Scalable Synthesis of Aragonite Whiskers Under Higher Initial Ca2+ Concentrations
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of CaCO3 Whiskers
2.3. Characterization
3. Results and Discussion
3.1. Screening of Control Agents
3.2. Effect of Carbonization Temperature and Ethanol Addition on the Crystal Phase of CaCO3
3.3. Effects of Operation Conditions on the Morphology of CaCO3
3.3.1. Ca2+ Solution Feeding Rate
3.3.2. Carbonation Temperature
3.3.3. Ethanol Addition
3.3.4. CO2 Flow Rate
3.3.5. Stirring Speed (MAGNETIC Stirring)
4. Formation Mechanism of Aragonite Whiskers
4.1. Formation of Aragonite
4.2. Formation of CaCO3 Whiskers
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gong, X.; Zhang, T.; Zhang, J.; Wang, Z.; Liu, J.; Cao, J.; Wang, C. Recycling and utilization of calcium carbide slag—Current status and new opportunities. Renew. Sustain. Energy Rev. 2022, 159, 112133. [Google Scholar] [CrossRef]
- Kadota, K.; Furukawa, R.; Shirakawa, Y.; Shimosaka, A.; Hidaka, J. Effect of surface properties of calcium carbonate on aggregation process investigated by molecular dynamics simulation. J. Mater. Sci. 2014, 49, 1724–1733. [Google Scholar] [CrossRef]
- Simkiss, K. Variations in the Crystalline Form of Calcium Carbonate precipitated from Artificial Sea Water. Nature 1964, 201, 492–493. [Google Scholar] [CrossRef]
- Diaz-Pulido, G.; Nash, M.C.; Anthony, K.R.N.; Bender, D.; Opdyke, B.N.; Reyes-Nivia, C.; Troitzsch, U. Greenhouse conditions induce mineralogical changes and dolomite accumulation in coralline algae on tropical reefs. Nat. Commun. 2014, 5, 3310. [Google Scholar] [CrossRef] [PubMed]
- Gong, P.; Zhang, C.; Wu, Z.; Zhang, G.; Mei, K.; Gao, Q.; Cheng, X. Study on the effect of CaCO3 whiskers on carbonized self-healing cracks of cement paste: Application in CCUS cementing. Constr. Build. Mater. 2022, 321, 126368. [Google Scholar] [CrossRef]
- Liendo, F.; Arduino, M.; Deorsola, F.A.; Bensaid, S. Factors controlling and influencing polymorphism, morphology and size of calcium carbonate synthesized through the carbonation route: A review. Powder Technol. 2022, 398, 117050. [Google Scholar] [CrossRef]
- Ren, M.; Dong, C.; An, C. Large-Scale Growth of Tubular Aragonite Whiskers through a MgCl2-Assisted Hydrothermal Process. Materials 2011, 4, 1375–1383. [Google Scholar] [CrossRef]
- Ramakrishna, C.; Thenepalli, T.; Huh, J.-H.; Ahn, J.W. Precipitated Calcium Carbonate Synthesis by Simultaneous Injection to Produce Nano Whisker Aragonite. J. Korean Ceram. Soc. 2016, 53, 222–226. [Google Scholar] [CrossRef]
- Pan, Y.; Zhao, X.; Sheng, Y.; Wang, C.; Deng, Y.; Ma, X.; Liu, Y.; Wang, Z. Biomimetic synthesis of dendrite-shaped aragonite particles with single-crystal feature by polyacrylic acid. Colloids Surf. A 2007, 297, 198–202. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, B.; Tang, H.; Chen, X.; Wang, B. High-yield synthesis of vaterite CaCO3 microspheres in ethanol/water: Structural characterization and formation mechanisms. J. Mater. Sci. 2015, 50, 5540–5548. [Google Scholar] [CrossRef]
- Du, L.; Wang, Y.; Wang, K.; Luo, G. Growth of Aragonite CaCO3 Whiskers in a Microreactor with Calcium Dodecyl Benzenesulfonate as a Control Agent. Ind. Eng. Chem. Res. 2015, 54, 7131–7140. [Google Scholar] [CrossRef]
- Hua, S.-Y.; Zheng, Q.; Yu, F.; Qi, T.-Y.; Ma, Y.-L.; Jia, S.-Y.; Fan, T.-B.; Li, X. Preparation and Mechanism of Calcium Carbonate Whiskers from DoLOMITE Refined Solution. Cryst. Res. Technol. 2024, 59, 2300305. [Google Scholar] [CrossRef]
- Meng, G.; Xu, J.; Cheng, R.; Zhang, X.; Huang, Q.; Liu, Y.; Chen, P.; Zhang, L. Controllable synthesis and characterization of high purity calcium carbonate whisker-like fibers by electrochemical cathodic reduction method. J. Clean. Prod. 2022, 342, 130923. [Google Scholar] [CrossRef]
- Chen, Q.; Ding, W.; Peng, T.; Sun, H. Synthesis and characterization of calcium carbonate whisker from yellow phosphorus slag. Open Chem. 2020, 18, 347–356. [Google Scholar] [CrossRef]
- Hu, Z.; Shao, M.; Cai, Q.; Ding, S.; Zhong, C.; Wei, X.; Deng, Y. Synthesis of needle-like aragonite from limestone in the presence of magnesium chloride. J. Mater. Process. Technol. 2009, 209, 1607–1611. [Google Scholar] [CrossRef]
- Shen, P.; Jiang, Y.; Zhang, Y.; Liu, S.; Xuan, D.; Lu, J.; Zhang, S.; Poon, C.S. Production of aragonite whiskers by carbonation of fine recycled concrete wastes: An alternative pathway for efficient CO2 sequestration. Renew. Sustain. Energy Rev. 2023, 173, 113079. [Google Scholar] [CrossRef]
- Konno, H.; Nanri, Y.; Kitamura, M. Effect of NaOH on aragonite precipitation in batch and continuous crystallization in causticizing reaction. Powder Technol. 2003, 129, 15–21. [Google Scholar] [CrossRef]
- Kogo, M.; Suzuki, K.; Umegaki, T.; Kojima, Y. Control of aragonite formation and its crystal shape in CaCl2-Na2CO3-H2O reaction system. J. Cryst. Growth 2021, 559, 125964. [Google Scholar] [CrossRef]
- Wang, M.; Zou, H.K.; Shao, L.; Chen, J.F. Controlling factors and mechanism of preparing needlelike CaCO3 under high-gravity environment. Powder Technol. 2004, 142, 166–174. [Google Scholar] [CrossRef]
- Hu, Z.; Deng, Y. Supersaturation control in aragonite synthesis using sparingly soluble calcium sulfate as reactants. J. Colloid Interface Sci. 2003, 266, 359–365. [Google Scholar] [CrossRef]
- Chen, J.; Xiang, L. Controllable synthesis of calcium carbonate polymorphs at different temperatures. Powder Technol. 2009, 189, 64–69. [Google Scholar] [CrossRef]
- Minakshi, M.; Mujeeb, A.; Whale, J.; Evans, R.; Aughterson, R.; Shinde, P.A.; Ariga, K.; Shrestha, L.K. Synthesis of Porous Carbon Honeycomb Structures Derived from Hemp for Hybrid Supercapacitors with Improved Electrochemistry. ChemPlusChem 2024, 89, e202400408. [Google Scholar] [CrossRef] [PubMed]
- Minakshi, M.; Samayamanthry, A.; Whale, J.; Aughterson, R.; Shinde, P.A.; Ariga, K.; Kumar Shrestha, L. Phosphorous—Containing Activated Carbon Derived From Natural Honeydew Peel Powers Aqueous Supercapacitors. Chem.—Asian J. 2024, 19, e202400622. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Agudo, C.; Cölfen, H. Exploring the Potential of Nonclassical Crystallization Pathways to Advance Cementitious Materials. Chem. Rev. 2024, 124, 7538–7618. [Google Scholar] [CrossRef] [PubMed]
- Biasin, A.; Segre, C.U.; Strumendo, M. CaCO3 Crystallite Evolution during CaO Carbonation: Critical Crystallite Size and Rate Constant Measurement by In-Situ Synchrotron Radiation X-ray Powder Diffraction. Cryst. Growth Des. 2015, 15, 5188–5201. [Google Scholar] [CrossRef]
- Szterner, P.; Biernat, M. Effect of reaction time, heating and stirring rate on the morphology of HAp obtained by hydrothermal synthesis. J. Therm. Anal. Calorim. 2022, 147, 13059–13071. [Google Scholar] [CrossRef]
- Roeder, R.K.; Converse, G.L.; Leng, H.; Yue, W. Kinetic Effects on Hydroxyapatite Whiskers Synthesized by the Chelate Decomposition Method. J. Am. Ceram. Soc. 2006, 89, 2096–2104. [Google Scholar] [CrossRef]
- Vekilov, P.G. The two-step mechanism of nucleation of crystals in solution. Nanoscale 2010, 2, 2346–2357. [Google Scholar] [CrossRef]
- Karthika, S.; Radhakrishnan, T.K.; Kalaichelvi, P. A Review of Classical and Nonclassical Nucleation Theories. Cryst. Growth Des. 2016, 16, 6663–6681. [Google Scholar] [CrossRef]
- Li, Q.; Dai, Z.; Shang, D.; Yin, C.; Du, P.; Wang, Z.; Zhou, C.; Yin, C. Ultrahigh purity CaCO3 whiskers derived from the enhanced diffusion of carbonate ions from a larger liquid–gas interface through porous quartz stones. CrystEngComm 2020, 22, 6407–6414. [Google Scholar] [CrossRef]
- Bovet, N.; Yang, M.; Javadi, M.S.; Stipp, S.L. Interaction of alcohols with the calcite surface. Phys. Chem. Chem. Phys. 2015, 17, 3490–3496. [Google Scholar] [CrossRef]
- Sand, K.K.; Yang, M.; Makovicky, E.; Cooke, D.J.; Hassenkam, T.; Bechgaard, K.; Stipp, S.L.S. Binding of Ethanol on Calcite: The Role of the OH Bond and Its Relevance to Biomineralization. Langmuir 2010, 26, 15239–15247. [Google Scholar] [CrossRef]
- Cooke, D.J.; Gray, R.J.; Sand, K.K.; Stipp, S.L.S.; Elliott, J.A. Interaction of Ethanol and Water with the {} Surface of Calcite. Langmuir 2010, 26, 14520–14529. [Google Scholar] [CrossRef]
- Liz-Marzán, L.M.; Grzelczak, M. Growing anisotropic crystals at the nanoscale. Science 2017, 356, 1120–1121. [Google Scholar] [CrossRef]















| Composition | CaO | SiO2 | Al2O3 | Na2O | MgO | Fe2O3 | Others |
|---|---|---|---|---|---|---|---|
| Content (wt.%) | 70.05 | 3.85 | 3.64 | 2.73 | 1.84 | 0.96 | 16.93 |
| No. | Control Agents | Morphology of CaCO3 | Aspect Ratio |
|---|---|---|---|
| 1 | Blank | Irregular short rod-like | 8.4 |
| 2 | Ammonium hydrogen carbonate | Stacked flakes | — |
| 3 | Sodium hexametaphosphate | Blocky and small granules | — |
| 4 | Sodium dihydrogen phosphate | Elliptical | — |
| 5 | PEG | Irregular blocky, rod-like, and a Small amount of needle-like | — |
| 6 | D-(+)-Glucose | Block-shaped and spherical | — |
| 7 | Tributyl phosphate | Aggregated rods | 6.4 |
| 8 | Ethanol | Rod and whisker | 13.5 |
| 9 | SDS | Irregularly shaped sphere | — |
| 10 | AlCl3 | Rod-like and needle-like | 8.5 |
| 11 | MgCl2 | Rod-like and needle-like | 8.6 |
| 12 | MgSO4 | Flaky and granular | — |
| 13 | Ammonium acetate | Rod-like and small amounts of whiskers | 8.7 |
| 14 | Triammonium phosphate trihydrate | Irregular block-like | — |
| 15 | Triethanolamine | Rod and whisker | 10.2 |
| 16 | ZnCl2 | Particles and short rods | 4.0 |
| 17 | Pentaerythritol | Short rod-like | 7.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Xu, Z.; Yang, B.; Wang, B. Scalable Synthesis of Aragonite Whiskers Under Higher Initial Ca2+ Concentrations. Nanomaterials 2025, 15, 1894. https://doi.org/10.3390/nano15241894
Wang R, Xu Z, Yang B, Wang B. Scalable Synthesis of Aragonite Whiskers Under Higher Initial Ca2+ Concentrations. Nanomaterials. 2025; 15(24):1894. https://doi.org/10.3390/nano15241894
Chicago/Turabian StyleWang, Ruixue, Zihao Xu, Baojun Yang, and Bainian Wang. 2025. "Scalable Synthesis of Aragonite Whiskers Under Higher Initial Ca2+ Concentrations" Nanomaterials 15, no. 24: 1894. https://doi.org/10.3390/nano15241894
APA StyleWang, R., Xu, Z., Yang, B., & Wang, B. (2025). Scalable Synthesis of Aragonite Whiskers Under Higher Initial Ca2+ Concentrations. Nanomaterials, 15(24), 1894. https://doi.org/10.3390/nano15241894

