Review of Research Progress on the Impact of Submarine Groundwater Discharge on Pockmark Formation and Evolution
Abstract
:1. Introduction
2. Global Distribution Characteristics
3. Morphology and Evolutionary Characteristics of Pockmarks
3.1. Morphological Structure
- Linear or elongated pockmarks are formed by the escape of submarine fluids, exhibit a chain-like depressed morphology, and appear as ordered arrays of non-randomly distributed pockmark clusters along the continental slope. In their mature stage, these pockmarks may merge to form gullies, which can exceed 1.5 km in width and extend longitudinally for 10 km to 25 km, composed of alternating steep slopes and pockmarks, reflecting the cumulative effect of multiple fluid escape events [25].
- Circular pockmarks typically have a symmetrical shape, usually with diameters of 10–50 m and depths between 1 and 20 m [46].
- Elliptical and also asymmetrical pockmarks have been found in the Santos Basin in Brazil (Atlantic Ocean) due to the influence of the SGD. Research indicates that high-speed water currents continuously erode one side of a pockmark while causing sediment to accumulate on the opposite side, ultimately leading to pronounced directional and asymmetrical characteristics of the pockmarks [47].
- In the South China Sea, crescent-shaped pockmarks have been found and, in this region, these morphologies show that the openings of crescent-shaped pockmarks mostly face NW-NNW, aligning with local bottom current directions, suggesting that after fluid eruption, the collaborative effects of bottom currents and gravity flows can further shape the morphological evolution of pockmarks [48]. This directionality provides strong evidence for using pockmark morphology as an indicator of submarine flow fields.
- Composite and irregular pockmarks are due to multiple fluid emissions and changes in fluid sources; there may be multiple small pockmarks adjacent to each other or complex transitional areas forming between pockmark edges and deep sediments, termed compound pockmarks [49], commonly found in areas affected by both SGD and frequent gas leakage [50].
3.2. Evolutionary Characteristics
4. Mechanisms of SGD-Driven Pockmark Formation and Evolution
4.1. Turbulent Mixing and Sediment Impact Mechanisms
4.1.1. Plume Impact Mechanism
4.1.2. Sediment Property Control Mechanism
- Sandy/Gravelly Sedimentary Environments
- Clay/Silt Sedimentary Environments
- Influence of Sedimentary bedding Characteristics
4.2. Coupling Mechanisms of SGD and Gas Hydrate Dissociation
- Stage A—fluids rich in methane migrate upwards, beginning to crystallize within the stability zone of the hydrates. These hydrates accumulate along existing fractures or weak planes in the sediments and rapidly block fluid channels.
- Stage B—as fluid flow diminishes, hydrates at the top dissolve, leading to sediment volume contraction or structural instability, resulting in pockmark formation.
- Stage C—when fluid flow intensifies or changes direction, new channels are formed. Hydrates rapidly crystallize within these fractures, accompanied by localized uplift of the seafloor.
- Stage D—if fluid flow further emerges at surrounding locations, it can cause multiple small pockmarks to merge or evolve simultaneously, forming more complex groups of pockmarks.
4.3. Coupling Mechanisms of SGD and Tectonic Activity
4.4. Seasonal Influences on SGD-Induced Pockmark Mechanisms
4.5. SGD-Driven Biogeochemical Coupling Mechanisms
4.5.1. Chemical Dissolution Mechanisms
4.5.2. Biological Activity Effects
5. Conclusions and Prospects
5.1. Conclusions
- The evolution of pockmarks follows a cyclical pattern characterized by phases of initiation, expansion, stabilization, and decline. Their varied geometric forms can be more effectively quantified using the diameter/depth ratio as a descriptive indicator.
- SGD drives both the turbulent mixing mechanisms and the cyclical activities of gas hydrates, furnishing the dynamic conditions essential for the initial formation and progressive expansion of pockmarks. Tectonic activity facilitates this process by inducing crustal uplift and fault dynamics, and by accelerating the weathering and erosion of surface rocks. These geological processes create efficient pathways for precipitation infiltration into the subsurface, thereby catalyzing the development of pockmarks.
- SGD drives the formation and evolution of pockmarks through interconnected chemical and biological mechanisms. Chemically, the influx of dissolved inorganic carbon reduces the pH of pore water, which accelerates mineral dissolution. Biologically, SGD facilitates microbial activity by supplying essential nutrients, initiating a cascade of biochemical reactions. These coupled mechanisms collectively destabilize the sediment, thereby shaping the formation and evolution of submarine pockmark topography.
5.2. Prospects
- In the context of global climate change, it is imperative to further investigate whether the correlation between sea level rise and variations in SGD flux, driven by climatic change, could heighten the risk of pockmark formation in coastal areas.
- Analyses of microbial community structures should be conducted to identify biologically driven corrosion and methanogenesis processes. Machine learning models should be utilized to perform long-term time-series analyses, investigating potential anomalous patterns and triggering mechanisms within multi-source data. This approach aims to elucidate the microbial coupling mechanisms involved in the formation process of SGD-induced pockmarks.
- It is recommended to incorporate the mechanism of pockmarks induced by SGD into risk assessments for marine spatial planning, coastal zone management, and offshore engineering projects. Additionally, international marine organizations are encouraged to advance global cooperative projects for monitoring SGD along coastlines and continental shelves.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Burnett, W.C.; Bokuniewicz, H.; Huettel, M.; Moore, W.S.; Taniguchi, M. Groundwater and Pore Water Inputs to the Coastal Zone. Biogeochemistry 2003, 66, 3–33. [Google Scholar] [CrossRef]
- Santos, I.R.; Chen, X.; Lecher, A.L.; Sawyer, A.H.; Moosdorf, N.; Rodellas, V.; Tamborski, J.; Cho, H.-M.; Dimova, N.; Sugimoto, R.; et al. Submarine Groundwater Discharge Impacts on Coastal Nutrient Biogeochemistry. Nat. Rev. Earth Environ. 2021, 2, 307–323. [Google Scholar] [CrossRef]
- Lee, Y.-W.; Hwang, D.-W.; Kim, G.; Lee, W.-C.; Oh, H.-T. Nutrient Inputs from Submarine Groundwater Discharge (SGD) in Masan Bay, an Embayment Surrounded by Heavily Industrialized Cities, Korea. Sci. Total Environ. 2009, 407, 3181–3188. [Google Scholar] [CrossRef]
- Knee, K.L.; Paytan, A. 4.08—Submarine Groundwater Discharge: A Source of Nutrients, Metals, and Pollutants to the Coastal Ocean. In Treatise on Estuarine and Coastal Science; Wolanski, E., McLusky, D., Eds.; Academic Press: Waltham, MA, USA, 2011; pp. 205–233. ISBN 978-0-08-087885-0. [Google Scholar]
- Tait, D.R.; Sippo, J.Z.; Jeffrey, L.C.; Maher, D.T.; Mukherjee, A.; Ralph, C.; Das, K. Groundwater Discharge and Bank Overtopping Drive Large Carbon Exports from Indian Sundarban Mangroves. Sci. Total Environ. 2024, 955, 176463. [Google Scholar] [CrossRef]
- Moody, A.; Moore, W.S.; Pierce, T.; Shiller, A.M. The Effects of Submarine Groundwater Discharge and the Bonnet Carré Spillway on Nutrient Dynamics in the Western Mississippi Sound. Sci. Total Environ. 2024, 953, 176080. [Google Scholar] [CrossRef]
- Xue, Y.; Zhang, Y.; Zhang, M.; Wang, X.; Xiao, K.; Luo, M.; Li, H. Submarine Groundwater Discharge and Associated Metal Elements into an Urbanized Bay. Mar. Pollut. Bull. 2023, 192, 115092. [Google Scholar] [CrossRef]
- Zhou, Y.; Sawyer, A.H.; David, C.H.; Famiglietti, J.S. Fresh Submarine Groundwater Discharge to the Near-Global Coast. Geophys. Res. Lett. 2019, 46, 5855–5863. [Google Scholar] [CrossRef]
- Oehler, T.; Mogollón, J.M.; Moosdorf, N.; Winkler, A.; Kopf, A.; Pichler, T. Submarine Groundwater Discharge within a Landslide Scar at the French Mediterranean Coast. Estuar. Coast. Shelf Sci. 2017, 198, 128–137. [Google Scholar] [CrossRef]
- Ehlert Von Ahn, C.M.; Dellwig, O.; Szymczycha, B.; Kotwicki, L.; Rooze, J.; Endler, R.; Escher, P.; Schmiedinger, I.; Sültenfuß, J.; Diak, M.; et al. Submarine Groundwater Discharge into a Semi-Enclosed Coastal Bay of the Southern Baltic Sea: A Multi-Method Approach. Oceanologia 2024, 66, 111–138. [Google Scholar] [CrossRef]
- King, L.H.; MacLean, B. Pockmarks on the Scotian Shelf. GSA Bull. 1970, 81, 3141–3148. [Google Scholar] [CrossRef]
- Hovland, M.; Talbot, M.R.; Qvale, H.; Olaussen, S.; Aasberg, L. Methane-Related Carbonate Cements in Pockmarks of the North Sea. J. Sediment. Res. 1987, 57, 881–892. [Google Scholar]
- Webb, K.E.; Hammer, Ø.; Lepland, A.; Gray, J.S. Pockmarks in the Inner Oslofjord, Norway. Geo-Mar. Lett. 2009, 29, 111–124. [Google Scholar] [CrossRef]
- Ramos, R.B.; Dos Santos, R.F.; Schattner, U.; Figueira, R.C.L.; Bícego, M.C.; Lobo, F.J.; De Mahiques, M.M. Deep Pockmarks as Natural Sediment Traps: A Case Study from Southern Santos Basin (SW Atlantic Upper Slope). Geo-Mar. Lett. 2020, 40, 989–999. [Google Scholar] [CrossRef]
- Nardelli, B.B.; Budillon, F.; Watteaux, R.; Ciccone, F.; Conforti, A.; De Falco, G.; Di Martino, G.; Innangi, S.; Tonielli, R.; Iudicone, D. Pockmark Morphology and Turbulent Buoyant Plumes at a Submarine Spring. Cont. Shelf Res. 2017, 148, 19–36. [Google Scholar] [CrossRef]
- Jakobsson, M.; O’Regan, M.; Mörth, C.-M.; Stranne, C.; Weidner, E.; Hansson, J.; Gyllencreutz, R.; Humborg, C.; Elfwing, T.; Norkko, A.; et al. Links between Baltic Sea Submarine Terraces and Groundwater Sapping. Earth Surf. Dyn. 2019, 8, 2020. [Google Scholar]
- Cardenas, M.B.; Rodolfo, R.S.; Lapus, M.R.; Cabria, H.B.; Fullon, J.; Gojunco, G.R.; Breecker, D.O.; Cantarero, D.M.; Evaristo, J.; Siringan, F.P.; et al. Submarine Groundwater and Vent Discharge in a Volcanic Area Associated with Coastal Acidification. Geophys. Res. Lett. 2020, 47, e2019GL085730. [Google Scholar] [CrossRef]
- Nelson, C.S.; Healy, T.R. Pockmark-like Structures on the Poverty Bay Sea Bed—Possible Evidence for Submarine Mud Volcanism. N. Z. J. Geol. Geophys. 1984, 27, 225–230. [Google Scholar] [CrossRef]
- Hasiotis, T.; Papatheodorou, G.; Kastanos, N. A Pockmark Field in the Patras Gulf (Greece) and Its Activation during the 14/7/93 Seismic Event. Mar. Geol. 1996, 130, 333–344. [Google Scholar] [CrossRef]
- Soter, S. Macroscopic Seismic Anomalies and Submarine Pockmarks in the Corinth–Patras Rift, Greece. Tectonophysics 1999, 308, 275–290. [Google Scholar] [CrossRef]
- Baraza, J.; Ercilla, G.; Nelson, C.H. Potential Geologic Hazards on the Eastern Gulf of Cadiz Slope (SW Spain). Mar. Geol. 1999, 155, 191–215. [Google Scholar] [CrossRef]
- Singhroha, S.; Schramm, B.; Plaza-Faverola, A.; Domel, P.; Dannowski, A.; Cooke, F.; Bünz, S. Stress Constraints from Shear-Wave Analysis in Shallow Sediments at an Actively Seeping Pockmark on the W-Svalbard Margin. Earth Space Sci. 2023, 10, e2023EA003068. [Google Scholar] [CrossRef]
- Vaknin, I.; Aharonov, E.; Holtzman, R.; Katz, O. Gas Seepage and Pockmark Formation from Subsurface Reservoirs: Insights from Table-Top Experiments. J. Geophys. Res. Solid Earth 2024, 129, e2023JB028255. [Google Scholar] [CrossRef]
- Hovland, M.; Svensen, H.; Forsberg, C.F.; Johansen, H.; Fichler, C.; Fosså, J.H.; Jonsson, R.; Rueslåtten, H. Complex Pockmarks with Carbonate-Ridges off Mid-Norway: Products of Sediment Degassing. Mar. Geol. 2005, 218, 191–206. [Google Scholar] [CrossRef]
- Pilcher, R.; Argent, J. Mega-Pockmarks and Linear Pockmark Trains on the West African Continental Margin. Mar. Geol. 2007, 244, 15–32. [Google Scholar] [CrossRef]
- Nelson, H.; Thor, D.R.; Sandstrom, M.W.; Kvenvolden, K.A. Modern Biogenic Gas-Generated Craters (Sea-Floor “Pockmarks”) on the Bering Shelf, Alaska. GSA Bull. 1979, 90, 1144–1152. [Google Scholar] [CrossRef]
- Hovland, M.; Judd, A.G.; King, L.H. Characteristic Features of Pockmarks on the North Sea Floor and Scotian Shelf. Sedimentology 1984, 31, 471–480. [Google Scholar] [CrossRef]
- Fader, G.B.J. Gas-Related Sedimentary Features from the Eastern Canadian Continental Shelf. Cont. Shelf Res. 1991, 11, 1123–1153. [Google Scholar] [CrossRef]
- Practical Application of Offshore Site Hazard Surveys. Available online: https://www.researchgate.net/publication/255062453_practical_application_of_offshore_site_hazard_surveys (accessed on 21 April 2025).
- Çifçi, G.; Dondurur, D.; Ergün, M. Deep and Shallow Structures of Large Pockmarks in the Turkish Shelf, Eastern Black Sea. Geo-Mar. Lett. 2003, 23, 311–322. [Google Scholar] [CrossRef]
- Sun, Q.; Wu, S.; Hovland, M.; Luo, P.; Lu, Y.; Qu, T. The Morphologies and Genesis of Mega-Pockmarks near the Xisha Uplift, South China Sea. Mar. Pet. Geol. 2011, 28, 1146–1156. [Google Scholar] [CrossRef]
- León, R.; Somoza, L.; Medialdea, T.; Hernández-Molina, F.J.; Vázquez, J.T.; Díaz-del-Rio, V.; González, F.J. Pockmarks, Collapses and Blind Valleys in the Gulf of Cádiz. Geo-Mar. Lett. 2010, 30, 231–247. [Google Scholar] [CrossRef]
- Szpak, M.T.; Monteys, X.; O’Reilly, S.; Simpson, A.J.; Garcia, X.; Evans, R.L.; Allen, C.C.R.; McNally, D.J.; Courtier-Murias, D.; Kelleher, B.P. Geophysical and Geochemical Survey of a Large Marine Pockmark on the Malin Shelf, Ireland. Geochem. Geophys. Geosyst. 2012, 13, 2011GC003787. [Google Scholar] [CrossRef]
- Xu, C.; Xu, G.; Xing, J.; Sun, Z.; Wu, N. Research Progress of Seafloor Pockmarks in Spatio-Temporal Distribution and Classification. J. Ocean Univ. China 2020, 19, 69–80. [Google Scholar] [CrossRef]
- Dandapath, S.; Chakraborty, B.; Karisiddaiah, S.M.; Menezes, A.; Ranade, G.; Fernandes, W.; Naik, D.K.; Prudhvi Raju, K.N. Morphology of Pockmarks along the Western Continental Margin of India: Employing Multibeam Bathymetry and Backscatter Data. Mar. Pet. Geol. 2010, 27, 2107–2117. [Google Scholar] [CrossRef]
- Kvenvolden, K.A. Seafloor Discoveries: Seabed Pockmarks and Seepages. Impact on Geology, Biology and the Marine Environment. M. Hovland and A. G. Judd. Graham and Trotman, London, 1988 (U.S. Distributor, Kluwer, Norwell, MA). Xii, 293 pp., Illus. $117. Science 1989, 244, 590–591. [Google Scholar] [CrossRef]
- Gay, A.; Lopez, M.; Ondreas, H.; Charlou, J.L.; Sermondadaz, G.; Cochonat, P. Seafloor Facies Related to Upward Methane Flux within a Giant Pockmark of the Lower Congo Basin. Mar. Geol. 2006, 226, 81–95. [Google Scholar] [CrossRef]
- Rise, L.; Bellec, V.K.; Chand, S.; Bøe, R. Pockmarks in the Southwestern Barents Sea and Finnmark Fjords. Nor. J. Geol. 2014, 94, 4. [Google Scholar] [CrossRef]
- Asner, G.P.; Vaughn, N.R.; Heckler, J. Operational Mapping of Submarine Groundwater Discharge into Coral Reefs: Application to West Hawai‘i Island. Oceans 2024, 5, 547–559. [Google Scholar] [CrossRef]
- Bratton, J.F. The Three Scales of Submarine Groundwater Flow and Discharge across Passive Continental Margins. J. Geol. 2010, 118, 565–575. [Google Scholar] [CrossRef]
- Wang, X.; Baskaran, M.; Su, K.; Du, J. The Important Role of Submarine Groundwater Discharge (SGD) to Derive Nutrient Fluxes into River Dominated Ocean Margins—The East China Sea. Mar. Chem. 2018, 204, 121–132. [Google Scholar] [CrossRef]
- Kim, I.; Kim, G. Large Fluxes of Rare Earth Elements through Submarine Groundwater Discharge (SGD) from a Volcanic Island, Jeju, Korea. Mar. Chem. 2011, 127, 12–19. [Google Scholar] [CrossRef]
- Kim, G.; Ryu, J.-W.; Yang, H.-S.; Yun, S.-T. Submarine Groundwater Discharge (SGD) into the Yellow Sea Revealed by 228Ra and 226Ra Isotopes: Implications for Global Silicate Fluxes. Earth Planet. Sci. Lett. 2005, 237, 156–166. [Google Scholar] [CrossRef]
- Kwon, E.Y.; Kim, G.; Primeau, F.; Moore, W.S.; Cho, H.; DeVries, T.; Sarmiento, J.L.; Charette, M.A.; Cho, Y. Global Estimate of Submarine Groundwater Discharge Based on an Observationally Constrained Radium Isotope Model. Geophys. Res. Lett. 2014, 41, 8438–8444. [Google Scholar] [CrossRef]
- Zhang, Y.; Santos, I.R.; Li, H.; Wang, Q.; Xiao, K.; Guo, H.; Wang, X. Submarine Groundwater Discharge Drives Coastal Water Quality and Nutrient Budgets at Small and Large Scales. Geochim. Cosmochim. Acta 2020, 290, 201–215. [Google Scholar] [CrossRef]
- Abdelmaksoud, A.; Al-Suwaidi, A.H.; Ali, M.; Shah, A.; Almehairbi, S.S.; Al Ali, L.M.; Ali, M.Y. Evidence of Pockmarks and Seafloor Gas Venting in the Northwestern Arabian Sea. Commun. Earth Environ. 2025, 6, 41. [Google Scholar] [CrossRef]
- Schattner, U.; Lazar, M.; Souza, L.A.P.; Ten Brink, U.; Mahiques, M.M. Pockmark Asymmetry and Seafloor Currents in the Santos Basin Offshore Brazil. Geo-Mar. Lett. 2016, 36, 457–464. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, F.; Miramontes, E. Origin and Evolution of Widespread Crescentic Pockmarks on the Western South China Sea Margin. Mar. Pet. Geol. 2024, 170, 107091. [Google Scholar] [CrossRef]
- Chao, C.; Pan, X.; Cai, F.; Chen, Q.; Zheng, Y.; Wu, C.; Song, Z.; Lu, H.; Bao, J. Characteristics of Pockmark Geomorphology in Gas Hydrate Occurrence Area and Its Geological Hazards Significance. Ocean Dev. Manag. 2018, 35, 52–55. [Google Scholar]
- Zhu, S.; Li, X.; Zhang, H.; Sha, Z.; Sun, Z. Types, Characteristics, Distribution, and Genesis of Pockmarks in the South China Sea: Insights from High-Resolution Multibeam Bathymetric and Multichannel Seismic Data. Int. Geol. Rev. 2021, 63, 1682–1702. [Google Scholar] [CrossRef]
- PG, J.L.R.; Pallister, B.J. Abstract: Characteristics and Significance of a Large Pockmark Field, Northern Offshore Trinidad; Geological Society of Trinidad and Tobago: Couva, Trinidad and Tobago, 2007. [Google Scholar]
- Lundine, M.A.; Brothers, L.L.; Trembanis, A.C. Deep Learning for Pockmark Detection: Implications for Quantitative Seafloor Characterization. Geomorphology 2023, 421, 108524. [Google Scholar] [CrossRef]
- Böttner, C.; Hoffmann, J.J.L.; Unverricht, D.; Schmidt, M.; Spiegel, T.; Geersen, J.; Müller, T.H.; Karstens, J.; Andresen, K.J.; Sander, L.; et al. The Enigmatic Pockmarks of the Sandy Southeastern North Sea. Geochem. Geophys. Geosyst. 2024, 25, e2024GC011837. [Google Scholar] [CrossRef]
- Yu, K.; Miramontes, E.; Alves, T.M.; Li, W.; Liang, L.; Li, S.; Zhan, W.; Wu, S. Incision of Submarine Channels over Pockmark Trains in the South China Sea. Geophys. Res. Lett. 2021, 48, e2021GL092861. [Google Scholar] [CrossRef]
- Riera, R.; Paumard, V.; De Gail, M.; Saqab, M.M.; Lebrec, U.; Lang, S.C.; Lane, A. Origin of Seafloor Pockmarks Overlying Submarine Landslides: Insights from Semi-Automated Mapping of 3D Seismic Horizons (North West Shelf, Australia). Mar. Pet. Geol. 2022, 136, 105453. [Google Scholar] [CrossRef]
- Hillman, J.I.T.; Watson, S.J.; Maier, K.L.; Hoffmann, J.J.L.; Bland, K.J.; Warnke, F.; Pecher, I.A.; Gorman, A.R.; Davy, B.; Bull, S.; et al. The Diverse Morphology of Pockmarks around Aotearoa New Zealand. Front. Mar. Sci. 2023, 10, 1235928. [Google Scholar] [CrossRef]
- Li, X.; Guo, X.; Tian, F.; Fang, X. The Effects of Controlling Gas Escape and Bottom Current Activity on the Evolution of Pockmarks in the Northwest of the Xisha Uplift, South China Sea. J. Mar. Sci. Eng. 2024, 12, 1505. [Google Scholar] [CrossRef]
- Zhang, Z.; Deng, X.; Yao, H.; Yu, M.; Wang, H.; He, G.; Liu, B.; Wu, T.; Kahkashan, S.; Haider, S.W.; et al. A Preliminary Study on Geomorphological Characteristics and Genetic Mechanism of Pockmarks in the Makran Accretionary Prism, Northern Arabian Sea. Geo-Mar. Lett. 2021, 41, 27. [Google Scholar] [CrossRef]
- Cojean, A.N.Y.; Kremer, K.; Bartosiewicz, M.; Fabbri, S.C.; Lehmann, M.F.; Wirth, S.B. Morphology, Formation, and Activity of Three Different Pockmark Systems in Peri-Alpine Lake Thun, Switzerland. Front. Water 2021, 3, 666641. [Google Scholar] [CrossRef]
- Ikonen, J.; Hendriksson, N.; Luoma, S.; Lahaye, Y.; Virtasalo, J.J. Behavior of Li, S and Sr Isotopes in the Subterranean Estuary and Seafloor Pockmarks of the Hanko Submarine Groundwater Discharge Site in Finland, Northern Baltic Sea. Appl. Geochem. 2022, 147, 105471. [Google Scholar] [CrossRef]
- Matciak, M.; Misiewicz, M.M.; Szymczycha, B.; Idczak, J.; Tęgowski, J.; Diak, M. Pockmarks and Associated Fresh Submarine Groundwater Discharge in the Seafloor of Puck Bay, Southern Baltic Sea. Sci. Total Environ. 2024, 942, 173617. [Google Scholar] [CrossRef]
- Debnath, P.; Das, K.; Mukherjee, A.; Ghosh, N.C.; Rao, S.; Kumar, S.; Krishan, G.; Joshi, G. Seasonal-to-Diurnal Scale Isotopic Signatures of Tidally-Influenced Submarine Groundwater Discharge to the Bay of Bengal: Control of Hydrological Cycle on Tropical Oceans. J. Hydrol. 2019, 571, 697–710. [Google Scholar] [CrossRef]
- Chen, F.; MacDonald, D.G. Role of Mixing in the Structure and Evolution of a Buoyant Discharge Plume. J. Geophys. Res. Oceans 2006, 111, 2006JC003563. [Google Scholar] [CrossRef]
- Zhang, T.; Wu, Z.; Zhao, D.; Li, S.; Shang, J.; Gao, J.; Zhou, J.; Liu, Y.; Zhu, C.; Lu, H. Analysis of Seafloor Pockmark Morphology and Genesis in the Liyue Basin, South China Sea. Acta Oceanol. Sinica. 2019, 41, 106–120. [Google Scholar]
- Lee, C.; Lee, J.; Kim, M.; Kim, G.Y. Implementation of Barcelona Basic Model into TOUGH2-MP/FLAC3D. Tunn. Undergr. Space 2020, 30, 39–62. [Google Scholar]
- Purkamo, L.; Von Ahn, C.M.E.; Jilbert, T.; Muniruzzaman, M.; Bange, H.W.; Jenner, A.-K.; Böttcher, M.E.; Virtasalo, J.J. Impact of Submarine Groundwater Discharge on Biogeochemistry and Microbial Communities in Pockmarks. Geochim. Cosmochim. Acta 2022, 334, 14–44. [Google Scholar] [CrossRef]
- Nielsen, P.; Teakle, I.A.L. Turbulent Diffusion of Momentum and Suspended Particles: A Finite-Mixing-Length Theory. Phys. Fluids 2004, 16, 2342–2348. [Google Scholar] [CrossRef]
- Rastello, M.; Michallet, H.; Marié, J.L. Sediment Erosion in Zero-Mean-Shear Turbulence. Phys. Fluids 2020, 32, 036601. [Google Scholar] [CrossRef]
- Schlüter, M.; Sauter, E.J.; Andersen, C.E.; Dahlgaard, H.; Dando, P.R. Spatial Distribution and Budget for Submarine Groundwater Discharge in Eckernförde Bay (Western Baltic Sea). Limnol. Oceanogr. 2004, 49, 157–167. [Google Scholar] [CrossRef]
- Da Rocha, C.M.; Barboza, E.G.; Niencheski, L.F.H. Radon Activity and Submarine Groundwater Discharge in Different Geological Regions of a Coastal Barrier in Southern Brazil. Environ. Earth Sci. 2018, 77, 527. [Google Scholar] [CrossRef]
- Luoma, S.; Majaniemi, J.; Pullinen, A.; Mursu, J.; Virtasalo, J.J. Geological and Groundwater Flow Model of a Submarine Groundwater Discharge Site at Hanko (Finland), Northern Baltic Sea. Hydrogeol. J. 2021, 29, 1279–1297. [Google Scholar] [CrossRef]
- Virtasalo, J.J.; Schröder, J.F.; Luoma, S.; Majaniemi, J.; Mursu, J.; Scholten, J. Submarine Groundwater Discharge Site in the First Salpausselkä Ice-Marginal Formation, South Finland. Solid Earth 2019, 10, 405–423. [Google Scholar] [CrossRef]
- Chen, N.-C.; O’Regan, M.; Hong, W.-L.; Andrén, T.; Rodellas, V.; Roth, F.; Mörth, C.-M.; Regnéll, C.; Marxen, H.S.; Ten Hietbrink, S.; et al. Investigation of Submarine Groundwater Discharge into the Baltic Sea through Varved Glacial Clays. Cont. Shelf Res. 2024, 282, 105337. [Google Scholar] [CrossRef]
- Andresen, K.J.; Dahlin, A.; Kjeldsen, K.U.; Røy, H.; Bennike, O.; Nørgaard-Pedersen, N.; Seidenkrantz, M.-S. The Longevity of Pockmarks—A Case Study from a Shallow Water Body in Northern Denmark. Mar. Geol. 2021, 434, 106440. [Google Scholar] [CrossRef]
- Kaleris, V.; Lagas, G.; Marczinek, S.; Piotrowski, J.A. Modelling Submarine Groundwater Discharge: An Example from the Western Baltic Sea. J. Hydrol. 2002, 265, 76–99. [Google Scholar] [CrossRef]
- Sultan, N.; Marsset, B.; Ker, S.; Marsset, T.; Voisset, M.; Vernant, A.M.; Bayon, G.; Cauquil, E.; Adamy, J.; Colliat, J.L.; et al. Hydrate Dissolution as a Potential Mechanism for Pockmark Formation in the Niger Delta. J. Geophys. Res. Solid Earth 2010, 115, 2010JB007453. [Google Scholar] [CrossRef]
- Nakajima, T.; Kakuwa, Y.; Yasudomi, Y.; Itaki, T.; Motoyama, I.; Tomiyama, T.; Machiyama, H.; Katayama, H.; Okitsu, O.; Morita, S.; et al. Formation of Pockmarks and Submarine Canyons Associated with Dissociation of Gas Hydrates on the Joetsu Knoll, Eastern Margin of the Sea of Japan. J. Asian Earth Sci. 2014, 90, 228–242. [Google Scholar] [CrossRef]
- Whiticar, M.J.; Werner, F. Pockmarks: Submarine Vents of Natural Gas or Freshwater Seeps? Geo-Mar. Lett. 1981, 1, 193–199. [Google Scholar] [CrossRef]
- Santos, I.R.; Burnett, W.C.; Dittmar, T.; Suryaputra, I.G.N.A.; Chanton, J. Tidal Pumping Drives Nutrient and Dissolved Organic Matter Dynamics in a Gulf of Mexico Subterranean Estuary. Geochim. Cosmochim. Acta 2009, 73, 1325–1339. [Google Scholar] [CrossRef]
- Idczak, J.; Brodecka-Goluch, A.; Łukawska-Matuszewska, K.; Graca, B.; Gorska, N.; Klusek, Z.; Pezacki, P.D.; Bolałek, J. A Geophysical, Geochemical and Microbiological Study of a Newly Discovered Pockmark with Active Gas Seepage and Submarine Groundwater Discharge (MET1-BH, Central Gulf of Gdańsk, Southern Baltic Sea). Sci. Total Environ. 2020, 742, 140306. [Google Scholar] [CrossRef]
- Wei, J.; Pape, T.; Sultan, N.; Colliat, J.-L.; Himmler, T.; Ruffine, L.; De Prunelé, A.; Dennielou, B.; Garziglia, S.; Marsset, T.; et al. Gas Hydrate Distributions in Sediments of Pockmarks from the Nigerian Margin—Results and Interpretation from Shallow Drilling. Mar. Pet. Geol. 2015, 59, 359–370. [Google Scholar] [CrossRef]
- Liu, X.; Qu, Z.; Guo, T.; Sun, Y.; Rabiei, M.; Liao, H. A Coupled Thermo-Hydrologic-Mechanical (THM) Model to Study the Impact of Hydrate Phase Transition on Reservoir Damage. Energy 2021, 216, 119222. [Google Scholar] [CrossRef]
- Li, K.; Li, M.; Chen, B.; Wang, S.; Yang, M.; Song, Y. Methane Hydrate Decomposition in Fluid Flow Environment: Insights from Molecular Dynamics Simulations. Int. J. Heat Mass Transf. 2025, 241, 126731. [Google Scholar] [CrossRef]
- Chen, B.; Liu, Z.; Sun, H.; Zhao, G.; Sun, X.; Yang, M. The Synthetic Effect of Traditional-Thermodynamic-Factors (Temperature, Salinity, Pressure) and Fluid Flow on Natural Gas Hydrate Recovery Behaviors. Energy 2021, 233, 121147. [Google Scholar] [CrossRef]
- Chand, S.; Rise, L.; Ottesen, D.; Dolan, M.F.J.; Bellec, V.; Bøe, R. Pockmark-like Depressions near the Goliat Hydrocarbon Field, Barents Sea: Morphology and Genesis. Mar. Pet. Geol. 2009, 26, 1035–1042. [Google Scholar] [CrossRef]
- Dimitrov, L.; Woodside, J. Deep Sea Pockmark Environments in the Eastern Mediterranean. Mar. Geol. 2003, 195, 263–276. [Google Scholar] [CrossRef]
- Andrews, B.D.; Brothers, L.L.; Barnhardt, W.A. Automated Feature Extraction and Spatial Organization of Seafloor Pockmarks, Belfast Bay, Maine, USA. Geomorphology 2010, 124, 55–64. [Google Scholar] [CrossRef]
- Clementi, V.J.; Rosenthal, Y.; Bova, S.C.; Thomas, E.K.; Wright, J.D.; Mortlock, R.A.; Cowling, O.C.; Godfrey, L.V.; Childress, L.B.; Expedition 379T Scientists. Deep Submarine Infiltration of Altered Geothermal Groundwater on the South Chilean Margin. Commun. Earth Environ. 2022, 3, 218. [Google Scholar] [CrossRef]
- Russoniello, C.J.; Fernandez, C.; Bratton, J.F.; Banaszak, J.F.; Krantz, D.E.; Andres, A.S.; Konikow, L.F.; Michael, H.A. Geologic Effects on Groundwater Salinity and Discharge into an Estuary. J. Hydrol. 2013, 498, 1–12. [Google Scholar] [CrossRef]
- Ceccato, A.; Viola, G.; Tartaglia, G.; Antonellini, M. In–Situ Quantification of Mechanical and Permeability Properties on Outcrop Analogues of Offshore Fractured and Weathered Crystalline Basement: Examples from the Rolvsnes Granodiorite, Bømlo, Norway. Mar. Pet. Geol. 2021, 124, 104859. [Google Scholar] [CrossRef]
- Lino, Y.; Udayashankar, H.N.; Suresh Babu, D.S.; Ramasamy, M.; Balakrishna, K. Large Submarine Groundwater Discharges to the Arabian Sea from Tropical Southwestern Indian Coast: Measurements from Seepage Meters Deployed during the Low Tide. J. Hydrol. 2023, 620, 129394. [Google Scholar] [CrossRef]
- Lin, X.; Chen, X.; Chen, F.; Jin, G.; Wang, C.; Mayakrishnan, M.; Shi, Z.; Si, X. Seasonal Dynamics of Submarine Groundwater Discharge in Zhanjiang Bay: An Investigative Study Utilizing 222Rn as a Tracer. Front. Mar. Sci. 2024, 11, 1451533. [Google Scholar] [CrossRef]
- Hsu, F.-H.; Su, C.-C.; Wang, P.-L.; Lin, I.-T. Temporal Variations of Submarine Groundwater Discharge into a Tide-Dominated Coastal Wetland (Gaomei Wetland, Western Taiwan) Indicated by Radon and Radium Isotopes. Water 2020, 12, 1806. [Google Scholar] [CrossRef]
- Ono, T.; Amezawa, R.; Igarashi, A.; Ota, M.; Sato, Y.; Inomata, H. Measurements and Correlations of Density and Viscosity for Short Chain (C1–C3) n-Alcohol–Water Mixtures in the Temperature Range from 350.7 K to 476.2 K at Pressures up to 40 MPa. Fluid Phase Equilibria 2016, 407, 198–208. [Google Scholar] [CrossRef]
- Paull, C.K.; Ussler, W.; Borowski, W.S.; Spiess, F.N. Methane-Rich Plumes on the Carolina Continental Rise: Associations with Gas Hydrates. Geology 1995, 23, 89. [Google Scholar] [CrossRef]
- Gonneea, M.E.; Mulligan, A.E.; Charette, M.A. Seasonal Cycles in Radium and Barium within a Subterranean Estuary: Implications for Groundwater Derived Chemical Fluxes to Surface Waters. Geochim. Cosmochim. Acta 2013, 119, 164–177. [Google Scholar] [CrossRef]
- Liu, Q.; Charette, M.A.; Breier, C.F.; Henderson, P.B.; McCorkle, D.C.; Martin, W.; Dai, M. Carbonate System Biogeochemistry in a Subterranean Estuary—Waquoit Bay, USA. Geochim. Cosmochim. Acta 2017, 203, 422–439. [Google Scholar] [CrossRef]
- Luo, C.; Chen, X.; Shi, Z.; Chen, J.; Wu, T.; Shi, C.; Huang, X.; Qiao, D.; Yang, T. Effects of Precipitation and Dissolution of Carbonate Cements on the Quality of Deeply Buried High-Temperature and Overpressured Clastic Reservoirs: XD 10 Block, Yinggehai Basin, South China Sea. Mar. Pet. Geol. 2022, 139, 105591. [Google Scholar] [CrossRef]
- Evans, R.L.; Lizarralde, D. Geophysical Evidence for Karst Formation Associated with Offshore Groundwater Transport: An Example from North Carolina. Geochem. Geophys. Geosyst. 2003, 4, 2003GC000510. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, J.; Liu, X.; Cao, J.; Zhang, Y.; Sun, L.; Song, X.; Xing, C. Coastal Wetland Degradation and Ecological Problems in the Yellow River Delta during 2005–2021. J. Mar. Environ. Eng. 2024, 11, 255–274. [Google Scholar]
- Wu, Z.; Zhu, H.; Tang, D.; Wang, Y.; Zidan, A.; Cui, Z. Submarine Groundwater Discharge as a Significant Export of Dissolved Inorganic Carbon from a Mangrove Tidal Creek to Qinglan Bay (Hainan Island, China). Cont. Shelf Res. 2021, 223, 104451. [Google Scholar] [CrossRef]
- Arévalo-Martínez, D.L.; Haroon, A.; Bange, H.W.; Erkul, E.; Jegen, M.; Moosdorf, N.; Schneider Von Deimling, J.; Berndt, C.; Böttcher, M.E.; Hoffmann, J.; et al. Ideas and Perspectives: Land–Ocean Connectivity through Groundwater. Biogeosciences 2023, 20, 647–662. [Google Scholar] [CrossRef]
- Ruiz-González, C.; Rodellas, V.; Garcia-Orellana, J. The Microbial Dimension of Submarine Groundwater Discharge: Current Challenges and Future Directions. FEMS Microbiol. Rev. 2021, 45, fuab010. [Google Scholar] [CrossRef]
- Prakash, R.; Srinivasamoorthy, K.; Gopinath, S.; Saravanan, K. Submarine Groundwater Discharge as Sources for Dissolved Nutrient Fluxes in Coleroon River Estuary, Bay of Bengal, India. J. Contam. Hydrol. 2020, 233, 103660. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Kong, J.; Zhang, C.; Tang, Z.; Shen, C.; Luo, Z.; Lu, C.; Feng, X.; Sun, Y. Zonations and Oscillations via Heterotrophic Processes in Tidal Unvegetated Aquifers. Hydrol. Process. 2022, 36, e14654. [Google Scholar] [CrossRef]
Types of Pockmarks | Morphology of Pockmarks | Reference |
---|---|---|
Elongated pockmarks | [25] | |
Circular pockmarks | [46] | |
Elliptical pockmarks | [47] | |
Crescentic pockmarks | [48] | |
Irregular pockmarks | [49] |
Impact Mechanisms | Mechanisms of Action | Regulatory Factors |
---|---|---|
Microbial Clogging Effect | Proliferation of heterotrophic bacteria clogs pore spaces, reduces local permeability, diverting and concentrating water flow | Organic matter supply Microbial growth rate |
Microbial Respiration Effect | Oxygen consumption induces localized hypoxia and generates CO2, acidifies pore water, accelerating substrate dissolution | Organic carbon concentration Biocommunity structure |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Shan, H.; Feng, X.; Jia, Z.; Jiang, L.; Wang, S.; Zhu, C. Review of Research Progress on the Impact of Submarine Groundwater Discharge on Pockmark Formation and Evolution. J. Mar. Sci. Eng. 2025, 13, 1070. https://doi.org/10.3390/jmse13061070
Zhang Z, Shan H, Feng X, Jia Z, Jiang L, Wang S, Zhu C. Review of Research Progress on the Impact of Submarine Groundwater Discharge on Pockmark Formation and Evolution. Journal of Marine Science and Engineering. 2025; 13(6):1070. https://doi.org/10.3390/jmse13061070
Chicago/Turabian StyleZhang, Zhengrong, Hongxian Shan, Xuezhi Feng, Zhentian Jia, Long Jiang, Siming Wang, and Chaoqi Zhu. 2025. "Review of Research Progress on the Impact of Submarine Groundwater Discharge on Pockmark Formation and Evolution" Journal of Marine Science and Engineering 13, no. 6: 1070. https://doi.org/10.3390/jmse13061070
APA StyleZhang, Z., Shan, H., Feng, X., Jia, Z., Jiang, L., Wang, S., & Zhu, C. (2025). Review of Research Progress on the Impact of Submarine Groundwater Discharge on Pockmark Formation and Evolution. Journal of Marine Science and Engineering, 13(6), 1070. https://doi.org/10.3390/jmse13061070