Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (463)

Search Parameters:
Keywords = growth from high temperature solutions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4922 KB  
Article
Interface, Mechanical and Thermal Properties of In Situ Generated V(C,N) Solid Solution Reinforced SiC–AlN–VC Multiphase Ceramics
by Liulin Li, Maoyuan Gong, Hai Zhang and Wanxiu Hai
J. Compos. Sci. 2026, 10(1), 29; https://doi.org/10.3390/jcs10010029 - 7 Jan 2026
Viewed by 153
Abstract
Silicon carbide (SiC) ceramics are regarded as high-performance structural materials due to their excellent high-temperature strength, wear resistance, and thermal stability. However, their inherent high brittleness, low fracture toughness, and difficulty in densification have limited their wider application. To overcome these challenges, introducing [...] Read more.
Silicon carbide (SiC) ceramics are regarded as high-performance structural materials due to their excellent high-temperature strength, wear resistance, and thermal stability. However, their inherent high brittleness, low fracture toughness, and difficulty in densification have limited their wider application. To overcome these challenges, introducing a second phase and/or sintering aids is necessary. In this paper, SiC–AlN–VC multiphase ceramics were fabricated via spark plasma sintering at 1800 °C to 2100 °C. The interface, mechanical, and thermal properties were examined. It was found that the VC particles effectively pin the grain boundaries and suppress the abnormal growth of SiC grains. At temperatures exceeding 1800 °C, the N atoms released from the decomposition of AlN diffuse into the VC lattice, forming a V(C,N) solid solution that enhances both the toughness and strength of the ceramics. With increasing sintering temperature, the mechanical properties of the SiC multiphase ceramics first improve and then deteriorate. Ultimately, a nearly fully dense SiC multiphase ceramic is obtained. The maximum hardness, flexural strength, and fracture toughness of SAV20 are 28.7 GPa, 508 MPa, and 5.25 MPa·m1/2, respectively. Furthermore, the room-temperature friction coefficient and wear rate are 0.41 and 3.41 × 10−5 mm3/(N·m), respectively, and the thermal conductivity is 58 W/(m·K). Full article
(This article belongs to the Special Issue High-Performance Composite Materials in Construction)
Show Figures

Figure 1

29 pages, 2664 KB  
Article
Optimization of Active Power Supply in an Electrical Distribution System Through the Optimal Integration of Renewable Energy Sources
by Irving J. Guevara and Alexander Aguila Téllez
Energies 2026, 19(2), 293; https://doi.org/10.3390/en19020293 - 6 Jan 2026
Viewed by 115
Abstract
The sustained growth of electricity demand and the global transition toward low-carbon energy systems have intensified the need for efficient, flexible, and reliable operation of electrical distribution networks. In this context, the coordinated integration of distributed renewable energy resources and demand-side flexibility has [...] Read more.
The sustained growth of electricity demand and the global transition toward low-carbon energy systems have intensified the need for efficient, flexible, and reliable operation of electrical distribution networks. In this context, the coordinated integration of distributed renewable energy resources and demand-side flexibility has emerged as a key strategy to improve technical performance and economic efficiency. This work proposes an integrated optimization framework for active power supply in a radial, distribution-like network through the optimal siting and sizing of photovoltaic (PV) units and wind turbines (WTs), combined with a real-time pricing (RTP)-based demand-side response (DSR) program. The problem is formulated using the branch-flow (DistFlow) model, which explicitly represents voltage drops, branch power flows, and thermal limits in radial feeders. A multiobjective function is defined to jointly minimize annual operating costs, active power losses, and voltage deviations, subject to network operating constraints and inverter capability limits. Uncertainty associated with solar irradiance, wind speed, ambient temperature, load demand, and electricity prices is captured through probabilistic modeling and scenario-based analysis. To solve the resulting nonlinear and constrained optimization problem, an Improved Whale Optimization Algorithm (I-WaOA) is employed. The proposed algorithm enhances the classical Whale Optimization Algorithm by incorporating diversification and feasibility-oriented mechanisms, including Cauchy mutation, Fitness–Distance Balance (FDB), quasi-oppositional-based learning (QOBL), and quadratic penalty functions for constraint handling. These features promote robust convergence toward admissible solutions under stochastic operating conditions. The methodology is validated on a large-scale radialized network derived from the IEEE 118-bus benchmark, enabling a DistFlow-consistent assessment of technical and economic performance under realistic operating scenarios. The results demonstrate that the coordinated integration of PV, WT, and RTP-driven demand response leads to a reduction in feeder losses, an improvement in voltage profiles, and an enhanced voltage stability margin, as quantified through standard voltage deviation and fast voltage stability indices. Overall, the proposed framework provides a practical and scalable tool for supporting planning and operational decisions in modern power distribution networks with high renewable penetration and demand flexibility. Full article
Show Figures

Figure 1

41 pages, 3073 KB  
Review
Sustainable Carbon Nanomaterials from Biomass Precursors: Green Synthesis Strategies and Environmental Applications
by Ernesto Almaraz-Vega, Aislinn Itzel Morales-Vargas, Guillermo Gómez Delgado, Laura Castellanos-Arteaga, Ofelia Iñiguez Gómez and Claudia Cecilia Flores Salcedo
Nanomaterials 2026, 16(1), 75; https://doi.org/10.3390/nano16010075 - 5 Jan 2026
Viewed by 486
Abstract
Environmental pollution caused by industrialization and population growth has intensified the demand for sustainable materials capable of mitigating contaminants effectively. In this context, the green synthesis of carbon-based nanomaterials derived from biomass has gained significant attention as an eco-friendly and renewable approach that [...] Read more.
Environmental pollution caused by industrialization and population growth has intensified the demand for sustainable materials capable of mitigating contaminants effectively. In this context, the green synthesis of carbon-based nanomaterials derived from biomass has gained significant attention as an eco-friendly and renewable approach that reduces dependence on fossil resources. These nanomaterials exhibit outstanding physicochemical characteristics, including high surface area, tunable porosity, abundant functional groups, and excellent stability, which enhance their performance in environmental remediation. Specifically, biomass-derived carbon nanomaterials have demonstrated remarkable efficiency as adsorbents for the removal of heavy metals and organic pollutants, as well as photocatalysts for the degradation of toxic compounds under visible light irradiation. The physicochemical properties of the resulting materials are strongly influenced by the type and pretreatment of the biomass, along with synthesis parameters such as pyrolysis temperature, activation process, and heteroatom doping. This review highlights recent advances in the synthesis, characterization, and environmental applications of biomass-derived carbon nanomaterials, emphasizing their potential as cost-effective, scalable, and sustainable solutions for wastewater treatment and pollutant degradation in both aquatic and atmospheric systems. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

42 pages, 6169 KB  
Review
SnSe: A Versatile Material for Thermoelectric and Optoelectronic Applications
by Chi Zhang, Zhengjie Guo, Fuyueyang Tan, Jinhui Zhou, Xuezhi Li, Xi Cao, Yikun Yang, Yixian Xie, Yuying Feng, Chenyao Huang, Zaijin Li, Yi Qu and Lin Li
Coatings 2026, 16(1), 56; https://doi.org/10.3390/coatings16010056 - 3 Jan 2026
Viewed by 478
Abstract
Tin selenide (SnSe) is a sustainable, lead-free IV–VI semiconductor whose layered orthorhombic crystal structure induces pronounced electronic and phononic anisotropy, enabling diverse energy-related functionalities. This review systematically summarizes recent progress in understanding the structure–property–processing relationships that govern SnSe performance in thermoelectric and optoelectronic [...] Read more.
Tin selenide (SnSe) is a sustainable, lead-free IV–VI semiconductor whose layered orthorhombic crystal structure induces pronounced electronic and phononic anisotropy, enabling diverse energy-related functionalities. This review systematically summarizes recent progress in understanding the structure–property–processing relationships that govern SnSe performance in thermoelectric and optoelectronic applications. Key crystallographic characteristics are first discussed, including the temperature-driven Pnma–Cmcm phase transition, anisotropic band and valley structures, and phonon transport mechanisms that lead to intrinsically low lattice thermal conductivity below 0.5 W m−1 K−1 and tunable carrier transport. Subsequently, major synthesis strategies are critically compared, spanning Bridgman and vertical-gradient single-crystal growth, spark plasma sintering and hot pressing of polycrystals, as well as vapor- and solution-based thin-film fabrication, with emphasis on process windows, stoichiometry control, defect chemistry, and microstructure engineering. For thermoelectric applications, directional and temperature-dependent transport behaviors are analyzed, highlighting record thermoelectric performance in single-crystal SnSe at hi. We analyze directional and temperature-dependent transport, highlighting record thermoelectric figure of merit values exceeding 2.6 along the b-axis in single-crystal SnSe at ~900 K, as well as recent progress in polycrystalline and thin-film systems through alkali/coinage-metal doping (Ag, Na, Cu), isovalent and heterovalent substitution (Zn, S), and hierarchical microstructural design. For optoelectronic applications, optical properties, carrier dynamics, and photoresponse characteristics are summarized, underscoring high absorption coefficients exceeding 104 cm−1 and bandgap tunability across the visible to near-infrared range, together with interface engineering strategies for thin-film photovoltaics and broadband photodetectors. Emerging applications beyond energy conversion, including phase-change memory and electrochemical energy storage, are also reviewed. Finally, key challenges related to selenium volatility, performance reproducibility, long-term stability, and scalable manufacturing are identified. Overall, this review provides a process-oriented and application-driven framework to guide the rational design, synthesis optimization, and device integration of SnSe-based materials. Full article
(This article belongs to the Special Issue Advancements in Lasers: Applications and Future Trends)
Show Figures

Figure 1

27 pages, 1445 KB  
Review
Smart Healing for Wound Repair: Emerging Multifunctional Strategies in Personalized Regenerative Medicine and Their Relevance to Orthopedics
by Carla Renata Arciola, Veronica Panichi, Gloria Bua, Silvia Costantini, Giulia Bottau, Stefano Ravaioli, Eleonora Capponi and Davide Campoccia
Antibiotics 2026, 15(1), 36; https://doi.org/10.3390/antibiotics15010036 - 1 Jan 2026
Viewed by 471
Abstract
To address the challenges in wound healing, clinical management increasingly demands targeted, adaptive, responsive, and patient-centered strategies. This is especially true for wounds characterized by delayed healing and a high risk of infection. Advances in regenerative medicine and biomaterial technologies are fostering the [...] Read more.
To address the challenges in wound healing, clinical management increasingly demands targeted, adaptive, responsive, and patient-centered strategies. This is especially true for wounds characterized by delayed healing and a high risk of infection. Advances in regenerative medicine and biomaterial technologies are fostering the development of multifunctional approaches that integrate tissue regeneration, antibacterial/antibiofilm activity, immunomodulation, and real-time monitoring. This paper surveys emerging platforms, including both natural and synthetic scaffolds, hydrogels enriched with platelet-derived growth factors, glycosaminoglycan mimetics, bioactive peptides (such as GHK-Cu and antimicrobial peptides), nanoscaffolds, and stimuli-responsive systems. The paper also explores cutting-edge technologies such as water-powered, electronics-free dressings that deliver localized electrical stimulation; biodegradable bioelectric sutures that produce self-sustained mechano-electrical signals; and sensory bandages that monitor pH, moisture, temperature, and bacterial contamination in real-time while enabling on-demand drug release with pro-regenerative, antibacterial, and other therapeutic functionalities. Further therapeutic approaches include natural matrices, exosomes, gene editing, 3D bioprinting, and AI-assisted design. Particular attention is paid to orthopedic applications and orthopedic implant infection. A brief section addresses the still unresolved challenge of articular cartilage regeneration. Interdisciplinary innovation, integrating insights from molecular biology through engineering, plays a central role in translating novel strategies into tailored, clinically effective wound management solutions. Full article
Show Figures

Figure 1

10 pages, 15128 KB  
Communication
Research on Microstructure Evolution and Rapid Hardening Mechanism of Ultra-Low Carbon Automotive Outer Panel Steel Under Minor Deformation
by Jiandong Guan, Yi Li, Guoming Zhu, Yonglin Kang, Feng Wang, Jun Xu and Meng Xun
Materials 2026, 19(1), 128; https://doi.org/10.3390/ma19010128 - 30 Dec 2025
Viewed by 161
Abstract
With the rapid development of the automotive industry, particularly the year-on-year growth in sales of new energy vehicles, automobile outer panel materials have shown a trend toward high-strength lightweight solutions. Regarding steel for outer panels, existing research has paid less attention to the [...] Read more.
With the rapid development of the automotive industry, particularly the year-on-year growth in sales of new energy vehicles, automobile outer panel materials have shown a trend toward high-strength lightweight solutions. Regarding steel for outer panels, existing research has paid less attention to the UF steel that has entered the market in recent years. Moreover, studies on the similarities and differences in deformation behavior among various outer panel steels are lacking. In this study, room-temperature tensile tests at 5% and 8% strain were conducted in accordance with the stamping deformation range on commonly used ultra-low carbon automotive outer panel steels of comparable strength grades, namely, UF340, HC180BD, and DX53D+Z. Prior to deformation, the three materials exhibited similar texture components, predominantly characterized by the γ-fiber texture beneficial for deep drawing, and their room-temperature tensile deformation behaviors were fundamentally identical. After transverse tensile deformation, the textures concentrated towards {111}<112> texture. After 8% deformation, UF340 demonstrated a more rapid stress increase and a higher degree of work hardening. This phenomenon is attributed to the presence of the precipitate free zone (PFZ) near grain boundaries in the UF340, which facilitates the continuous generation of dislocations at grain boundaries during deformation, leading to a rapid increase in dislocation density within the grains. Consequently, this induces accelerated work hardening under small-strain conditions. This mechanism enables UF steels to achieve a strength level comparable to that of bake-hardened (BH) steels, exhibiting a significant performance advantage. Full article
Show Figures

Figure 1

16 pages, 18448 KB  
Article
Effects of Temperature on Anti-Seepage Coating During Vapor Phase Aluminizing of K4125 Ni-Based Superalloy
by Xuxian Zhou, Cheng Xie, Yidi Li and Yunping Li
Surfaces 2026, 9(1), 2; https://doi.org/10.3390/surfaces9010002 - 24 Dec 2025
Viewed by 229
Abstract
During the vapor phase aluminizing process, protecting the joint regions of turbine blades remains a critical challenge, as the formation of the aluminide coating can significantly increase the brittleness of these areas. To address this issue, a novel double-layer anti-seepage coating was designed [...] Read more.
During the vapor phase aluminizing process, protecting the joint regions of turbine blades remains a critical challenge, as the formation of the aluminide coating can significantly increase the brittleness of these areas. To address this issue, a novel double-layer anti-seepage coating was designed for the K4125 nickel-based superalloy. The coating employs a self-sealing mechanism, transforming from a porous structure into a dense NiAl/Al2O3 composite barrier at elevated temperatures, thereby suppressing aluminum penetration. Optimal anti-seepage performance is achieved at 1080 °C, reducing the transition zone width to 42 μm, which is a reduction of more than 70% compared to that of 880 °C. These results are attributed to the synergistic action of multiple mechanisms, including high-temperature densification, the formation of NiAl phase, and the growth of an oxide film on the substrate surface. Additionally, the thermal expansion mismatch enables easy mechanical removal of the coating after aluminizing without substrate damage. The coating system offers an effective and practical solution for high-temperature protection during vapor phase aluminizing in aerospace applications. Full article
Show Figures

Figure 1

65 pages, 30714 KB  
Article
Directional Solidification of a Refractory Complex Concentrated Alloy (RCCA) Using Optical Floating Zone (OFZ) Solidification Processing: Implications for Alloy Design and Development
by Nik Tankov, Claire Utton and Panos Tsakiropoulos
Alloys 2025, 4(4), 29; https://doi.org/10.3390/alloys4040029 - 18 Dec 2025
Viewed by 360
Abstract
Some cast metallic alloys for ultra-high-temperature structural applications can have better mechanical properties compared with Ni-based superalloys. Research on the directional solidification (DS) of such alloys is limited. The production of DS components of these alloys with “tailor-made” microstructures in different parts of [...] Read more.
Some cast metallic alloys for ultra-high-temperature structural applications can have better mechanical properties compared with Ni-based superalloys. Research on the directional solidification (DS) of such alloys is limited. The production of DS components of these alloys with “tailor-made” microstructures in different parts of the component has not been considered. This paper attempts to address these issues. A bar of the RCCA/RM(Nb)IC with nominal composition 3.5Al–4Crc6Ge–1Hf–5Mo–36Nb–22Si–1.5Sn–20Ti–1W (at.%) was directionally grown using OFZ processing, where the growth rate R increased from 1.2 to 6 and then to 15 cm/h. The paper studies how the macrosegregation of the elements affected the microstructure in different parts of the bar. It was shown that the synergy of macrosegregation and growth rate produced microstructures from the edge to the centre of the OFZ bar and along the length of the OFZ bar that differed in type and chemical composition as R increased. Contamination with oxygen was confined to the “root” of the part of the bar that was grown with R = 1.2 cm/h. The concentrations of elements in the bar were related (a) to each of the parameters VEC, Δχ, and δ for different sections, (i) across the thickness and (ii) along the length of the bar, or to each other for different sections of the bar, and demonstrated the synergy and entanglement of processing, parameters, and elements. In the centre of the bar, the phases were the Nbss and Nb5Si3 for all R values. In the bar, the silicide formed with Nb/(Ti + Hf) less or greater than one. There was synergy of solutes in the solid solution and the silicide for all R values, and synergy and entanglement of the two phases. Owing to the synergy and entanglement of processing, parameters, elements, and phases, properties would “emerge” in each part of the bar. The creep and oxidation properties of the bar were calculated as guided by the alloy design methodology NICE. It was suggested that, in principle, a component based on a metallic UHTM with “functionally graded” composition, microstructure and properties could be directionally grown. Full article
Show Figures

Figure 1

15 pages, 6465 KB  
Article
Scalable Synthesis of Aragonite Whiskers Under Higher Initial Ca2+ Concentrations
by Ruixue Wang, Zihao Xu, Baojun Yang and Bainian Wang
Nanomaterials 2025, 15(24), 1894; https://doi.org/10.3390/nano15241894 - 17 Dec 2025
Viewed by 314
Abstract
Calcium carbonate (CaCO3) whiskers are promising materials for the high-value utilization of calcium-based resources. Here, aragonite whiskers were synthesized at a carbonation temperature of 90 °C using carbide slag ammonium leachate as the calcium source and CO2 as the precipitant. [...] Read more.
Calcium carbonate (CaCO3) whiskers are promising materials for the high-value utilization of calcium-based resources. Here, aragonite whiskers were synthesized at a carbonation temperature of 90 °C using carbide slag ammonium leachate as the calcium source and CO2 as the precipitant. The effects of control agents, carbonation temperature, Ca2+ solution feeding rate, CO2 flow rate, and stirring speed on whisker morphology and aspect ratio were systematically investigated. Characterization via SEM and XRD revealed that the optimal conditions—carbonation temperature of 90 °C, Ca2+ feeding rate of 1.2 mL∙min−1, ethanol addition of 2 mL, CO2 flow rate of 150 mL∙min−1, and stirring speed of 300 rpm—yielded uniform CaCO3 whiskers with an average length of ~10 μm, an aspect ratio of ~24, and an aragonite purity of 99.42%. TEM confirmed that the whiskers are single crystals growing preferentially along the [001] direction. Hydroxyl groups were found to suppress lateral growth on the (200) facet, favoring elongation along the c-axis and enabling high-aspect-ratio whisker formation. These findings provide useful guidance for the scalable synthesis and industrial application of aragonite whiskers. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Figure 1

19 pages, 7820 KB  
Article
High-Efficiency Cryopreservation of Silver Pomfret Sperm: Protocol Development and Cryodamage Assessment
by Man Zhang, Yijun Jiang, Yubei Qiu, Zukang Feng, Xianglong Chen, Chongyang Wang, Yuanbo Li, Qinqin Dai, Jiabao Hu, Xiaojun Yan and Yajun Wang
Animals 2025, 15(24), 3602; https://doi.org/10.3390/ani15243602 - 15 Dec 2025
Viewed by 259
Abstract
The silver pomfret (Pampus argenteus), widely distributed across the Indo-West Pacific and prevalent in China’s coastal waters, has experienced significant resource decline due to anthropogenic impacts such as habitat alteration and overfishing, which disrupt its natural reproduction and growth. Cryopreservation technology [...] Read more.
The silver pomfret (Pampus argenteus), widely distributed across the Indo-West Pacific and prevalent in China’s coastal waters, has experienced significant resource decline due to anthropogenic impacts such as habitat alteration and overfishing, which disrupt its natural reproduction and growth. Cryopreservation technology overcomes spatiotemporal constraints by enabling the long-term storage of high-quality sperm for future use. This study optimized cryopreservation protocols for silver pomfret sperm, evaluation key parameters including extenders, cryoprotectants, dilution ratios, cooling heights, and thawing temperatures. Sperm quality was assessed post thaw via enzyme activity assays and electron microscopy. Results demonstrated that modified plaice Ringer solution (MPRS) extender yielded the highest post-thaw motility (95.98 ± 1.59)%. The optimal cryopreservation conditions for silver pomfret sperm were established as follows: MPRS diluent, 20% EG, a 1:6 dilution ratio, a 7 cm cooling height, and a 28 °C thawing temperature. This protocol yielded post-thaw sperm with motility and motion parameters most closely resembling those of fresh sperm. Ultrastructural observations and enzyme activity assays, however, confirmed that cryopreservation induced sublethal damage, including significant reduction in ATPase activity, as well as structural anomalies such as head deformation, membrane damage, and organelle disarray. This work establishes a foundational cryopreservation protocol, providing critical tools for conserving the genetic resources of this declining species and supporting sustainable aquaculture and wild population restoration efforts. Full article
(This article belongs to the Section Animal Reproduction)
Show Figures

Figure 1

27 pages, 8122 KB  
Article
Research on MICP Restoration Technology for Earthen City Walls Damaged by Primary Vegetation Capping in China
by Ruihua Shang, Chenyang Li, Xiaoju Yang, Pengju Han and Weiwei Liu
Microorganisms 2025, 13(12), 2802; https://doi.org/10.3390/microorganisms13122802 - 9 Dec 2025
Viewed by 320
Abstract
As a typical representative of soft capping, primary vegetation capping has both protective and destructive effects on earthen city walls. Addressing its detrimental aspects constitutes the central challenge of this project. Because the integration of MICP technology with plants offered advantages, including soil [...] Read more.
As a typical representative of soft capping, primary vegetation capping has both protective and destructive effects on earthen city walls. Addressing its detrimental aspects constitutes the central challenge of this project. Because the integration of MICP technology with plants offered advantages, including soil solidification, erosion resistance, and resilience to dry–wet cycles and freeze–thaw cycles, the application of MICP technology to root–soil composites was proposed as a potential solution. Employing a combined approach of RF-RFE-CV modeling and microscopic imaging on laboratory samples from the Western City Wall of the Jinyang Ancient City in Taiyuan, Shanxi Province, China, key factors and characteristics in the mineralization process of Sporosarcina pasteurii were quantified and observed systematically to define the optimal pathway for enhancing urease activity and calcite yield. The conclusions were as follows. The urease activity of Sporosarcina pasteurii was primarily regulated by three key parameters with bacterial concentration, pH value, and the intensity of urease activity, which required stage-specific dynamic control throughout the growth cycle. Bacterial concentration consistently emerged as a high-importance feature across multiple time points, with peak effectiveness observed at 24 h (1.127). pH value remained a highly influential parameter across several time points, exhibiting maximum impact at around 8 h (1.566). With the intensity of urease activity, pH exerted a pronounced influence during the early cultivation stage, whereas inoculation volume gained increasing importance after 12 h. To achieve maximum urease activity, the use of CASO AGAR Medium 220 and the following optimized culture conditions was recommended: an activation culture time of 27 h, an inoculation age of 16 h, an inoculation volume of 1%, a culture temperature of 32 °C, an initial pH of 8, and an oscillation speed of 170 r/min. Furthermore, to maximize the yield of CaCO3 in output and the yield of calcite in CaCO3, the following conditions and procedures were recommended: a ratio of urea concentration to Ca2+ concentration of 1 M:1.3 M, using the premix method of Sporosarcina pasteurii, quiescent reaction, undisturbed filtration, and drying at room-temperature in the shade environment. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

23 pages, 4807 KB  
Article
Reactive Magnetron-Sputtered Tantalum–Copper Nitride Coatings: Structure, Electrical Anisotropy, and Antibacterial Behavior
by Paweł Żukowski, Vitalii Bondariev, Anatoliy I. Kupchishin, Marat N. Niyazov, Kairat B. Tlebaev, Yaroslav Bobitski, Joanna Kisała, Joanna Wojtas, Anna Żaczek, Štefan Hardoň and Alexander D. Pogrebnjak
Nanomaterials 2025, 15(23), 1813; https://doi.org/10.3390/nano15231813 - 30 Nov 2025
Viewed by 505
Abstract
Tantalum nitride (TaN) coatings are valued for their hardness, chemical inertness, and biocompatibility; however, they lack intrinsic antibacterial properties, which limits their application in biomedical environments. Introducing copper (Cu) into the TaN matrix offers a potential solution by combining TaN’s mechanical and chemical [...] Read more.
Tantalum nitride (TaN) coatings are valued for their hardness, chemical inertness, and biocompatibility; however, they lack intrinsic antibacterial properties, which limits their application in biomedical environments. Introducing copper (Cu) into the TaN matrix offers a potential solution by combining TaN’s mechanical and chemical durability with Cu’s well-documented antimicrobial action. This study explores how varying copper incorporation affects the structural, electrical, photocatalytic, and antibacterial characteristics of TaCuN multilayer films synthesized via reactive magnetron sputtering. Three thin TaCuN films were fabricated using a high-power reactive magnetron co-sputtering system, varying the Cu target power to control the composition. Structural and morphological analysis was performed using X-ray diffraction (XRD), scanning/transmission electron microscopy (STEM/TEM), and energy-dispersive X-ray spectroscopy (EDS). Electrical conductivity was studied along and across the film surfaces at temperatures ranging from 20 to 375 K using AC impedance spectroscopy. Optical and photocatalytic properties were assessed using UV–Vis spectroscopy and methylene blue degradation tests. Antibacterial activity against Staphylococcus aureus was analyzed under visible light using CFU reduction tests. XRD and TEM analyses revealed a multilayered four-zone architecture with alternating Ta-, Cu-, and N-rich phases and a dominant cubic δ-TaN pattern. The layers exhibited pronounced conductivity anisotropy, with in-plane conductivity (~103 Ω−1 cm−1) exceeding cross-plane conductivity by ~107 times, attributed to the formation of a metallic conduction channel in the mid-layer. Optical spectra indicated limited light absorption above 300 nm and negligible photocatalytic activity. Increasing the Cu content substantially enhanced antibacterial efficiency, with the highest-Cu sample achieving 95.6 % bacterial growth reduction. Morphological evaluation indicated that smooth film surfaces (Ra < 0.2 μm) effectively minimized bacterial adhesion. Reactive magnetron sputtering enables the precise engineering of TaCuN multilayers, combining high electrical anisotropy with robust antibacterial functionality. The optimized TaCuN coating offers promising potential in biomedical and protective applications where both conductivity and microbial resistance are required. Full article
(This article belongs to the Special Issue Synthesis of Functional Nanoparticles for Biomedical Applications)
Show Figures

Graphical abstract

25 pages, 2289 KB  
Article
Development and Testing of an Aquaculture Environmental Control System Based on Behavioral Stress Responses
by Bin Wang, Hang Yang, Hanping Mao and Qiang Shi
Life 2025, 15(12), 1809; https://doi.org/10.3390/life15121809 - 25 Nov 2025
Viewed by 435
Abstract
This study addresses key challenges in intensive aquaculture, such as passive environmental control, high energy consumption, and neglected fish stress, through the development of a multi-objective environmental regulation system for crucian carp utilizing behavioral stress feedback. It combines YOLOv8s-FasterNet for behavior recognition, a [...] Read more.
This study addresses key challenges in intensive aquaculture, such as passive environmental control, high energy consumption, and neglected fish stress, through the development of a multi-objective environmental regulation system for crucian carp utilizing behavioral stress feedback. It combines YOLOv8s-FasterNet for behavior recognition, a specific growth rate model and an energy cost model to form an intelligent decision-making mechanism that maximizes the output–input ratio. In a 25-day experiment, the system showed strong performance. Final body weight and specific growth rate were comparable to the control group. Economically, the system achieved periodic profits that were 8.93, 1.43, and 1.03 times greater than those of traditional threshold control at external temperatures of 2 °C, 8 °C, and 14 °C, respectively, demonstrating significant energy savings. In terms of animal welfare, principal component analysis confirmed significantly lower stress-induced damage in the experimental group, with a comprehensive score (−0.036) closer to the initial healthy group (0.223) versus the control group (−0.348). These results indicate that the system successfully optimized both economic efficiency and fish health, providing a viable solution for intelligent aquaculture management. Full article
(This article belongs to the Special Issue The 15th Anniversary of Life—New Trends in Animal Health Science)
Show Figures

Figure 1

11 pages, 3270 KB  
Communication
The Inhibitory Effect of Hafnium Oxide on Grain Growth in Yttrium Aluminum Garnet Composite Fiber
by Ke Gai, Qian Wang, Ketian Guan, Xiaohu Li, Weisen Liu, Yuan Li, Hongwei Zhao and Tong Zhao
Materials 2025, 18(23), 5272; https://doi.org/10.3390/ma18235272 - 21 Nov 2025
Viewed by 444
Abstract
Yttrium aluminum garnet (YAG, Y3Al5O12) fibers are promising materials for high-power lasers and high-temperature structural materials, and it is anticipated that the improvement in the stability of grain size would extend their service life at high temperatures. [...] Read more.
Yttrium aluminum garnet (YAG, Y3Al5O12) fibers are promising materials for high-power lasers and high-temperature structural materials, and it is anticipated that the improvement in the stability of grain size would extend their service life at high temperatures. In this work, YAG-HfO2 composite ceramic fibers were obtained by the solution blow spinning of YAG-HfO2 composite precursor and sintering in steam. The effect of HfO2 on the crystal phase transition and grain growth of YAG-HfO2 fibers was further studied by in situ X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Transmission Electron Microscope (TEM). The results show that the HfO2 addition increased the crystallization temperature of the YAG phase from 900 °C to 950 °C and reduced the crystal size at 1400 °C from 41.9 nm to 31.8 nm. The HfO2 grains were distributed at the boundary of YAG grains, which enabled the fiber to maintain its dense structure and uniform grain size even at 1500 °C, exhibiting excellent high-temperature grain size stability of composite fibers. Full article
(This article belongs to the Special Issue Advances in High-Temperature Ceramics and Refractory Materials)
Show Figures

Figure 1

17 pages, 4414 KB  
Article
Coupling Photothermal Effect in N-Doped Hollow Carbon Spheres with ZnIn2S4 Boosts Solar Hydrogen Evolution
by Shanhao He, Li Liu, Min Liu, Jinjun Tian, Yan Xue and Keliang Wu
Molecules 2025, 30(22), 4368; https://doi.org/10.3390/molecules30224368 - 12 Nov 2025
Viewed by 399
Abstract
To address the challenges of low solar energy utilization efficiency and rapid recombination of photogenerated charge carriers in photocatalytic hydrogen evolution, this study successfully constructed a composite photocatalyst of ZnIn2S4 (ZIS) supported on N-doped hollow carbon spheres (N-HCS), denoted as [...] Read more.
To address the challenges of low solar energy utilization efficiency and rapid recombination of photogenerated charge carriers in photocatalytic hydrogen evolution, this study successfully constructed a composite photocatalyst of ZnIn2S4 (ZIS) supported on N-doped hollow carbon spheres (N-HCS), denoted as ZIS/N-HCS, via a combination of template etching and in situ growth strategies. Characterization results demonstrate that this hollow structure possesses a high specific surface area (48.41 m2/g) and a narrowed bandgap (2.41 eV), achieve broad-spectrum light absorption, thereby enabling the catalyst to generate a local hot spot temperature of 136 °C under AM1.5G conditions. The optimized ZIS/N-HCS-0.30 sample exhibited a significantly enhanced photocurrent response (8.26 μA cm−2) and improved charge separation efficiency. When evaluated at a set solution temperature of 20 °C, the material exhibited a photocatalytic hydrogen evolution rate of 17.03 mmol g−1·h−1, which is 7.06 times higher than that of pure ZIS. Furthermore, it demonstrated excellent cycling stability. This work elucidates the synergistic role of the hollow photothermal structure in enhancing solar energy utilization and catalytic reaction kinetics, providing a new strategy for designing efficient solar-driven hydrogen production systems. Full article
Show Figures

Graphical abstract

Back to TopTop