Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (249)

Search Parameters:
Keywords = groundwater seepage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1085 KiB  
Article
Safety Analysis of Subway Station Under Seepage Force Using a Continuous Velocity Field
by Zhufeng Cheng, De Zhou, Qiang Chen and Shuaifu Gu
Mathematics 2025, 13(15), 2541; https://doi.org/10.3390/math13152541 (registering DOI) - 7 Aug 2025
Abstract
Groundwater is an important factor for the stability of the subway station pit constructed in the offshore area. To reflect the effects of groundwater drawdown on the stability of the station pit, this work uses a surface settlement formula based on Rayleigh distribution [...] Read more.
Groundwater is an important factor for the stability of the subway station pit constructed in the offshore area. To reflect the effects of groundwater drawdown on the stability of the station pit, this work uses a surface settlement formula based on Rayleigh distribution to construct a continuous deformation velocity field based on Terzaghi's mechanism, so as to derive a theoretical calculation method for the safety factor of the deep station pit anti-uplift considering the effect of seepage force. Taking the seepage force as an external load acting on the soil skeleton, a simplified calculation method is proposed to describe the variation in shear strength with depth. Substituting the external work rate induced by self-weight, surface surcharge, seepage force, and plastic shear energy into the energy equilibrium equation, an explicit expression of the safety factor of the station pit is obtained. According to the parameter study and engineering application analysis, the validity and applicability of the proposed procedure are discussed. The parameter study indicated that deep excavation pits are significantly affected by construction drawdown and seepage force; the presence of seepage, to some extent, reduces the anti-uplift stability of the station pit. The calculation method in this work helps to compensate for the shortcomings of existing methods and has a higher accuracy in predicting the safety and stability of station pits under seepage situations. Full article
16 pages, 19063 KiB  
Article
Numerical Analysis of Diaphragm Wall Deformation and Surface Settlement Caused by Dewatering and Excavation at Center and End Positions in a Subway Foundation Pit
by Kaifang Yang, Mingdong Jiang, Minliang Chi and Guohui Feng
Buildings 2025, 15(15), 2796; https://doi.org/10.3390/buildings15152796 - 7 Aug 2025
Abstract
Metro foundation pits are important components of urban infrastructure projects. Dewatering and excavation are essential stages in foundation pit construction; however, this process can significantly induce groundwater drawdown, as well as diaphragm wall deformation and surface settlement. Based on a subway station foundation [...] Read more.
Metro foundation pits are important components of urban infrastructure projects. Dewatering and excavation are essential stages in foundation pit construction; however, this process can significantly induce groundwater drawdown, as well as diaphragm wall deformation and surface settlement. Based on a subway station foundation pit project, in this study, we employ three-dimensional numerical software to simulate the process of dewatering and excavation. A refined model is used to investigate groundwater seepage, the deformation of the retaining structure, and surface settlement under spatial effects. The finite element model accounts for stratified excavation and applied prestress conditions for the support system within the foundation pit. Its accuracy is validated through a comparison and analysis with measured data from the actual foundation pit. The results indicate that foundation pit excavation leads to significant groundwater drawdown around the pit and the formation of a characteristic “funnel-shaped” drawdown curve. Moreover, extending the diaphragm wall length contributes to maintaining a higher external groundwater level surrounding the foundation pit. The horizontal displacement of the diaphragm wall increases progressively during dewatering and excavation, and the bending moment of the diaphragm wall exhibits a trend consistent with its horizontal displacement. Surface settlement decreases as the length of the diaphragm wall increases. Full article
Show Figures

Figure 1

20 pages, 3033 KiB  
Review
Recharge Sources and Flow Pathways of Karst Groundwater in the Yuquan Mountain Spring Catchment Area, Beijing: A Synthesis Based on Isotope, Tracers, and Geophysical Evidence
by Yuejia Sun, Liheng Wang, Qian Zhang and Yanhui Dong
Water 2025, 17(15), 2292; https://doi.org/10.3390/w17152292 - 1 Aug 2025
Viewed by 240
Abstract
Karst groundwater systems are critical to water supply and ecological sustainability in northern China, yet their heterogeneity poses challenges for flow characterization. The Yuquan Mountain (YM) Spring, historically a major karst spring in western Beijing, has experienced persistent drying, raising concerns about its [...] Read more.
Karst groundwater systems are critical to water supply and ecological sustainability in northern China, yet their heterogeneity poses challenges for flow characterization. The Yuquan Mountain (YM) Spring, historically a major karst spring in western Beijing, has experienced persistent drying, raising concerns about its recharge and flow mechanisms. This study integrates published isotope data, spatial distributions of Na+ and Cl as hydrochemical tracers, groundwater age estimates, and geophysical survey results to assess the recharge sources and flow pathways within the YM Spring catchment area. The analysis identifies two major recharge zones: the Tanzhesi area, primarily recharged by direct infiltration of precipitation through exposed carbonate rocks, and the Junzhuang area, which receives mixed recharge from rainfall and Yongding River seepage. Three potential flow pathways are proposed, including shallow flow along faults and strata, and a deeper, speculative route through the Jiulongshan-Xiangyu syncline. The synthesis of multiple lines of evidence leads to a refined conceptual model that illustrates how geological structures govern recharge, flow, and discharge processes in this karst system. These findings not only enhance the understanding of subsurface hydrodynamics in complex geological settings but also provide a scientific basis for future spring restoration planning and groundwater management strategies in the regions. Full article
Show Figures

Figure 1

19 pages, 4896 KiB  
Article
Calculation of Connectivity Between Surface and Underground Three-Dimensional Water Systems in the Luan River Basin
by Jingyao Wang, Zhixiong Tang, Belay Z. Abate, Zhuoxun Wu and Li He
Sustainability 2025, 17(15), 6913; https://doi.org/10.3390/su17156913 - 30 Jul 2025
Viewed by 240
Abstract
While water conservancy projects continuously enhance flood control and resource allocation capabilities, the adverse impacts on basin systems, particularly the structural disruption of surface water–groundwater continuity, have become increasingly pronounced. Therefore, establishing quantitative assessment of water system connectivity as a critical foundation for [...] Read more.
While water conservancy projects continuously enhance flood control and resource allocation capabilities, the adverse impacts on basin systems, particularly the structural disruption of surface water–groundwater continuity, have become increasingly pronounced. Therefore, establishing quantitative assessment of water system connectivity as a critical foundation for optimizing spatial water distribution, maintaining ecohydrological equilibrium, and enhancing flood–drought regulation efficacy is important. Focusing on the regulated reaches of the Panjiakou, Daheiting, and Taolinkou reservoirs in the Luan River Basin, this study established and integrated a three-dimensional assessment framework that synthesizes hydrological processes, hydraulic structural effects, and human activities as three fundamental drivers, and employed the Analytic Hierarchy Process (AHP) to develop a quantitative connectivity evaluation system. Results indicate that water conservancy projects significantly altered basin connectivity: surface water connectivity decreased by 0.40, while groundwater connectivity experienced a minor reduction (0.25) primarily through reservoir seepage. Consequently, the integrated surface–groundwater system declined by 0.39. Critically, project scale governs surface connectivity attenuation intensity, which substantially exceeds impacts on groundwater systems. The comprehensive assessment system developed in this study provides theoretical and methodological support for diagnosing river connectivity, formulating ecological restoration strategies, and protecting basin ecosystems. Full article
Show Figures

Figure 1

13 pages, 5349 KiB  
Article
Effects of Weak Structural Planes on Roadway Deformation Failure in Coastal Mines
by Jie Guo, Guang Li and Fengshan Ma
Water 2025, 17(15), 2257; https://doi.org/10.3390/w17152257 - 29 Jul 2025
Viewed by 215
Abstract
Roadway deformation failure is often related to the presence of weak structural planes (WSPs) in the surrounding rock mass. Especially in coastal mining environments, WSP-induced deformation can create pathways that connect faults with seawater, accelerating groundwater seepage and inrush hazards. This study employs [...] Read more.
Roadway deformation failure is often related to the presence of weak structural planes (WSPs) in the surrounding rock mass. Especially in coastal mining environments, WSP-induced deformation can create pathways that connect faults with seawater, accelerating groundwater seepage and inrush hazards. This study employs an optimized Finite–Discrete Element Method (Y-Mat) to simulate WSP-driven fracture evolution, introducing an elastoplastic failure criterion and enhanced contact force calculations. The results show that the farther the WSP is from the roadway, the lower its influence; its existence alters the shape of the plastic zone by lengthening the failure zone along the fault direction, while its angle changes the shape and location of the failure zone and deflects fracture directions, with the surrounding rock between the roadway and WSP suffering the most severe failure. The deformation failure of roadway surrounding rock is influenced by WSPs. Excavation unloading reduces the normal stress and shear strength in the weak structural plane of surrounding rock, resulting in slip and deformation. Additionally, WSP-induced fractures act as groundwater influx conduits, especially in fault-proximal roadways or where crack angles align with hydraulic gradients, so mitigation in water-rich mining environments should prioritize sealing these pathways. The results provide a theoretical basis for roadway excavation and support engineering under the influence of WSPs. Full article
Show Figures

Figure 1

21 pages, 2519 KiB  
Review
Distribution and Ecological Risk Assessment of Perfluoroalkyl and Polyfluoroalkyl Substances in Chinese Soils: A Review
by Junyi Wang, Otgontuya Tsogbadrakh, Jichen Tian, Faisal Hai, Chenpeng Lyu, Guangming Jiang and Guoyu Zhu
Water 2025, 17(15), 2246; https://doi.org/10.3390/w17152246 - 28 Jul 2025
Viewed by 426
Abstract
Per- and polyfluoroalkyl substances (PFASs) are emerging pollutants of global concern due to their high environmental persistence and bioaccumulative characteristics. This study investigates PFAS concentrations in soils from China through an extensive literature review, covering soil samples from seventeen provinces and the years [...] Read more.
Per- and polyfluoroalkyl substances (PFASs) are emerging pollutants of global concern due to their high environmental persistence and bioaccumulative characteristics. This study investigates PFAS concentrations in soils from China through an extensive literature review, covering soil samples from seventeen provinces and the years from 2009 to 2024. It was found that the total concentration of PFAS in soil ranged from 0.25 to 6240 ng/g, with the highest contamination levels observed in coastal provinces, particularly Fujian (620 ng/g) and Guangdong (1090 ng/g). Moreover, Fujian Province ranked the highest among multiple regions with a median PFAS concentration of 15.7 ng/g for individual compounds. Ecological risk assessment, focusing on areas where perfluorooctanoic acid (PFOA) or perfluorooctane sulfonate (PFOS) were identified as the primary soil PFAS compounds, showed moderate ecological risk from PFOA in Shanghai (0.24), while PFOS posed a high ecological risk in Fujian and Guangdong, with risk values of 43.3 and 1.4, respectively. Source analysis revealed that anthropogenic activities, including PFAS production, firefighting foam usage, and landfills, were the primary contributors to soil contamination. Moreover, soil PFASs tend to migrate into groundwater via adsorption and seepage, ultimately entering the human body through bioaccumulation or drinking water, posing health risks. These findings enhance our understanding of PFAS distribution and associated risks in Chinese soils, providing crucial insights for pollution management, source identification, and regulation strategies in diverse areas. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

16 pages, 2671 KiB  
Article
Experimental Study on Cavity Formation and Ground Subsidence Behavior Based on Ground Conditions
by Sungyeol Lee, Jaemo Kang, Jinyoung Kim, Myeongsik Kong and Wonjin Baek
Appl. Sci. 2025, 15(14), 7744; https://doi.org/10.3390/app15147744 - 10 Jul 2025
Viewed by 226
Abstract
Ground subsidence is a significant geotechnical hazard in urban areas, leading to property damage, casualties, and broader societal issues. This study investigates the mechanisms of cavity formation and ground subsidence through laboratory model tests using Korean standard sand and marine clay under controlled [...] Read more.
Ground subsidence is a significant geotechnical hazard in urban areas, leading to property damage, casualties, and broader societal issues. This study investigates the mechanisms of cavity formation and ground subsidence through laboratory model tests using Korean standard sand and marine clay under controlled conditions. A transparent soil box apparatus was fabricated to simulate sewer pipe damage, with model grounds prepared at various relative densities, groundwater levels, and fines contents. The progression of cavity formation and surface collapse was observed and quantitatively analyzed by measuring the time to cavity formation and ground subsidence, as well as the mass of discharged soil. Results indicate that lower relative density accelerates ground subsidence, whereas higher density increases cavity volume due to greater frictional resistance. Notably, as the fines content increased, a tendency was observed for ground subsidence to be increasingly suppressed, suggesting that cohesive clay particles can limit soil loss under seepage conditions. These findings provide valuable insights for selecting backfill materials and managing subsurface conditions to mitigate ground subsidence risks in urban infrastructure. Full article
Show Figures

Figure 1

18 pages, 6753 KiB  
Article
Deformation Analysis of 50 m-Deep Cylindrical Retaining Shaft in Composite Strata
by Peng Tang, Xiaofeng Fan, Wenyong Chai, Yu Liang and Xiaoming Yan
Sustainability 2025, 17(13), 6223; https://doi.org/10.3390/su17136223 - 7 Jul 2025
Viewed by 415
Abstract
Cylindrical retaining structures are widely adopted in intercity railway tunnel engineering due to their exceptional load-bearing performance, no need for internal support, and efficient utilization of concrete compressive strength. Measured deformation data not only comprehensively reflect the influence of construction and hydrogeological conditions [...] Read more.
Cylindrical retaining structures are widely adopted in intercity railway tunnel engineering due to their exceptional load-bearing performance, no need for internal support, and efficient utilization of concrete compressive strength. Measured deformation data not only comprehensively reflect the influence of construction and hydrogeological conditions but also directly and clearly indicate the safety and stability status of structure. Therefore, based on two geometrically similar cylindrical shield tunnel shafts in Shenzhen, the surface deformation, structure deformation, and changes in groundwater outside the shafts during excavation were analyzed, and the deformation characteristics under the soil–rock composite stratum were summarized. Results indicate that the uneven distribution of surface surcharge and groundwater level are key factors causing differential deformations. The maximum horizontal deformation of the shafts wall is less than 0.05% of the current excavation depth (H), occurring primarily in two zones: from H − 20 m to H + 20 m and in the shallow 0–10 m range. Vertical deformations at the wall top are mostly within ±0.2% H. Localized groundwater leakage in joints may lead to groundwater redistribution and seepage-induced fine particle migration, exacerbating uneven deformations. Timely grouting when leakage occurs and selecting joints with superior waterproof sealing performance are essential measures to ensure effective sealing. Compared with general polygonal foundation pits, cylindrical retaining structures can achieve low environmental disturbances while possessing high structural stability. Full article
(This article belongs to the Special Issue Sustainable Development and Analysis of Tunnels and Underground Works)
Show Figures

Figure 1

20 pages, 4438 KiB  
Article
Impacts of Urbanization and Climate Variability on Groundwater Environment in a Basin Scale
by Olawale Joshua Abidakun, Mitsuyo Saito, Shin-ichi Onodera and Kunyang Wang
Hydrology 2025, 12(7), 173; https://doi.org/10.3390/hydrology12070173 - 30 Jun 2025
Viewed by 585
Abstract
Globally, groundwater resources are experiencing a decline in hydraulic heads resulting from the dual effects of urbanization and climate change, highlighting the need for integrated and sustainable water resources management. Urban development in the cities of Kansai region, western Japan, presents a significant [...] Read more.
Globally, groundwater resources are experiencing a decline in hydraulic heads resulting from the dual effects of urbanization and climate change, highlighting the need for integrated and sustainable water resources management. Urban development in the cities of Kansai region, western Japan, presents a significant challenge to the sustainability of groundwater resources. This study aims to assess the combined influence of urbanization and climate change on the groundwater resources of the Nara Basin using MODFLOW 6 for two distinct periods: The Pre-Urbanization Period (PreUP: 1980–1988), and the Post-Urbanization Period (PostUP, 2000–2008) with an emphasis on spatiotemporal distribution of recharge in a multi-layer aquifer system. Simulated hydraulic heads were evaluated under three different recharge scenarios: uniformly, spatiotemporally and spatially distributed. The uniform recharge scenario both overestimates and underestimates hydraulic heads, while the spatially distributed scenario produced a simulated heads distribution similar to the spatiotemporally distributed recharge scenario, underscoring the importance of incorporating spatiotemporal variability in recharge input for accurate groundwater flow simulation. Moreover, our results highlight the relevance of spatial distribution of recharge input than temporal distribution. Our findings indicate a significant decrease in hydraulic heads of approximately 5 m from the PreUP to PostUP in the unconfined aquifer, primarily driven by changes in land use and climate. In contrast, the average head decline in deep confined aquifers is about 4 m and is mainly influenced by long-term climatic variations. The impervious land use types experienced more decline in hydraulic heads than the permeable areas under changing climate because of the impedance to infiltration and percolation exacerbating the climate variability effect. These changes in hydraulic heads were particularly evident in the interactions between surface and groundwater. The cumulative volume of groundwater discharge to the river decreased by 27%, while the river seepage into the aquifer increased by 16%. Sustainable groundwater resources management under conditions of urbanization and climate change necessitates a holistic and integrated approach. Full article
(This article belongs to the Section Hydrological and Hydrodynamic Processes and Modelling)
Show Figures

Figure 1

31 pages, 2947 KiB  
Review
Assessing the Interaction Between Geologically Sourced Hydrocarbons and Thermal–Mineral Groundwater: An Overview of Methodologies
by Vasiliki Stavropoulou, Eleni Zagana, Christos Pouliaris and Nerantzis Kazakis
Water 2025, 17(13), 1940; https://doi.org/10.3390/w17131940 - 28 Jun 2025
Viewed by 598
Abstract
Groundwater sustains ecosystems, agriculture, and human consumption; therefore, its interaction with hydrocarbons is an important area of research under the umbrella of environmental science and resource exploration. Naturally occurring or anthropogenically introduced hydrocarbons can significantly impact groundwater through complex geochemical processes such as [...] Read more.
Groundwater sustains ecosystems, agriculture, and human consumption; therefore, its interaction with hydrocarbons is an important area of research under the umbrella of environmental science and resource exploration. Naturally occurring or anthropogenically introduced hydrocarbons can significantly impact groundwater through complex geochemical processes such as dissolution, adsorption, biodegradation, and redox reactions and can also affect groundwater chemistry in terms of pH, redox potential, dissolved organic carbon, and trace element concentrations. Accurate determination and identification of hydrocarbon contaminants requires advanced analytical methods like gas chromatography, GC–MS, and fluorescence spectroscopy, complemented with isotopic analysis and microbial tracers, which provide insights into sources of contamination and biodegradation pathways. The presence of hydrocarbons in groundwater is a matter of environmental concern but can also valuable data for petroleum exploration, tracing subsurface reservoirs and seepage pathways. This paper refers to the basic need for geochemical investigations combined with advanced detection techniques for successful regulation of thermal–mineral groundwater quality. This contributes towards successful sustainable hydrocarbon resource exploration and water resource conservation, with emphasis on the relationship between groundwater quality and hydrocarbon exploration. The study points out the significance of continuous observation of thermal mineral waters to identify their connection with the specific hydrocarbons of each study area. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

17 pages, 3605 KiB  
Article
Effects of Lithology Combination Compaction Seepage Characteristics on Groundwater Prevention and Control in Shallow Coal Seam Group Mining
by Kaijun Miao, Shihao Tu, Wenping Li, Jinghua Li, Jinhu Tian, Hongbin Zhao and Jieyang Ma
Appl. Sci. 2025, 15(12), 6942; https://doi.org/10.3390/app15126942 - 19 Jun 2025
Viewed by 298
Abstract
The mining of shallow coal seam groups triggers mine water inrush and ecological environment destruction. Effective groundwater prevention and control requires controlling the compaction and seepage characteristics (CSCs) of broken rock in goaf. In this study, the CSCs of roof lithology and goaf [...] Read more.
The mining of shallow coal seam groups triggers mine water inrush and ecological environment destruction. Effective groundwater prevention and control requires controlling the compaction and seepage characteristics (CSCs) of broken rock in goaf. In this study, the CSCs of roof lithology and goaf broken rock combinations are experimentally investigated. The results indicate that, for samples with identical gradation, the percentage of void (PV) is minimized in sandstone–mudstone combinations, while PV increases with higher coal content. Initial compaction of composite samples is primarily governed by soft rock re-crushing, whereas the stable compaction stage is determined by the initial PV. Under low axial stress, the CSCs of lithological combination samples exhibit instability, with the mudstone layer reducing flow velocity by approximately 36% under equivalent compaction and seepage conditions. Particle migration, leading to the blockage of the seepage section, is an important cause of the decrease in permeability. Based on experimental findings, a stress–void–seepage coupling model is established to describe the compaction–seepage behavior of lithologic combination broken rock in shallow goafs. Full article
(This article belongs to the Special Issue Novel Research on Rock Mechanics and Geotechnical Engineering)
Show Figures

Figure 1

14 pages, 6670 KiB  
Article
Numerical Simulation of Horizontal Barrier in Controlling Groundwater and Deformation During Foundation Pit Dewatering
by Ruonan Kuang, Changjie Xu, Chaofeng Zeng, Xiuli Xue, Youwu Zhao, Bin Li and Lijuan Yi
Water 2025, 17(12), 1763; https://doi.org/10.3390/w17121763 - 12 Jun 2025
Cited by 1 | Viewed by 410
Abstract
In water-rich strata, a traditional vertical barrier exhibits certain limitations when applied to deep foundation pit construction under complex geological conditions, such as it is difficult to completely cut off deep and thick aquifer, which may pose potential risks during pit dewatering. To [...] Read more.
In water-rich strata, a traditional vertical barrier exhibits certain limitations when applied to deep foundation pit construction under complex geological conditions, such as it is difficult to completely cut off deep and thick aquifer, which may pose potential risks during pit dewatering. To address the above challenge, this study introduced a mixed barrier system in which the horizontal barrier (HB) was set at the bottom of the foundation pit and was combined with the enclosure wall to collectively retard groundwater seepage into the pit. Based on an actual project in Tianjin, this study established HB models with varying numbers of its layers using ABAQUS 6.14 software. It systematically investigated the effect of HB on groundwater drawdown, ground surface settlement, and enclosure deflection during foundation pit dewatering. The research shows that HB can significantly reduce the magnitude of external water level drawdown by altering groundwater seepage paths while effectively controlling soil settlement. Furthermore, it exhibits favorable overall restraining effects on wall deformation. Varying the number of horizontal barrier layers (L) exhibits an insignificant effect on water-blocking and subsidence-control performance. However, the constraint effect on the enclosure shows a correlation with L. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

29 pages, 21376 KiB  
Article
Numerical Simulation of Fracture Failure Propagation in Water-Saturated Sandstone with Pore Defects Under Non-Uniform Loading Effects
by Gang Liu, Yonglong Zan, Dongwei Wang, Shengxuan Wang, Zhitao Yang, Yao Zeng, Guoqing Wei and Xiang Shi
Water 2025, 17(12), 1725; https://doi.org/10.3390/w17121725 - 7 Jun 2025
Cited by 1 | Viewed by 525
Abstract
The instability of mine roadways is significantly influenced by the coupled effects of groundwater seepage and non-uniform loading. These interactions often induce localized plastic deformation and progressive failure, particularly in the roof and sidewall regions. Seepage elevates pore water pressure and deteriorates the [...] Read more.
The instability of mine roadways is significantly influenced by the coupled effects of groundwater seepage and non-uniform loading. These interactions often induce localized plastic deformation and progressive failure, particularly in the roof and sidewall regions. Seepage elevates pore water pressure and deteriorates the mechanical properties of the rock mass, while non-uniform loading leads to stress concentration. The combined effect facilitates the propagation of microcracks and the formation of shear zones, ultimately resulting in localized instability. This initial damage disrupts the mechanical equilibrium and can evolve into severe geohazards, including roof collapse, water inrush, and rockburst. Therefore, understanding the damage and failure mechanisms of mine roadways at the mesoscale, under the combined influence of stress heterogeneity and hydraulic weakening, is of critical importance based on laboratory experiments and numerical simulations. However, the large scale of in situ roadway structures imposes significant constraints on full-scale physical modeling due to limitations in laboratory space and loading capacity. To address these challenges, a straight-wall circular arch roadway was adopted as the geometric prototype, with a total height of 4 m (2 m for the straight wall and 2 m for the arch), a base width of 4 m, and an arch radius of 2 m. Scaled physical models were fabricated based on geometric similarity principles, using defect-bearing sandstone specimens with dimensions of 100 mm × 30 mm × 100 mm (length × width × height) and pore-type defects measuring 40 mm × 20 mm × 20 mm (base × wall height × arch radius), to replicate the stress distribution and deformation behavior of the prototype. Uniaxial compression tests on water-saturated sandstone specimens were performed using a TAW-2000 electro-hydraulic servo testing system. The failure process was continuously monitored through acoustic emission (AE) techniques and static strain acquisition systems. Concurrently, FLAC3D 6.0 numerical simulations were employed to analyze the evolution of internal stress fields and the spatial distribution of plastic zones in saturated sandstone containing pore defects. Experimental results indicate that under non-uniform loading, the stress–strain curves of saturated sandstone with pore-type defects typically exhibit four distinct deformation stages. The extent of crack initiation, propagation, and coalescence is strongly correlated with the magnitude and heterogeneity of localized stress concentrations. AE parameters, including ringing counts and peak frequencies, reveal pronounced spatial partitioning. The internal stress field exhibits an overall banded pattern, with localized variations induced by stress anisotropy. Numerical simulation results further show that shear failure zones tend to cluster regionally, while tensile failure zones are more evenly distributed. Additionally, the stress field configuration at the specimen crown significantly influences the dispersion characteristics of the stress–strain response. These findings offer valuable theoretical insights and practical guidance for surrounding rock control, early warning systems, and reinforcement strategies in water-infiltrated mine roadways subjected to non-uniform loading conditions. Full article
Show Figures

Figure 1

22 pages, 5189 KiB  
Article
Inversion of Hydrogeological Parameters of Polluted Sites Based on Coupled Hydrothermal Salt-Tracer Tests
by Junwei Yang, Changsheng Chen, Guojiao Huang, Jintao Huang and Zhou Chen
Water 2025, 17(11), 1607; https://doi.org/10.3390/w17111607 - 26 May 2025
Viewed by 412
Abstract
To address the hydrogeological parameters of polluted sites at the site scale, a series of physical and numerical simulation experiments were conducted to investigate seepage and solute transport under the influence of various physical fields. These experiments utilized an experimental platform designed for [...] Read more.
To address the hydrogeological parameters of polluted sites at the site scale, a series of physical and numerical simulation experiments were conducted to investigate seepage and solute transport under the influence of various physical fields. These experiments utilized an experimental platform designed for the acquisition of pollutant transport and transformation data, which incorporated three-dimensional multifield coupling, alongside a numerical model that also accounted for multiphysical field interactions. The numerical simulations employed Darcy’s law, the heat conduction equation, and convective–dispersive equations to analyze the seepage field, heat transfer, and solute transport processes, respectively. The findings from both physical and numerical tests indicate that variations in groundwater temperature and solute concentration significantly influence solute transport dynamics. Specifically, an increase in groundwater temperature correlates with an accelerated migration rate of sodium chloride (NaCl) solute, resulting in a reduced time for the solute to achieve equivalent concentrations in observation wells. Conversely, when the concentration of NaCl in groundwater rises, the temperature of the groundwater also increases when the solute reaches the same concentration in the observation wells. This phenomenon can be attributed to the decrease in the specific heat capacity of groundwater with higher solute concentrations. Moreover, as the concentration of sodium chloride in groundwater increases, the rate of temperature elevation in the groundwater accelerates due to a decrease in specific heat capacity associated with higher solute concentrations, thereby requiring less thermal energy for the groundwater to attain the same temperature. The results further reveal that the hydraulic conductivity of the target aquifer, specifically the pulverized clay layer, ranges from 6.72 to 8.52 × 10−6 m/s, with an effective thermal conductivity of 2.2 W/(m·K), a longitudinal dispersion of 0.554 m, and a transverse dispersion of 0.05 m. Full article
Show Figures

Figure 1

19 pages, 5064 KiB  
Article
Sustainable Infrastructure Development: Integrating Karst Seepage Field Characteristics with Water Inrush Prediction Models of the Qigan Mountain Tunnel
by Ke Zhang, Binbin Que, Lizhao Liu, Junjie Jiang, Xin Liao and Zhongyuan Xu
Sustainability 2025, 17(10), 4585; https://doi.org/10.3390/su17104585 - 16 May 2025
Viewed by 364
Abstract
[Objective] This study aims to assess and predict the risks of water inrush and leakage during tunnel excavation in karst regions, where groundwater intrusion poses serious threats to construction safety and long-term hydrogeological sustainability. [Study area] This study is conducted in the Qigan [...] Read more.
[Objective] This study aims to assess and predict the risks of water inrush and leakage during tunnel excavation in karst regions, where groundwater intrusion poses serious threats to construction safety and long-term hydrogeological sustainability. [Study area] This study is conducted in the Qigan Mountain, involving detailed hydrogeological surveys and hydrochemical analyses to understand the subsurface conditions. [Methods] Numerical simulation methods are employed to model the regional seepage field distribution under natural conditions and two excavation conditions, using MODFLOW. [Challenges] One of the main challenges is accurately estimating tunnel water inflow under varying geological and hydrological conditions. [Results] The simulation results indicate that under excavation with blocking conditions, tunnel water inflow reaches 31,932 m3/d, whereas without blocking, inflow surges to 359,199 m3/d. In contrast, the theoretical calculation estimates a water inflow of 131,445 m3/d, revealing considerable discrepancies between the methods. [Recommendations] These findings highlight an important point of reference for the prevention of water influx in karst tunnel construction. Full article
Show Figures

Figure 1

Back to TopTop