on a modified current- reuse circuit, in which two-stage common-source (CS) amplifiers consume the same DC current and are isolated from each other by large MIMCAPs, which results in good performance with low power consumption. The proposed circuit achieves a bandwidth of 2.5 GHz, suitable for several wireless communication standards such as GSM, WLAN, and Bluetooth. In the first stage, a current-reuse circuit with shunt feedback is used to satisfy input impedance matching and signal amplification with minimal noise injection. A common source (CS) with a source follower circuit forms the second stage to improve the noise figure (NF), harmonic distortion, and output impedance matching. The proposed LNA is designed in 65 nm CMOS technology and covers a frequency range of 0.17–2.68 GHz. The proposed LNA achieves a maximum gain of 17.24 dB, a minimum NF of 2.67 dB, a maximum IIP3 of −14.9 dBm, and input and output return losses of less than −10 dB. The power consumption of the proposed LNA is 3.52 mW from a 1 V power supply, and the core area is 0.3 mm2. Full article
(This article belongs to the Special Issue IC Design Techniques for Power/Energy-Constrained Applications)
Show Figures

Figure 1

28 pages, 774 KiB  
Article
Drivers of Environmental Sustainability, Economic Growth, and Inequality: A Study of Economic Complexity, FDI, and Human Development Role in BRICS+ Nations
by Parveen Kumar, Rajbeer Kaur, Magdalena Radulescu, Branimir Kalaš and Alina Hagiu
Sustainability 2025, 17(9), 4180; https://doi.org/10.3390/su17094180 - 6 May 2025
Cited by 1 | Viewed by 1010
Abstract
This study investigates the intricate relationships among CO2 emissions, income inequality, the Economic Complexity Index (ECI), foreign direct investment (FDI), the Human Development Index (HDI), and the economic growth across countries. Three distinct models are developed: the first examines their effects on [...] Read more.
This study investigates the intricate relationships among CO2 emissions, income inequality, the Economic Complexity Index (ECI), foreign direct investment (FDI), the Human Development Index (HDI), and the economic growth across countries. Three distinct models are developed: the first examines their effects on economic growth, the second analyzes their impact on income inequality, and the third explores their influence on CO2 emissions. Advanced econometric methods, including Fully Modified Ordinary Least Squares (FMOLS) and Dynamic Ordinary Least Squares (DOLS), are employed to ensure robust and reliable results. The findings indicate that income inequality impedes economic growth, whereas economic growth and greater economic complexity help reduce inequality. While FDI significantly boosts GDP growth, it also widens the income disparities and intensifies environmental degradation, raising questions about the sustainability and quality of foreign investments. In contrast, human development emerges as a vital driver of economic growth and a critical factor in reducing CO2 emissions, highlighting the value of investing in education, healthcare, and living standards to achieve sustainable development. These insights underscore the necessity for carefully designed policies that harmonize economic progress, social equity, and environmental sustainability. Full article
(This article belongs to the Special Issue CO2 Capture and Utilization: Sustainable Environment)
Show Figures

Figure 1

20 pages, 10457 KiB  
Article
Design of a Double-Matched Cross-Polar Single Antenna Harmonic Tag
by Alessandro DiCarlofelice, Antonio DiNatale, Emidio DiGiampaolo and Piero Tognolatti
Appl. Sci. 2025, 15(8), 4590; https://doi.org/10.3390/app15084590 - 21 Apr 2025
Viewed by 390
Abstract
Radio frequency identification (RFID) technology has gained significant attention in various industry sectors due to its potential for efficient inventory management, asset tracking, and object localization. Different RFID technologies are available; resorting to harmonic signals is currently less used but, recently, has gained [...] Read more.
Radio frequency identification (RFID) technology has gained significant attention in various industry sectors due to its potential for efficient inventory management, asset tracking, and object localization. Different RFID technologies are available; resorting to harmonic signals is currently less used but, recently, has gained interest in research activity. In this study, we present the design, prototype realization, and performance evaluation of a dual-band dual-polarized harmonic tag. The tag incorporates a dual-band matching circuit utilizing a zero-bias Schottky diode HSMS-2850 connected to a perturbed annular ring patch antenna. The antenna, in fact, is able to radiate in cross-polarization at the higher frequency. Through a comprehensive design methodology, including simulation optimization and prototype fabrication, we demonstrate the successful implementation of the tag. Measurements to validate the impedance matching properties, radiation patterns, and backscattering capability of the tag are also shown. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

25 pages, 13668 KiB  
Article
Reliability of High-Frequency Earth Meters in Measuring Tower-Footing Resistance: Simulations and Experimental Validation
by Renan Segantini, Rafael Alipio and José O. S. Paulino
Energies 2025, 18(8), 1959; https://doi.org/10.3390/en18081959 - 11 Apr 2025
Viewed by 541
Abstract
This paper presents a comprehensive assessment of the accuracy of high-frequency (HF) earth meters in measuring the tower-footing ground resistance of transmission line structures, combining simulation and experimental results. The findings demonstrate that HF earth meters reliably estimate the harmonic grounding impedance ( [...] Read more.
This paper presents a comprehensive assessment of the accuracy of high-frequency (HF) earth meters in measuring the tower-footing ground resistance of transmission line structures, combining simulation and experimental results. The findings demonstrate that HF earth meters reliably estimate the harmonic grounding impedance (R25kHz) at their operating frequency, typically 25 kHz, for a wide range of soil resistivities and typical span lengths. For the analyzed tower geometries, the simulations indicate that accurate measurements are obtained for adjacent span lengths of approximately 300 m and 400 m, corresponding to configurations with one and two shield wires, respectively. Acceptable errors below 10% are observed for span lengths exceeding 200 m and 300 m under the same conditions. While the measured R25kHz does not directly represent the resistance at the industrial frequency, it provides a meaningful measure of the grounding system’s impedance, enabling condition monitoring and the evaluation of seasonal or event-related impacts, such as damage after outages. Furthermore, the industrial frequency resistance can be estimated through an inversion process using an electromagnetic model and knowing the geometry of the grounding electrodes. Overall, the results suggest that HF earth meters, when correctly applied with the fall-of-potential method, offer a reliable means to assess the grounding response of high-voltage transmission line structures in most practical scenarios. Full article
Show Figures

Figure 1

Back to TopTop