Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (153)

Search Parameters:
Keywords = ground heat flux

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7111 KiB  
Article
Seasonal Variation in Energy Balance, Evapotranspiration and Net Ecosystem Production in a Desert Ecosystem of Dengkou, Inner Mongolia, China
by Muhammad Zain Ul Abidin, Huijie Xiao, Sanaullah Magsi, Fang Hongxin, Komal Muskan, Phuocthoi Hoang and Muhammad Azher Hassan
Water 2025, 17(15), 2307; https://doi.org/10.3390/w17152307 - 3 Aug 2025
Viewed by 209
Abstract
This study investigates the seasonal dynamics of energy balance, evapotranspiration (ET), and Net Ecosystem Production (NEP) in the Dengkou desert ecosystem of Inner Mongolia, China. Using eddy covariance and meteorological data from 2019 to 2022, the research focuses on understanding how these processes [...] Read more.
This study investigates the seasonal dynamics of energy balance, evapotranspiration (ET), and Net Ecosystem Production (NEP) in the Dengkou desert ecosystem of Inner Mongolia, China. Using eddy covariance and meteorological data from 2019 to 2022, the research focuses on understanding how these processes interact in one of the world’s most water-limited environments. This arid research area received an average of 109.35 mm per annum precipitation over the studied period, classifying the region as a typical arid ecosystem. Seasonal patterns were observed in daily air temperature, with extremes ranging from −20.6 °C to 29.6 °C. Temporal variations in sensible heat flux (H), latent heat flux (LE), and net radiation (Rn) peaked during summer season. The average ground heat flux (G) was mostly positive throughout the observation period, indicating heat transmission from atmosphere to soil, but showed negative values during the winter season. The energy balance ratio for the studied period was in the range of 0.61 to 0.80, indicating challenges in achieving energy closure and ecological shifts. ET exhibited two annual peaks influenced by vegetation growth and climate change, with annual ET exceeding annual precipitation, except in 2021. Net ecosystem production (NEP) from 2019 to 2020 revealed that the Dengkou desert were a net source of carbon, indicating the carbon loss from the ecosystem. In 2021, the Dengkou ecosystem shifted to become a net carbon sink, effectively sequestrating carbon. However, this was sharply reversed in 2022, resulting in a significant net release of carbon. The study findings highlight the complex interactions between energy balance components, ET, and NEP in desert ecosystems, providing insights into sustainable water management and carbon neutrality strategies in arid regions under climate change effect. Full article
(This article belongs to the Special Issue The Observation and Modeling of Surface Air Hydrological Factors)
Show Figures

Graphical abstract

25 pages, 6368 KiB  
Article
Development of a Thermal Infrared Network for Volcanic and Environmental Monitoring: Hardware Design and Data Analysis Software Code
by Fabio Sansivero, Giuseppe Vilardo and Ciro Buonocunto
Sensors 2025, 25(13), 4141; https://doi.org/10.3390/s25134141 - 2 Jul 2025
Viewed by 297
Abstract
Thermal infrared (TIR) ground observations are a well-established method for investigating surface temperature variations in thermally anomalous areas. However, commercially available technical solutions are currently limited, often offering proprietary products with minimal customization options for establishing a permanent TIR monitoring network. This work [...] Read more.
Thermal infrared (TIR) ground observations are a well-established method for investigating surface temperature variations in thermally anomalous areas. However, commercially available technical solutions are currently limited, often offering proprietary products with minimal customization options for establishing a permanent TIR monitoring network. This work presents the comprehensive development of a thermal infrared monitoring network, detailing everything from the hardware schematics of the remote monitoring station (RMS) to the code for the final data processing software. The procedures implemented in the RMS for managing TIR sensor operations, acquiring environmental data, and transmitting data remotely are thoroughly discussed, along with the technical solutions adopted. The processing of TIR imagery is carried out using ASIRA (Automated System of InfraRed Analysis), a free software package, now developed for GNU Octave. ASIRA performs quality filtering and co-registration, and applies various seasonal correction methodologies to extract time series of deseasoned surface temperatures, estimate heat fluxes, and track variations in thermally anomalous areas. Processed outputs include binary, Excel, and CSV formats, with interactive HTML plots for visualization. The system’s effectiveness has been validated in active volcanic areas of southern Italy, demonstrating high reliability in detecting anomalous thermal behavior and distinguishing endogenous geophysical processes. The aim of this work is to enable readers to easily replicate and deploy this open-source, low-cost system for the continuous, automated thermal monitoring of active volcanic and geothermal areas and environmental pollution, thereby supporting hazard assessment and scientific research. Full article
(This article belongs to the Special Issue Recent Advances in Infrared Thermography and Sensing Technologies)
Show Figures

Figure 1

28 pages, 12669 KiB  
Article
Paddy Field Scale Evapotranspiration Estimation Based on Two-Source Energy Balance Model with Energy Flux Constraints and UAV Multimodal Data
by Tian’ao Wu, Kaihua Liu, Minghan Cheng, Zhe Gu, Weihua Guo and Xiyun Jiao
Remote Sens. 2025, 17(10), 1662; https://doi.org/10.3390/rs17101662 - 8 May 2025
Cited by 5 | Viewed by 676
Abstract
Accurate evapotranspiration (ET) monitoring is important for making scientific irrigation decisions. Unmanned aerial vehicle (UAV) remote sensing platforms allow for the flexible and efficient acquisition of field data, providing a valuable approach for large-scale ET monitoring. This study aims to enhance [...] Read more.
Accurate evapotranspiration (ET) monitoring is important for making scientific irrigation decisions. Unmanned aerial vehicle (UAV) remote sensing platforms allow for the flexible and efficient acquisition of field data, providing a valuable approach for large-scale ET monitoring. This study aims to enhance the accuracy and reliability of ET estimation in rice paddies through two synergistic approaches: (1) integrating the energy flux diurnal variations into the Two-Source Energy Balance (TSEB) model, which considers the canopy and soil temperature components separately, for physical estimation and (2) optimizing the flight altitudes and observation times for thermal infrared (TIR) data acquisition to enhance the data quality. The results indicated that the energy flux in rice paddies followed a single-peak diurnal pattern dominated by net radiation (Rn). The diurnal variation in the ratio of soil heat flux (G) to Rn could be well fitted by the cosine function with a max value and peak time (R2 > 0.90). The optimal flight altitude and time (50 m and 11:00 am) for improved identification of temperature differentiation between treatments were further obtained through cross-comparison. These adaptations enabled the TSEB model to achieve a satisfactory accuracy in estimating energy flux compared to the single-source SEBAL model, with R2 values of 0.8501 for RnG and 0.7503 for latent heat (LE), as well as reduced rRMSE values. In conclusion, this study presents a reliable method for paddy field scale ET estimation based on a calibrated TSEB model. Moreover, the integration of ground and UAV multimodal data highlights its potential for precise irrigation practices and sustainable water resource management. Full article
Show Figures

Figure 1

24 pages, 8013 KiB  
Article
Assessing the Combined Impact of Land Surface Temperature and Droughts to Heatwaves over Europe Between 2003 and 2023
by Foteini Karinou, Ilias Agathangelidis and Constantinos Cartalis
Remote Sens. 2025, 17(9), 1655; https://doi.org/10.3390/rs17091655 - 7 May 2025
Cited by 1 | Viewed by 1016
Abstract
The increasing frequency, intensity, and duration of heatwaves and droughts pose significant societal and environmental challenges across Europe. This study analyzes land surface temperature (LST) observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) between 2003 and 2023 to identify thermal anomalies associated with [...] Read more.
The increasing frequency, intensity, and duration of heatwaves and droughts pose significant societal and environmental challenges across Europe. This study analyzes land surface temperature (LST) observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) between 2003 and 2023 to identify thermal anomalies associated with heatwaves. Additionally, this study examines the role of different land cover types in modulating heatwave impacts, employing turbulent flux observations from micrometeorological towers. The interaction between heatwaves and droughts is further explored using the Standardized Precipitation Evapotranspiration Index (SPEI) and soil moisture data, highlighting the amplifying role of water stress through land–atmosphere feedbacks. The results reveal a statistically significant upward trend in LST-derived thermal anomalies, with the 2022 heatwave identified as the most extreme event, when approximately 75% of Europe experienced strong positive anomalies. On average, 91% of heatwave episodes identified in reanalysis-based air temperature records coincided with LST-defined anomaly events, confirming LST as a robust proxy for heatwave detection. Flux tower observations show that, during heatwaves, evergreen coniferous and mixed forests predominantly enhance sensible heat fluxes (mean anomalies during midday of 74 W/m2 and 62 W/m2, respectively), while grasslands exhibit increased latent heat flux (89 W/m2). Notably, under extreme compound heat–drought conditions, this pattern reverses for grassed sites due to rapid soil moisture depletion. Overall, the findings underscore the combined influence of surface temperature and drought in driving extreme heat events and introduce a novel, multi-source approach that integrates satellite, reanalysis, and ground-based data to assess heatwave dynamics across scales. Full article
Show Figures

Graphical abstract

24 pages, 30254 KiB  
Article
Assessing Spatiotemporal LST Variations in Urban Landscapes Using Diurnal UAV Thermography
by Nizar Polat and Abdulkadir Memduhoğlu
Appl. Sci. 2025, 15(7), 3448; https://doi.org/10.3390/app15073448 - 21 Mar 2025
Cited by 1 | Viewed by 449
Abstract
This study investigates the spatiotemporal dynamics of land surface temperature (LST) across five distinct land use/land cover (LULC) classes through high-resolution unmanned aerial vehicle (UAV) thermal remote sensing. Thermal orthomosaics were systematically captured at four diurnal periods (morning, afternoon, evening, and midnight) over [...] Read more.
This study investigates the spatiotemporal dynamics of land surface temperature (LST) across five distinct land use/land cover (LULC) classes through high-resolution unmanned aerial vehicle (UAV) thermal remote sensing. Thermal orthomosaics were systematically captured at four diurnal periods (morning, afternoon, evening, and midnight) over an urban university campus environment. Using stratified random sampling in each class with spatial controls to minimize autocorrelation, we quantified thermal signatures across bare soil, buildings, grassland, paved roads, and water bodies. Statistical analyses incorporating outlier management via the Interquartile Range (IQR) method, spatial autocorrelation assessment using Moran’s I, correlation testing, and Geographically Weighted Regression (GWR) revealed substantial thermal variability across LULC classes, with temperature differentials of up to 17.7 °C between grassland (20.57 ± 5.13 °C) and water bodies (7.10 ± 1.25 °C) during afternoon periods. The Moran’s I analysis indicated notable spatial dependence in land surface temperature, justifying the use of GWR to model these spatial patterns. Impervious surfaces demonstrated pronounced heat retention capabilities, with paved roads maintaining elevated temperatures into evening (13.18 ± 3.49 °C) and midnight (2.25 ± 1.51 °C) periods despite ambient cooling. Water bodies exhibited exceptional thermal stability (SD range: 0.79–2.85 °C across all periods), while grasslands showed efficient nocturnal cooling (ΔT = 23.02 °C from afternoon to midnight). GWR models identified spatially heterogeneous relationships between LST patterns and LULC distribution, with water bodies exerting the strongest localized cooling influence (R2≈ 0.62–0.68 during morning/evening periods). The findings demonstrate that surface material properties significantly modulate diurnal heat flux dynamics, with human-made surfaces contributing to prolonged thermal loading. This research advances urban microclimate monitoring methodologies by integrating high-resolution UAV thermal imagery with robust statistical frameworks, providing empirically-grounded insights for climate-adaptive urban planning and heat mitigation strategies. Future work should incorporate multi-seasonal observations, in situ validation instrumentation, and integration with human thermal comfort indices. Full article
(This article belongs to the Special Issue Technical Advances in UAV Photogrammetry and Remote Sensing)
Show Figures

Figure 1

23 pages, 18319 KiB  
Article
Low-Altitude, Overcooled Scree Slope: Insights into Temperature Distribution Using High-Resolution Thermal Imagery in the Romanian Carpathians
by Andrei Ioniță, Iosif Lopătiță, Petru Urdea, Oana Berzescu and Alexandru Onaca
Land 2025, 14(3), 607; https://doi.org/10.3390/land14030607 - 13 Mar 2025
Viewed by 663
Abstract
Advective heat fluxes (chimney effect) in porous debris facilitate ground cooling on scree slopes, even at low altitudes, and promote the occurrence of sporadic permafrost. The spatial distribution of ground surface temperature on an overcooled, low-altitude scree slope in the Romanian Carpathians was [...] Read more.
Advective heat fluxes (chimney effect) in porous debris facilitate ground cooling on scree slopes, even at low altitudes, and promote the occurrence of sporadic permafrost. The spatial distribution of ground surface temperature on an overcooled, low-altitude scree slope in the Romanian Carpathians was analyzed using UAV-based infrared thermography in different seasons. The analysis revealed significant temperature gradients within the scree slope, with colder, forest-insulated lower sections contrasting with warmer, solar-exposed upper regions. Across all surveyed seasons, this pattern remained evident, with the strongest temperature contrasts in December and April. February exhibited the most stable temperatures, with thermal readings primarily corresponding to snow surfaces rather than exposed rock. Rock surfaces displayed greater temperature variation than vent holes. Vent holes were generally cooler than rock surfaces, particularly in warmer periods. The persistent presence of ice and low temperatures at the end of the warm season suggested the potential existence of isolated permafrost. The results confirm the chimney effect, where cold air infiltrates the lower talus, gradually warms as it ascends, and outflows at higher elevations. UAV-based thermal imagery proved effective in detecting microclimatic variability and elucidating thermal processes governing talus slopes. This study provides valuable insights into extrazonal permafrost behavior, particularly in the context of global climate change. Full article
(This article belongs to the Special Issue Integration of Remote Sensing and GIS for Land Use Change Assessment)
Show Figures

Figure 1

19 pages, 7390 KiB  
Article
Local Influence of Surface Relative Humidity on Weather Radar Rainfall Observations over an Agricultural Semi-Arid Area
by Francesc Polls, Joan Bech, Mireia Udina, Eric Peinó and Tomeu Rigo
Remote Sens. 2025, 17(3), 439; https://doi.org/10.3390/rs17030439 - 27 Jan 2025
Viewed by 957
Abstract
Agricultural areas in semi-arid regions modify low-level atmospheric conditions through changes in heat and moisture surface fluxes and enhanced evapotranspiration. This study aims to investigate the influence of near-ground-level relative humidity (RH) on local precipitation characteristics in a relatively flat, mid-latitude, semi-arid agricultural [...] Read more.
Agricultural areas in semi-arid regions modify low-level atmospheric conditions through changes in heat and moisture surface fluxes and enhanced evapotranspiration. This study aims to investigate the influence of near-ground-level relative humidity (RH) on local precipitation characteristics in a relatively flat, mid-latitude, semi-arid agricultural region, divided into a rainfed and an irrigated area with high evapotranspiration contrast in summer. The region was selected for the Land Surface Interactions with the Atmosphere over the Iberian Semi-Arid Environment (LIAISE) international field campaign in 2021 and here is studied using Automatic Weather Station observations and C-band weather radar data covering six years. Summer RH records show clear contrasts between irrigated and non-irrigated areas, unlike rain gauge and radar-derived rainfall, which do not exhibit substantial differences. A closer analysis indicates that RH differences between irrigated and non-irrigated areas before rainfall tend to diminish for several hours after the rainfall onset. This suggests that the presence of rainfall is temporally more important than whether the terrain is irrigated or not. Examination of radar reflectivity (Z) profiles considered convective and non-convective cases averaged during the first 30 and 180 min from the precipitation onset. Results indicated a dependence on ground-level RH for convective cases, leading to higher Z values with higher RH, clearer for the first 30 min averaged profiles. Finally, a linear relation was found between the lowest 1 km radar Z value and collocated RH for the first 30 min period of convective precipitation, increasing Z with RH. These results point out that, despite no differences in precipitation amounts found over contiguous irrigated and non-irrigated areas, there is a local impact of low-level moisture on convective rainfall. Full article
Show Figures

Figure 1

21 pages, 8566 KiB  
Article
Theoretical Analysis Based on Experimental Studies of Heat and Moisture Fluxes Penetrating Through a Masonry Wall Above Ground Level in an Annual Cycle
by Mariusz Owczarek and Barbara Nasiłowska
Energies 2024, 17(22), 5687; https://doi.org/10.3390/en17225687 - 14 Nov 2024
Viewed by 754
Abstract
This article calculates horizontal and vertical heat and moisture fluxes in the wall based on measurements of temperature and relative humidity in the building wall. It was a basement wall that was close to the ground on one side and the basement ceiling [...] Read more.
This article calculates horizontal and vertical heat and moisture fluxes in the wall based on measurements of temperature and relative humidity in the building wall. It was a basement wall that was close to the ground on one side and the basement ceiling on the other, which increased the difficulty in problem simulation. The brick material from the wall was also analyzed under an electron microscope and its elemental composition was determined using the EDX (Energy Dispersive X-ray spectroscopy) method. The brick had a relatively uniform elemental composition apart from several variations in calcium content. Monthly, daily, and hourly heat and moisture fluxes were determined. The tested wall was characterized by low humidity, and the values obtained of the moisture fluxes confirmed this. The maximum recorded relative humidity inside the wall is 57.89%, and the minimum is 43.99%. The effect of buffering moisture by brick material was noticed. Vertical streams of water vapor were found to be important in the moisture balance of the tested partition. The maximum heat flux through the tested wall area in August was 0.06 W, and the minimum in January was −0.2 W. The maximum moisture flux in August was 5 × 10−11 kg/s, and the minimum in January was −5 × 10−11 kg/s. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

18 pages, 5696 KiB  
Article
Mechanism of Wind and Buoyancy Driving on Ventilation and Pollutant Transport in an Idealized Urban Street Canyon
by Guoyi Jiang, Ming Wu, Hongbo Li and Yujin Wu
Buildings 2024, 14(10), 3168; https://doi.org/10.3390/buildings14103168 - 5 Oct 2024
Cited by 1 | Viewed by 1197
Abstract
The mechanisms underlying the effects of wind and buoyancy on ventilation in urban street canyons are unclear. This study investigated the effects of facade heating on ventilation and pollutant transport in an idealized street canyon with a 1.67 aspect ratio through computational fluid [...] Read more.
The mechanisms underlying the effects of wind and buoyancy on ventilation in urban street canyons are unclear. This study investigated the effects of facade heating on ventilation and pollutant transport in an idealized street canyon with a 1.67 aspect ratio through computational fluid dynamics simulations. The dispersion pattern of discharged hot pollutants was also studied. A primary recirculation was observed when facade heating was not applied; this recirculation was promoted in leeward-wall and ground heating cases. However, the recirculation was bifurcated into two recirculations in windward-wall heating cases, restricting ventilation. Enhanced recirculation increased the ventilation and decreased the pollution level; by contrast, air pollution increased considerably when the recirculation was bifurcated and ventilation was restricted. In the hot-pollutant case, similar results to those in the ground-heating case were observed. The hot discharged pollutant enhanced ventilation, reducing pollution. The pollutant transport mechanism was determined through an analysis of pollutant fluxes. For the one-recirculation pattern, air convection transported the pollutant from the ground level to the top boundary, and turbulent diffusion then caused pollutant removal. For the two-recirculation pattern, turbulent diffusion contributed substantially to pollutant transport both in the junction between the recirculations and through the top boundary of the street canyon. Full article
(This article belongs to the Special Issue Built Environments and Environmental Buildings)
Show Figures

Figure 1

15 pages, 3570 KiB  
Article
Dynamics of the Interaction between Freeze–Thaw Process and Surface Energy Budget on the Permafrost Region of the Qinghai-Tibet Plateau
by Junjie Ma, Ren Li, Tonghua Wu, Hongchao Liu, Xiaodong Wu, Guojie Hu, Wenhao Liu, Shenning Wang, Yao Xiao, Shengfeng Tang, Jianzong Shi and Yongping Qiao
Land 2024, 13(10), 1609; https://doi.org/10.3390/land13101609 - 3 Oct 2024
Cited by 1 | Viewed by 1368
Abstract
Exploring the complex relationship between the freeze–thaw cycle and the surface energy budget (SEB) is crucial for deepening our comprehension of climate change. Drawing upon extensive field monitoring data of the Qinghai-Tibet Plateau, this study examines how surface energy accumulation influences the thawing [...] Read more.
Exploring the complex relationship between the freeze–thaw cycle and the surface energy budget (SEB) is crucial for deepening our comprehension of climate change. Drawing upon extensive field monitoring data of the Qinghai-Tibet Plateau, this study examines how surface energy accumulation influences the thawing depth. Combined with Community Land Model 5.0 (CLM5.0), a sensitivity test was designed to explore the interplay between the freeze–thaw cycle and the SEB. It is found that the freeze–thaw cycle process significantly alters the distribution of surface energy fluxes, intensifying energy exchange between the surface and atmosphere during phase transitions. In particular, an increase of 65.6% is observed in the ground heat flux during the freezing phase, which subsequently influences the sensible and latent heat fluxes. However, it should be noted that CLM5.0 has limitations in capturing the minor changes in soil moisture content and thermal conductivity during localized freezing events, resulting in an imprecise representation of the complex freeze–thaw dynamics in cold regions. Nevertheless, these results offer valuable insights and suggestions for improving the parameterization schemes of land surface models, enhancing the accuracy and applicability of remote sensing applications and climate research. Full article
(This article belongs to the Special Issue Impact of Climate Change on Land and Water Systems)
Show Figures

Figure 1

22 pages, 2742 KiB  
Article
Simulation of Shock Waves in Methane: A Self-Consistent Continuum Approach Enhanced Using Machine Learning
by Zarina Maksudova, Liia Shakurova and Elena Kustova
Mathematics 2024, 12(18), 2924; https://doi.org/10.3390/math12182924 - 20 Sep 2024
Cited by 2 | Viewed by 1549
Abstract
This study presents a self-consistent one-temperature approach for modeling shock waves in single-component methane. The rigorous mathematical model takes into account the complex structure of CH4 molecules with multiple vibrational modes and incorporates exact kinetic theory-based transport coefficients, including bulk viscosity. The [...] Read more.
This study presents a self-consistent one-temperature approach for modeling shock waves in single-component methane. The rigorous mathematical model takes into account the complex structure of CH4 molecules with multiple vibrational modes and incorporates exact kinetic theory-based transport coefficients, including bulk viscosity. The effects of the bulk viscosity on gas-dynamic variables and transport terms are investigated in detail under varying degree of gas rarefaction. It is demonstrated that neglecting bulk viscosity significantly alters the shock front width and peak values of normal stress and heat flux, with the effect being more evident in denser gases. The study also evaluates limitations in the use of a constant specific heat ratio, revealing that this approach fails to accurately predict post-shock parameters in polyatomic gases, even at moderate Mach numbers. To enhance computational efficiency, a simplified approach based on a reduced vibrational spectrum is assessed. The results indicate that considering only the ground state leads to substantial errors in the fluid-dynamic variables across the shock front. Another approach explored involves the application of machine learning techniques to calculate vibrational energy and specific heat. Among the methods tested, the Feedforward Neural Network (FNN) proves to be the most effective, offering significant acceleration in calculations and providing one of the lowest errors. When integrated into the fluid-dynamic solver, the FNN approach yields nearly a three-fold increase in speed in numerical simulations of the shock wave structure. Full article
(This article belongs to the Special Issue Mathematical Modeling, Optimization and Machine Learning, 2nd Edition)
Show Figures

Figure 1

21 pages, 24381 KiB  
Article
Twenty Years of Thermal Infrared Observations (2004–2024) at Campi Flegrei Caldera (Italy) by the Permanent Surveillance Ground Network of INGV-Osservatorio Vesuviano
by Fabio Sansivero and Giuseppe Vilardo
Remote Sens. 2024, 16(17), 3352; https://doi.org/10.3390/rs16173352 - 9 Sep 2024
Cited by 3 | Viewed by 1739
Abstract
Thermal infrared (TIR) time series images acquired by ground, proximal TIR stations provide valuable data to study evolution of surface temperature fields of diffuse degassing volcanic areas. This paper presents data processing results related to TIR images acquired since 2004 by six ground [...] Read more.
Thermal infrared (TIR) time series images acquired by ground, proximal TIR stations provide valuable data to study evolution of surface temperature fields of diffuse degassing volcanic areas. This paper presents data processing results related to TIR images acquired since 2004 by six ground stations in the permanent thermal infrared surveillance network at Campi Flegrei (TIRNet) set up by INGV-Osservatorio Vesuviano. These results are reported as surface temperature and heat flux time series. The processing methodologies, also discussed in this paper, allow for presentation of the raw TIR image data in a more comprehensible form, suitable for comparisons with other geophysical parameters. A preliminary comparison between different trends in the surface temperature and heat flux values recorded by the TIRNet stations provides evidence of peculiar changes corresponding to periods of intense seismicity at the Campi Flegrei caldera. During periods characterized by modest seismicity, no remarkable evidence of common temperature variations was recorded by the different TIRNet stations. Conversely, almost all the TIRNet stations exhibited common temperature variations, even on a small scale, during periods of significant seismic activity. The comparison between the seismicity and the variations in the surface temperature and heat flux trends suggests an increase in efficiency of heat transfer between the magmatic system and the surface when an increase in seismic activity was registered. This evidence recommends a deeper, multidisciplinary study of this correlation to improve understanding of the volcanic processes affecting the Campi Flegrei caldera. Full article
Show Figures

Figure 1

23 pages, 6132 KiB  
Article
Local-Energy-Conservation-Based Decomposition Method for Wall Friction and Heat Flux
by Mingzhi Tang, Wenfeng Zhou, Yanchao Hu, Gang Wang and Yanguang Yang
Symmetry 2024, 16(9), 1147; https://doi.org/10.3390/sym16091147 - 4 Sep 2024
Viewed by 1131
Abstract
A novel decomposition method that adheres to both local time translation symmetry and spatial rotational symmetry is proposed in this study, thereby extending the limitations of existing methods, which are typically restricted to quasi-two-dimensional configurations. Grounded in the FIK and RD identities, this [...] Read more.
A novel decomposition method that adheres to both local time translation symmetry and spatial rotational symmetry is proposed in this study, thereby extending the limitations of existing methods, which are typically restricted to quasi-two-dimensional configurations. Grounded in the FIK and RD identities, this method provides a clear physical and reliable interpretation suitable for arbitrary-curvature profiles. Utilizing this method, an analysis of the aerothermodynamic characteristics of the bistable states of curved compression ramp flows was conducted. The results reveal that the generation of undisturbed and peak Cf is dominated by viscous dissipation. Specifically, flow separation happens when all of the energy input from the work exerted by the adverse pressure gradient (APG) is insufficient to be entirely converted into local viscous dissipation and kinetic energy. Furthermore, the propensity for flow separation at higher wall temperatures is firstly elucidated quantitatively from the perspective of the work by the APG. The peak heat flux is predominantly triggered by the work of viscous stress, with the secondary contribution from energy transport playing a more significant role in the generation of the peak heat flux of the separation state than that of the attachment state. Full article
(This article belongs to the Special Issue Applications Based on Symmetry/Asymmetry in Fluid Mechanics)
Show Figures

Figure 1

31 pages, 5387 KiB  
Article
Roles of Earth’s Albedo Variations and Top-of-the-Atmosphere Energy Imbalance in Recent Warming: New Insights from Satellite and Surface Observations
by Ned Nikolov and Karl F. Zeller
Geomatics 2024, 4(3), 311-341; https://doi.org/10.3390/geomatics4030017 - 20 Aug 2024
Cited by 1 | Viewed by 64429
Abstract
Past studies have reported a decreasing planetary albedo and an increasing absorption of solar radiation by Earth since the early 1980s, and especially since 2000. This should have contributed to the observed surface warming. However, the magnitude of such solar contribution is presently [...] Read more.
Past studies have reported a decreasing planetary albedo and an increasing absorption of solar radiation by Earth since the early 1980s, and especially since 2000. This should have contributed to the observed surface warming. However, the magnitude of such solar contribution is presently unknown, and the question of whether or not an enhanced uptake of shortwave energy by the planet represents positive feedback to an initial warming induced by rising greenhouse-gas concentrations has not conclusively been answered. The IPCC 6th Assessment Report also did not properly assess this issue. Here, we quantify the effect of the observed albedo decrease on Earth’s Global Surface Air Temperature (GSAT) since 2000 using measurements by the Clouds and the Earth’s Radiant Energy System (CERES) project and a novel climate-sensitivity model derived from independent NASA planetary data by employing objective rules of calculus. Our analysis revealed that the observed decrease of planetary albedo along with reported variations of the Total Solar Irradiance (TSI) explain 100% of the global warming trend and 83% of the GSAT interannual variability as documented by six satellite- and ground-based monitoring systems over the past 24 years. Changes in Earth’s cloud albedo emerged as the dominant driver of GSAT, while TSI only played a marginal role. The new climate sensitivity model also helped us analyze the physical nature of the Earth’s Energy Imbalance (EEI) calculated as a difference between absorbed shortwave and outgoing longwave radiation at the top of the atmosphere. Observations and model calculations revealed that EEI results from a quasi-adiabatic attenuation of surface energy fluxes traveling through a field of decreasing air pressure with altitude. In other words, the adiabatic dissipation of thermal kinetic energy in ascending air parcels gives rise to an apparent EEI, which does not represent “heat trapping” by increasing atmospheric greenhouse gases as currently assumed. We provide numerical evidence that the observed EEI has been misinterpreted as a source of energy gain by the Earth system on multidecadal time scales. Full article
Show Figures

Figure 1

20 pages, 7137 KiB  
Article
Research on the Performance and Computational Fluid Dynamics Numerical Simulation of Plate Air Gap Membrane Distillation Module
by Haojie Bi, Hongying Yuan, Zhiyuan Xu, Zhuobin Liang and Yongliang Du
Membranes 2024, 14(8), 162; https://doi.org/10.3390/membranes14080162 - 24 Jul 2024
Viewed by 1534
Abstract
Membrane distillation (MD) is widely used in the field of seawater desalination. Among its various sub-categories, air gap membrane distillation (AGMD) stands out due to its high thermal efficiency and compatibility with low-grade heat sources. This study delves into the impact of varying [...] Read more.
Membrane distillation (MD) is widely used in the field of seawater desalination. Among its various sub-categories, air gap membrane distillation (AGMD) stands out due to its high thermal efficiency and compatibility with low-grade heat sources. This study delves into the impact of varying operating conditions on AGMD performance, employing numerical simulations which are grounded in experimental validation. The objective was to enhance the performance of AGMD, mitigate polarization phenomena, and provide a reference for optimizing membrane component design. The results show that the agreements between the simulated and the experimental values were high. When increasing the feed temperature and decreasing the coolant temperature, the impact of polarization phenomena on the performance of AGMD was reduced. The mass flux, Total Permeate Concentration (TPC), and heat flux increased by 81.69%, 36.89%, and 118.01%, respectively, when the feed temperature was increased from 50 °C to 75 °C. When the coolant temperature decreased from 22 °C to 7 °C, the mass flux increased by 37.06%. The response surface analysis revealed that the feed temperature has significant influence on AGMD performance, and there is a noticeable interaction between the feed temperature and coolant temperature. These findings will play key roles in practical applications. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

Back to TopTop