Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (130)

Search Parameters:
Keywords = groundwater chemical evolution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
4 pages, 151 KB  
Editorial
Messy Chemistry and the Emergence of Life
by Alberto Vázquez-Salazar and Ranajay Saha
Life 2026, 16(2), 186; https://doi.org/10.3390/life16020186 - 23 Jan 2026
Viewed by 82
Abstract
Chemical complexity is not a nuisance to be minimized in origin of life research, it is an enabling condition. This second edition of the Special Issue on the Origin of Life in Chemically Complex Messy Environments gathers contributions that embrace multicomponent mixtures, dynamic [...] Read more.
Chemical complexity is not a nuisance to be minimized in origin of life research, it is an enabling condition. This second edition of the Special Issue on the Origin of Life in Chemically Complex Messy Environments gathers contributions that embrace multicomponent mixtures, dynamic geochemical settings, and nonequilibrium processes. The papers collected here survey surface hydrothermal routes to reactive nitriles, groundwater evolution of alkaline lakes, and transition metal sulfide-driven amino acid and amide formation without cyanide. They report one pot nucleoside and nucleotide synthesis from formamide over cerium phosphate, review non aqueous organophosphorus pathways, and probe peptide rich mixtures and formose type networks under serpentinization associated minerals. The issue also advances conceptual frameworks, including atmospheric photochemical signatures for biosignature discrimination, the role of chiral mineral surfaces in enantioseparation, and computational simulations of the origin of LUCA. Together, these studies position messy chemistry as a crucible that turns chemical diversity and environmental heterogeneity into routes toward organization and function. Full article
(This article belongs to the Special Issue Origin of Life in Chemically Complex Messy Environments: 2nd Edition)
20 pages, 6174 KB  
Article
Underground Coal Gasification Induced Multi-Physical Field Evolution and Overlying Strata Fracture Propagation: A Case Study Targeting Deep Steeply Inclined Coal Seams
by Jing Li, Shuguang Yang, Ziqiang Wang, Bin Zhang, Xin Li and Shuxun Sang
Energies 2026, 19(2), 559; https://doi.org/10.3390/en19020559 - 22 Jan 2026
Viewed by 18
Abstract
Underground coal gasification (UCG) is a controlled combustion process of in situ coal that produces combustible gases through thermal and chemical reactions. In order to investigate the UCG induced multi-physical field evolution and overlying strata fracture propagation of deep steeply inclined coal seam [...] Read more.
Underground coal gasification (UCG) is a controlled combustion process of in situ coal that produces combustible gases through thermal and chemical reactions. In order to investigate the UCG induced multi-physical field evolution and overlying strata fracture propagation of deep steeply inclined coal seam (SICS), which play a vital role in safety and sustainable UCG project, this study established a finite element model based on the actual geological conditions of SICS and the controlled retracting injection point (CRIP) technology. The results are listed as follows: (1) the temperature field influence ranges of the shallow and deep parts of SICS expanded from 15.56 m to 17.78 m and from 26.67 m to 28.89 m, respectively, when the burnout cavity length increased from 100 m to 400 m along the dip direction; (2) the floor mudstone exhibited uplift displacement as a result of thermal expansion, while the roof and overlying strata showed stepwise-increasing subsidence displacement over time, which was caused by stress concentration and fracture propagation, reaching a maximum subsidence of 3.29 m when gasification ended; (3) overlying strata rock damages occurred with induced fractures developing and propagating during UCG. These overlying strata fractures can reach a maximum height of 204.44 m that may result in groundwater influx and gasification failure; (4) considering the significant asymmetry in the evolution of multi-physical fields of SICS, it is suggested that the dip-direction length of a single UCG channel be limited to 200 m. The conclusions of this study can provide theoretical guidance and technical support for the design of UCG of SICS. Full article
(This article belongs to the Section B2: Clean Energy)
Show Figures

Figure 1

20 pages, 5427 KB  
Article
Historical Compilation and Hydrochemical Behavior in the Groundwater Flow System of Central Mexico
by Selene Olea-Olea, Aurora Guadalupe Llanos-Solis, Eric Morales-Casique, Priscila Medina-Ortega, Nelly L. Ramírez-Serrato, Daisy Valera-Fernández, Esperanza Torres-Rodríguez, Felipe Armas-Vargas, Lucy Mora-Palomino and Orlando Valdemar Villa-Cadena
Water 2026, 18(2), 171; https://doi.org/10.3390/w18020171 - 8 Jan 2026
Viewed by 263
Abstract
The Cuitzeo Groundwater Flow System, located in central Mexico within a volcanic rock region, encompasses two of the largest lakes in the country: Lake Cuitzeo and Lake Pátzcuaro. These lakes are sustained by both surface water and groundwater discharge, playing a critical role [...] Read more.
The Cuitzeo Groundwater Flow System, located in central Mexico within a volcanic rock region, encompasses two of the largest lakes in the country: Lake Cuitzeo and Lake Pátzcuaro. These lakes are sustained by both surface water and groundwater discharge, playing a critical role in local ecosystems and the surrounding population. Groundwater is particularly important for maintaining the lakes’ existence. However, the behavior of the groundwater flow system in this region has not been previously described. This study compiles historical data from 170 groundwater sites within the system from different years and includes temperature (°C), pH, total dissolved solids (TDS), major ions, and geology in detail. The historical data provide a spatial analysis and initial characterization to study the hydrochemistry of the system, identify recharge and discharge zones, assess water-rock interaction processes, and trace the evolution of groundwater. The results highlight distinct chemical behaviors across the different zones of the study area, with the most notable being ion exchange consistent with the weathering of volcanic silicates and interaction with lacustrine sediments. This study is crucial as it offers valuable insights into the hydrochemistry and water levels of the groundwater flow system and highlights areas where additional data are needed to better understand its dynamics. Full article
Show Figures

Graphical abstract

18 pages, 21143 KB  
Article
The Influence of Hydrogeological and Anthropogenic Factors on PFAS Distribution in Deep Multilayer Alluvial Aquifer: The Case Study of Parma Plain, Northern Italy
by Laura Ducci, Riccardo Pinardi, Federica Di Francesco, Chiara Meo, Pietro Rizzo, Somayeh Rezaei Kalvani, Stefano Segadelli, Maria Teresa De Nardo and Fulvio Celico
Water 2026, 18(1), 117; https://doi.org/10.3390/w18010117 - 3 Jan 2026
Viewed by 453
Abstract
Few hydrogeological studies have focused on possible per- and poly-fluoroalkyl substance (PFAS) contamination in groundwater with particular attention to the role of hydraulic interconnections and to the interdigitations present between shallow and deep aquifer layers in heterogeneous alluvial systems. In general, deeper groundwater [...] Read more.
Few hydrogeological studies have focused on possible per- and poly-fluoroalkyl substance (PFAS) contamination in groundwater with particular attention to the role of hydraulic interconnections and to the interdigitations present between shallow and deep aquifer layers in heterogeneous alluvial systems. In general, deeper groundwater is considered chemically safer and less impacted by contamination, especially in multilayer aquifers characterized by low permeability apparently confining horizons. Therefore, this research analyzed PFAS in groundwater at depths ranging from 20 to 120 m below ground level, combining stratigraphic, hydrogeological, and chemical data with GIS mapping to identify industrial activities potentially contributing to PFAS contamination using the cross-checking methodology. During the second survey, the monitoring network was extended along a hydrogeological transect, including two springs located upstream and downstream of the deep wells, to assess PFAS concentration in shallow groundwater and the possible transfer along the groundwater flow path. The intra-site comparative analysis reveals, for the same sampling locations, a differentiation in the PFAS profiles detected across the two monitoring campaigns, indicating a temporal evolution in the chemical composition. Furthermore, chemical results show the presence of PFAS exclusively in deep monitoring wells, confirming a spatially heterogeneous distribution within the aquifer system. These results highlight both the temporal and spatial evolution of PFAS concentration, suggesting a complex contaminant migration pathway along preferential gravel and sand horizons in deeper aquifer layers. The conceptual hydrogeological model confirmed hydraulic interconnections among aquifer layers and identified zones of higher vulnerability to contamination. The analysis of possible PFAS migration pathways at the basin scale raised some questions about the influence of wells features and management practices on PFAS distribution in shallow and deep groundwater. The findings of this research contribute to environmental sustainability, providing initial insights for measuring and managing the presence and pathways of PFAS in deep alluvial aquifers. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

16 pages, 2459 KB  
Article
Hydrochemical Evolution and Pollution Source Apportionment of Groundwater in Arid Regions: A Case Study of the Datong River Basin, Northwest China
by Tao Liu, Jian Kang, Youwei Yu, Yue Qi and Zizhao Zhang
Water 2026, 18(1), 105; https://doi.org/10.3390/w18010105 - 1 Jan 2026
Viewed by 281
Abstract
Understanding hydrochemical evolution and apportioning pollution sources are prerequisites for effective groundwater protection at the regional scale; nevertheless, the governing processes and anthropogenic drivers in arid regions remain poorly constrained. Here, we present a comprehensive geochemical survey of the Datong River Basin, a [...] Read more.
Understanding hydrochemical evolution and apportioning pollution sources are prerequisites for effective groundwater protection at the regional scale; nevertheless, the governing processes and anthropogenic drivers in arid regions remain poorly constrained. Here, we present a comprehensive geochemical survey of the Datong River Basin, a representative arid catchment in north-western China. Thirty-seven groundwater samples were analyzed with hydrochemical methods and Positive-Matrix Factorization (PMF) to delineate natural controls and contaminant sources. Results showed that the aquifer is dominated by HCO3–Ca(Mg) water controlled predominantly by silicate and carbonate weathering, modified locally by evapo-concentration and human activities. Water-quality indices classify 70.3% of the samples as excellent, but spatially restricted degradation is evident. PMF resolved three independent sources: a natural end-member enriched in Mn, Na+ and Cl; a mixed source reflecting domestic wastewater, agricultural fertilizers and rock weathering; and an industrial source dominated by Fe. The mixed source contributes most major ions and chemical oxygen demand (COD), whereas the industrial source accounts for 75.7% of total Fe. These findings provide a robust scientific basis for groundwater management and pollution mitigation in arid regions under similar hydrogeological settings. Full article
Show Figures

Figure 1

27 pages, 5773 KB  
Article
Major Ion Characteristics Reveal How Basin Hydrogeology and Groundwater Evolution Control the Formation of Saline Water Types in Nie’er Co Terminal Lake
by Jiahuan Han, Mianping Zheng, Zhen Nie and Kai Wang
Minerals 2026, 16(1), 34; https://doi.org/10.3390/min16010034 - 29 Dec 2025
Viewed by 207
Abstract
Geothermal water from different orogenic belts, surrounding rock weathering, and salt-forming elements sourced from surface basins jointly shape the hydrochemical characteristics, evaporation evolution sequences, and prospects for subsequent development and utilization of terminal salt lakes. In view of the lack of research on [...] Read more.
Geothermal water from different orogenic belts, surrounding rock weathering, and salt-forming elements sourced from surface basins jointly shape the hydrochemical characteristics, evaporation evolution sequences, and prospects for subsequent development and utilization of terminal salt lakes. In view of the lack of research on the metallogenic model of a single salt lake in the Qinghai–Tibet Plateau, this paper selects the Nie’er Co Salt Lake, a terminal lake in Northern Tibet, and systematically samples the water, river sediments, and surrounding rocks of the upper reaches of the recharge river, the Xiangqu. The Piper, Gibbs, and Durov, combined with ion ratio analysis, correlation analysis, PHREEQC, quantitative calculations of surrounding rock weathering and tributary contributions to salt-forming elements, were applied to comprehensively characterize groundwater hydrochemistry and surface water system runoff, and clarify the evolution of salt-forming elements in the terminal lake. The driving mechanism of surface runoff and surrounding rock weathering on ion enrichment in the terminal lake was revealed. The Nie’er Co Salt Lake in Tibet evolves from Ca/Na-HCO3 springs to Na-SO42− via dilution, rock leaching, and evaporation. Tributaries contribute 39.6%, 8.2%, and 52.3% of the major ions. Silicate weathering dominates (75%–80%), shifting to evaporite–carbonate inputs. The overall performance is dominated by silicate weathering. The contribution rate of silicate weathering decreases, and the trend of evaporite–carbonate weathering increases. The evolution of surface runoff can be divided into a tributary ion concentration growth section, a mixed ring section (evaporation concentration–TDS increase), and a terminal lake sedimentary section (enrichment evaporation to form the salt lake), revealing that multi-branch superposition and surrounding rock weathering synergistically affect the formation of salt lake hydro-chemical types. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

24 pages, 12345 KB  
Article
Numerical Investigation of Evolution of Reservoir Characteristics and Geochemical Reactions of Compressed Air Energy Storage in Aquifers
by Bingbo Xu and Keni Zhang
Sustainability 2026, 18(1), 4; https://doi.org/10.3390/su18010004 - 19 Dec 2025
Viewed by 324
Abstract
Compressed air energy storage in aquifers presents a promising approach for large-scale energy storage, yet its implementation is complicated by geochemical reactions, such as pyrite oxidation, which can impact reservoir integrity and operational efficiency. This study numerically investigates the evolution of reservoir characteristics [...] Read more.
Compressed air energy storage in aquifers presents a promising approach for large-scale energy storage, yet its implementation is complicated by geochemical reactions, such as pyrite oxidation, which can impact reservoir integrity and operational efficiency. This study numerically investigates the evolution of reservoir characteristics and geochemical processes during CAESA operations to address these challenges. Using the TOUGHREACT simulator, we developed one-dimensional and two-dimensional reactive transport models based on the Pittsfield aquifer field test parameters to simulate coupled thermal-hydrological–chemical processes under varying injection rates, temperatures, reservoir depths, and operational cycles. The results demonstrate that higher injection rates induce greater near-well pressure buildup and extended thermal zones, while deeper reservoirs exhibit abrupt declines in pressure and gas saturation due to formation constraints. Geochemical analyses reveal that pyrite oxidation dominates, leading to oxygen depletion, groundwater acidification (pH reduction), and secondary mineral precipitation, such as goethite and hematite. These findings underscore the critical interplay between operational parameters and geochemical reactions, highlighting the need for optimized design to ensure long-term stability and efficiency of aquifer-based energy storage systems. Full article
Show Figures

Figure 1

22 pages, 3171 KB  
Article
Integrated Hydrogeochemical, Isotopic, and Geophysical Assessment of Groundwater Salinization Processes in the Samba Dia Coastal Aquifer (Senegal)
by Amadou Sarr, Seyni Ndoye, Axel L. Tcheheumeni Djanni, Mathias Diedhiou, Mapathe Ndiaye, Serigne Faye, Corinne Sabine Corbau, Arnaud Gauthier and Philippe Le Coustumer
Water 2025, 17(24), 3590; https://doi.org/10.3390/w17243590 - 18 Dec 2025
Viewed by 546
Abstract
This study provides a detailed assessment of groundwater salinization in the Quaternary aquifer of the Samba Dia region, Senegal, using an integrated approach that combines hydrochemical, stable isotopic (δ2H, δ18O), and electrical resistivity tomography (ERT) techniques. Fourteen high-resolution ERT [...] Read more.
This study provides a detailed assessment of groundwater salinization in the Quaternary aquifer of the Samba Dia region, Senegal, using an integrated approach that combines hydrochemical, stable isotopic (δ2H, δ18O), and electrical resistivity tomography (ERT) techniques. Fourteen high-resolution ERT profiles, along with comprehensive chemical and isotopic analyses, were performed to identify the main causes of salinity and their spatial distribution. Results show that groundwater salinization in the area is primarily driven by three mechanisms: seawater intrusion, surface salt leaching, and ion exchange. Hydrochemical facies evolution diagrams, ionic ratios, and isotopic signatures helped differentiate marine-influenced zones from inland salinization areas. ERT imaging also mapped the three-dimensional extent and geometry of saline interfaces, confirming zone-specific mixing of seawater and freshwater. The findings indicate that salinization of the coastal aquifer has worsened over the past twenty years, mainly due to human activities and climate variability. This study recommends a sustainable monitoring strategy to support aquifer management, focusing on accurately identifying vulnerable zones and enabling adaptive resource planning in semi-arid Senegal. Full article
(This article belongs to the Special Issue Research on Hydrogeology and Hydrochemistry: Challenges and Prospects)
Show Figures

Figure 1

12 pages, 1961 KB  
Article
Microbial Response of Fe and Mn Biogeochemical Processes in Hyporheic Zone Affected by Groundwater Exploitation Along Riverbank
by Yijin Wang and Jun Pan
Water 2025, 17(23), 3408; https://doi.org/10.3390/w17233408 - 29 Nov 2025
Viewed by 466
Abstract
In order to explore the co-evolutionary relationship between the functions of microbial communities and the chemical composition of groundwater in a hyporheic zone affected by groundwater exploitation along riverbank, we have taken the Huangjia water source area on the Liao River main stream [...] Read more.
In order to explore the co-evolutionary relationship between the functions of microbial communities and the chemical composition of groundwater in a hyporheic zone affected by groundwater exploitation along riverbank, we have taken the Huangjia water source area on the Liao River main stream in Shenyang as an example. DNA was extracted from microorganisms in the hyporheic zone affected by groundwater exploitation along the riverbank, and we conducted high-throughput sequencing to select the dominant bacterial strains from the indigenous bacteria. They are classified as the Proteobacteria phylum, the Actinobacteria phylum, the Firmicutes phylum, the Bacteroidetes phylum, the Chloroflexi phylum, and the Acidobacteria phylum. The dominant bacteria have a good correlation with Fe, Mn, and environmental factors (such as DO—dissolved oxygen, Eh—oxidation-reduction potential, etc.) in the hyporheic zone. The functions and activities of the superior bacterial strains exhibit a feature of co-evolution with the water’s chemical environment, which has certain response characteristics to redox zoning. Studying the co-evolution relationship between the microbial community structure and function in the hyporheic zone and the chemical composition of the groundwater can provide a microbiological theoretical basis for the redox zonation. It also offers reference for understanding the process of Fe and Mn migration and transformation in the hyporheic zone under the hydrodynamic conditions of groundwater exploitation along the riverbank. Full article
(This article belongs to the Section Ecohydrology)
Show Figures

Figure 1

21 pages, 3024 KB  
Article
Analytical Model for Three-Dimensional Reactive Transport of Coexisting Chlorinated Solvent Contaminants in Groundwater Under Time-Varying Source Discharge Concentrations Induced by Remediation Efforts
by Zhong-Yi Liao, Heejun Suk, Thu-Uyen Nguyen, Chen-Wuing Liu, Ching-Ping Liang and Jui-Sheng Chen
Water 2025, 17(23), 3401; https://doi.org/10.3390/w17233401 - 28 Nov 2025
Viewed by 496
Abstract
Chlorinated solvents, common groundwater contaminants, can cause coexistence of the original contaminant and its degradation products during the transport process. Practically applicable analytical models for reactive transport are essential for simulating the plume migration of chlorinated solvent contaminants and their degradation products within [...] Read more.
Chlorinated solvents, common groundwater contaminants, can cause coexistence of the original contaminant and its degradation products during the transport process. Practically applicable analytical models for reactive transport are essential for simulating the plume migration of chlorinated solvent contaminants and their degradation products within a complex chemical mixture. Although several analytical models have been developed to solve advection–dispersion equations coupled with a series of decay reactions for simulating transport of the coexisting chlorinated solvent contaminants, the majority assume static, time-invariant inlet boundary conditions. Such time-invariant inlet boundary conditions may fail to adequately represent the temporal evolution of dissolved source discharge concentration concerning mass reduction, especially in the context of diverse DNAPL source remediation strategies. This study seeks to derive analytical models for three-dimensional reactive transport of multiple contaminants, specifically addressing the challenges posed by dynamical, time-varying inlet boundary conditions. The model development incorporates two distinct inlet functions: exponentially decaying and piecewise constant. Analytical solutions are obtained using three integral transform techniques. The accuracy of the newly developed analytical models is verified by comparing them with solutions derived from existing literature using multiple illustrative examples. By incorporating two distinct time-varying inlet boundary conditions, the models exhibit strong capabilities in capturing the complex transport dynamics and fate of contaminants within groundwater systems. These features make the models valuable tools for improving the understanding of subsurface contaminant behavior and for quantitatively evaluating and optimizing a range of remediation strategies. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

31 pages, 5778 KB  
Article
A Novel Water Quality Index (Novel WQI) for the Assessment of Water Body Pollution in a Semi-Arid Gold Mining Area (Bam Province, Burkina Faso)
by Sidkeita Aissa Nacanabo, Youssouf Koussoube, Nadjibou Abdoulaye Hama, Mohamed Tahar Ammami and Tariq Ouahbi
Hydrology 2025, 12(11), 290; https://doi.org/10.3390/hydrology12110290 - 2 Nov 2025
Viewed by 1069
Abstract
Since the 2000s, Burkina Faso has experienced a rapid mining expansion with more than one hundred sites established, leading to increased waste generation often discharged untreated into the environment. Assessing water quality in these areas is therefore critical to mitigate environmental degradation and [...] Read more.
Since the 2000s, Burkina Faso has experienced a rapid mining expansion with more than one hundred sites established, leading to increased waste generation often discharged untreated into the environment. Assessing water quality in these areas is therefore critical to mitigate environmental degradation and public health risks. This study develops a site-specific water quality index (WQI) for a gold mining area in Bam Province, Burkina Faso, with the objective of improving pollution monitoring and management in relation to tailing dams. Surface and groundwater samples were collected between 2021 and 2024. Physico-chemical and bacteriological analyses of groundwater sources including wells, piezometers and boreholes revealed that several parameters such as pH, turbidity, nitrates, sulphates, total iron, aluminium, arsenic, cadmium, cyanide and total and faecal coliforms exceeded international drinking water standards. Geospatial techniques were employed to identify the main contamination sources: domestic wastewater, industrial and artisanal mining and agricultural runoff. The evolution of these parameters in relation to the dynamics of soil occupation and the influence of geological structure has enabled the distinction of key parameters associated with discharges. Although individual contaminant levels were mostly moderate, their combined effects pose a significant long-term risk to ecosystems and human health. The tailored WQI is suitable for both surface water and groundwater. It provides an integrated tool for classifying and monitoring water quality in mining environments, supporting evidence-based decision making in the management of tailing dams, environmental protection and public health. Full article
Show Figures

Figure 1

19 pages, 8788 KB  
Article
Source Analysis of Groundwater Chemical Components in the Middle Reaches of the Dawen River Based on Unsupervised Machine Learning and PMF Source Analysis
by Xinqi Wang, Zhenhua Zhao, Hongyan An, Lin Han, Mingming Li, Zihao Wang, Xinfeng Wang and Zheming Shi
Water 2025, 17(20), 2924; https://doi.org/10.3390/w17202924 - 10 Oct 2025
Viewed by 943
Abstract
Groundwater chemical composition often exhibits complex characteristics under the combined influence of anthropogenic activities and natural geological conditions. Accurately distinguishing between human-derived and naturally occurring constituents is crucial for formulating effective pollution control strategies and ensuring sustainable groundwater resource management. However, conventional hydrogeochemical [...] Read more.
Groundwater chemical composition often exhibits complex characteristics under the combined influence of anthropogenic activities and natural geological conditions. Accurately distinguishing between human-derived and naturally occurring constituents is crucial for formulating effective pollution control strategies and ensuring sustainable groundwater resource management. However, conventional hydrogeochemical analytical methods often face challenges in quantitatively differentiating these overlapping influences. In this study, 66 groundwater samples were collected from the midstream section of the Dawen River Basin, an area subject to significant anthropogenic pressure. An integrated approach combining hydrogeochemical analysis, Self-Organizing Map (SOM) clustering, and Positive Matrix Factorization (PMF) receptor modeling was employed to identify sources of chemical constituents and quantify the proportional contributions of various factors. The results indicate that: (1) The predominant groundwater types in the study area were Cl·SO4·Ca. (2) SOM clustering classified the groundwater samples into five distinct groups, each reflecting a dominant influence: (i) natural geological processes—samples distributed within the central geological mining area; (ii) agricultural activities—samples located in intensively cultivated zones along both banks of the Dawen River; (iii) hydrogeochemical evolution—samples concentrated in areas with impermeable surfaces on the eastern and western sides of the study region; (iv) mining operations—samples predominantly found in industrial zones at the periphery; (v) domestic wastewater discharge—samples scattered relatively uniformly throughout the area. (3) PMF results demonstrated that natural geological conditions constituted the largest contribution (29.0%), followed by agricultural activities (26.8%), consistent with the region’s extensive farming practices. Additional contributions arose from water–rock interactions (23.9%), mining operations (13.6%), and domestic wastewater (6.7%). This study establishes a methodological framework for quantitatively assessing natural and anthropogenic impacts on groundwater quality, thereby providing a scientific basis for the development of protection measures and sustainable management strategies for regional groundwater resources. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

24 pages, 11789 KB  
Article
Mechanical Performance Degradation and Microstructural Evolution of Grout-Reinforced Fractured Diorite Under High Temperature and Acidic Corrosion Coupling
by Yuxue Cui, Henggen Zhang, Tao Liu, Zhongnian Yang, Yingying Zhang and Xianzhang Ling
Buildings 2025, 15(19), 3547; https://doi.org/10.3390/buildings15193547 - 2 Oct 2025
Viewed by 604
Abstract
The long-term stability of grout-reinforced fractured rock masses in acidic groundwater environments after tunnel fires is critical for the safe operation of underground engineering. In this study, grouting reinforcement tests were performed on fractured diorite specimens using a high-strength fast-anchoring agent (HSFAA), and [...] Read more.
The long-term stability of grout-reinforced fractured rock masses in acidic groundwater environments after tunnel fires is critical for the safe operation of underground engineering. In this study, grouting reinforcement tests were performed on fractured diorite specimens using a high-strength fast-anchoring agent (HSFAA), and their mechanical degradation and microstructural evolution mechanisms were investigated under coupled high-temperature (25–1000 °C) and acidic corrosion (pH = 2) conditions. Multi-scale characterization techniques, including uniaxial compression strength (UCS) tests, X-ray computed tomography (CT), scanning electron microscopy (SEM), three-dimensional (3D) topographic scanning, and X-ray diffraction (XRD), were employed systematically. The results indicated that the synergistic thermo-acid interaction accelerated mineral dissolution and induced structural reorganization, resulting in surface whitening of specimens and decomposition of HSFAA hydration products. Increasing the prefabricated fracture angles (0–60°) amplified stress concentration at the grout–rock interface, resulting in a reduction of up to 69.46% in the peak strength of the specimens subjected to acid corrosion at 1000 °C. Acidic corrosion suppressed brittle disintegration observed in the uncorroded specimens at lower temperature (25–600 °C) by promoting energy dissipation through non-uniform notch formation, thereby shifting the failure modes from shear-dominated to tensile-shear hybrid modes. Quantitative CT analysis revealed a 34.64% reduction in crack volume (Vca) for 1000 °C acid-corroded specimens compared to the control specimens at 25 °C. This reduction was attributed to high-temperature-induced ductility, which transformed macroscale crack propagation into microscale coalescence. These findings provide critical insights for assessing the durability of grouting reinforcement in post-fire tunnel rehabilitation and predicting the long-term stability of underground structures in chemically aggressive environments. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 14858 KB  
Article
Hydrochemistry and Geothermal Potential of Żary Pericline (SW Poland)
by Barbara Kiełczawa
Water 2025, 17(17), 2647; https://doi.org/10.3390/w17172647 - 7 Sep 2025
Viewed by 1798
Abstract
The mineralization of groundwater within the Żary pericline exhibits a broad range, from 0.2 to 0.3 g/L up to 401 g/L, with the majority classified as brines. These waters are predominantly chloride-rich, characterized by variable concentrations of cations such as Na+, [...] Read more.
The mineralization of groundwater within the Żary pericline exhibits a broad range, from 0.2 to 0.3 g/L up to 401 g/L, with the majority classified as brines. These waters are predominantly chloride-rich, characterized by variable concentrations of cations such as Na+, K+, Ca2+, and Mg2+. Their chemical composition varies by geological formation: Na-Cl and Mg-Cl types dominate in the Triassic strata, while more complex mixtures are observed in the Zechstein and Rotliegend formations. Brine formation and evolution are primarily influenced by evaporation and ion exchange processes, particularly Na+/Ca2+ exchange. These brines represent residual evaporative fluids that migrate through the subsurface during sediment compaction and tectonic deformation. The observed variability in mineral content suggests the occurrence of hydrochemical inversion within the geological layers. Groundwater temperatures range from 20 °C to 55 °C at depths between 490 and 1525 meters below ground level. The geothermal gradient spans from 3.55 °C/100 m to 4 °C/100 m, with the highest values recorded in the western and northwestern sectors of the pericline. These thermal conditions indicate promising potential for geothermal energy development in the region. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

20 pages, 3657 KB  
Article
Numerical Study of Chemo–Mechanical Coupling Behavior of Concrete
by Feng Guo, Weijie He, Longlong Tu and Huiming Hou
Buildings 2025, 15(15), 2725; https://doi.org/10.3390/buildings15152725 - 1 Aug 2025
Viewed by 821
Abstract
Subsurface mass concrete infrastructure—including immersed tunnels, dams, and nuclear waste containment systems—frequently faces calcium-leaching risks from prolonged groundwater exposure. An anisotropic stress-leaching damage model incorporating microcrack propagation is developed for underground concrete’s chemo–mechanical coupling. This model investigates stress-induced anisotropy in concrete through the [...] Read more.
Subsurface mass concrete infrastructure—including immersed tunnels, dams, and nuclear waste containment systems—frequently faces calcium-leaching risks from prolonged groundwater exposure. An anisotropic stress-leaching damage model incorporating microcrack propagation is developed for underground concrete’s chemo–mechanical coupling. This model investigates stress-induced anisotropy in concrete through the evolution of oriented microcrack networks. The model incorporates nonlinear anisotropic plastic strain from coupled chemical–mechanical damage. Unlike conventional concrete rheology, this model characterizes chemical creep through stress-chemical coupled damage mechanics. The numerical model is incorporated within COMSOL Multiphysics to perform coupled multiphysics simulations. A close match is observed between the numerical predictions and experimental findings. Under high stress loads, calcium leaching and mechanical stress exhibit significant coupling effects. Regarding concrete durability, chemical degradation has a more pronounced effect on concrete’s stiffness and strength reduction compared with stress-generated microcracking. Full article
Show Figures

Figure 1

Back to TopTop