Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,038)

Search Parameters:
Keywords = grid-connected network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 10224 KiB  
Article
A Vulnerability Identification Method for Distribution Networks Integrating Fuzzy Local Dimension and Topological Structure
by Kangzheng Huang, Weichuan Zhang, Yongsheng Xu, Chenkai Wu and Weibo Li
Processes 2025, 13(8), 2438; https://doi.org/10.3390/pr13082438 - 1 Aug 2025
Abstract
As the scale of shipboard power systems expands, their vulnerability becomes increasingly prominent. Identifying vulnerable points in ship power grids is essential for enhancing system stability, optimizing overall performance, and ensuring safe navigation. To address this issue, this paper proposes an algorithm based [...] Read more.
As the scale of shipboard power systems expands, their vulnerability becomes increasingly prominent. Identifying vulnerable points in ship power grids is essential for enhancing system stability, optimizing overall performance, and ensuring safe navigation. To address this issue, this paper proposes an algorithm based on fuzzy local dimension and topology (FLDT). The algorithm distinguishes contributions from nodes at different radii and within the same radius to a central node using fuzzy sets, and then derives the final importance value of each node by combining the local dimension and topology. Experimental results on nine datasets demonstrate that the FLDT algorithm outperforms degree centrality (DC), closeness centrality (CC), local dimension (LD), fuzzy local dimension (FLD), local link similarity (LLS), and mixed degree decomposition (MDD) algorithms in three metrics: network efficiency (NE), largest connected component (LCC), and monotonicity. Furthermore, in a ship power grid experiment, when 40% of the most important nodes were removed, FLDT caused a network efficiency drop of 99.78% and reduced the LCC to 2.17%, significantly outperforming traditional methods. Additional experiments under topological perturbations—including edge addition, removal, and rewiring—also show that FLDT maintains superior performance, highlighting its robustness to structural changes. This indicates that the FLDT algorithm is more effective in identifying and evaluating vulnerable points and distinguishing nodes with varying levels of importance. Full article
Show Figures

Figure 1

20 pages, 8292 KiB  
Article
Landscape Zoning Strategies for Small Mountainous Towns: Insights from Yuqian Town in China
by Qingwei Tian, Yi Xu, Shaojun Yan, Yizhou Tao, Xiaohua Wu and Bifan Cai
Sustainability 2025, 17(15), 6919; https://doi.org/10.3390/su17156919 - 30 Jul 2025
Viewed by 59
Abstract
Small towns in mountainous regions face significant challenges in formulating effective landscape zoning strategies due to pronounced landscape fragmentation, which is driven by both the dominance of large-scale forest resources and the lack of coordination between administrative planning departments. To tackle this problem, [...] Read more.
Small towns in mountainous regions face significant challenges in formulating effective landscape zoning strategies due to pronounced landscape fragmentation, which is driven by both the dominance of large-scale forest resources and the lack of coordination between administrative planning departments. To tackle this problem, this study focused on Yuqian, a quintessential small mountainous town in Hangzhou, Zhejiang Province. The town’s layout was divided into a grid network measuring 70 m × 70 m. A two-step cluster process was employed using ArcGIS and SPSS software to analyze five landscape variables: altitude, slope, land use, heritage density, and visual visibility. Further, eCognition software’s semi-automated segmentation technique, complemented by manual adjustments, helped delineate landscape character types and areas. The overlay analysis integrated these areas with administrative village units, identifying four landscape character types across 35 character areas, which were recategorized into four planning and management zones: urban comprehensive service areas, agricultural and cultural tourism development areas, industrial development growth areas, and mountain forest ecological conservation areas. This result optimizes the current zoning types. These zones closely match governmental sustainable development zoning requirements. Based on these findings, we propose integrated landscape management and conservation strategies, including the cautious expansion of urban areas, leveraging agricultural and cultural tourism, ensuring industrial activities do not impact the natural and village environment adversely, and prioritizing ecological conservation in sensitive areas. This approach integrates spatial and administrative dimensions to enhance landscape connectivity and resource sustainability, providing key guidance for small town development in mountainous regions with unique environmental and cultural contexts. Full article
Show Figures

Figure 1

16 pages, 8222 KiB  
Article
Multi-Dimensional Feature Perception Network for Open-Switch Fault Diagnosis in Grid-Connected PV Inverters
by Yuxuan Xie, Yaoxi He, Yong Zhan, Qianlin Chang, Keting Hu and Haoyu Wang
Energies 2025, 18(15), 4044; https://doi.org/10.3390/en18154044 - 30 Jul 2025
Viewed by 70
Abstract
Intelligent monitoring and fault diagnosis of PV grid-connected inverters are crucial for the operation and maintenance of PV power plants. However, due to the significant influence of weather conditions on the operating status of PV inverters, the accuracy of traditional fault diagnosis methods [...] Read more.
Intelligent monitoring and fault diagnosis of PV grid-connected inverters are crucial for the operation and maintenance of PV power plants. However, due to the significant influence of weather conditions on the operating status of PV inverters, the accuracy of traditional fault diagnosis methods faces challenges. To address the issue of open-circuit faults in power switching devices, this paper proposes a multi-dimensional feature perception network. This network captures multi-scale fault features under complex operating conditions through a multi-dimensional dilated convolution feature enhancement module and extracts non-causal relationships under different conditions using convolutional feature fusion with a Transformer. Experimental results show that the proposed network achieves fault diagnosis accuracies of 97.3% and 96.55% on the inverter dataset and the generalization performance dataset, respectively. Full article
Show Figures

Figure 1

27 pages, 3602 KiB  
Article
Optimal Dispatch of a Virtual Power Plant Considering Distributed Energy Resources Under Uncertainty
by Obed N. Onsomu, Erman Terciyanlı and Bülent Yeşilata
Energies 2025, 18(15), 4012; https://doi.org/10.3390/en18154012 - 28 Jul 2025
Viewed by 220
Abstract
The varying characteristics of grid-connected energy resources necessitate a clear and effective approach for managing and scheduling generation units. Without proper control, high levels of renewable integration can pose challenges to optimal dispatch, especially as more generation sources, like wind and solar PV, [...] Read more.
The varying characteristics of grid-connected energy resources necessitate a clear and effective approach for managing and scheduling generation units. Without proper control, high levels of renewable integration can pose challenges to optimal dispatch, especially as more generation sources, like wind and solar PV, are introduced. As a result, conventional power sources require an advanced management system, for instance, a virtual power plant (VPP), capable of accurately monitoring power supply and demand. This study thoroughly explores the dispatch of battery energy storage systems (BESSs) and diesel generators (DGs) through a distributionally robust joint chance-constrained optimization (DR-JCCO) framework utilizing the conditional value at risk (CVaR) and heuristic-X (H-X) algorithm, structured as a bilevel optimization problem. Furthermore, Binomial expansion (BE) is employed to linearize the model, enabling the assessment of BESS dispatch through a mathematical program with equilibrium constraints (MPECs). The findings confirm the effectiveness of the DRO-CVaR and H-X methods in dispatching grid network resources and BE under the MPEC framework. Full article
(This article belongs to the Special Issue Review Papers in Energy Storage and Related Applications)
Show Figures

Figure 1

25 pages, 3279 KiB  
Review
Current State of Development of Demand-Driven Biogas Plants in Poland
by Aleksandra Łukomska, Kamil Witaszek and Jacek Dach
Processes 2025, 13(8), 2369; https://doi.org/10.3390/pr13082369 - 25 Jul 2025
Viewed by 374
Abstract
Renewable energy sources (RES) are the foundation of the ongoing energy transition in Poland and worldwide. However, increased use of RES has brought several challenges, as most of these sources are dependent on weather conditions. The instability and lack of control over electricity [...] Read more.
Renewable energy sources (RES) are the foundation of the ongoing energy transition in Poland and worldwide. However, increased use of RES has brought several challenges, as most of these sources are dependent on weather conditions. The instability and lack of control over electricity production lead to both overloads and power shortages in transmission and distribution networks. A significant advantage of biogas plants over sources such as photovoltaics or wind turbines is their ability to control electricity generation and align it with actual demand. Biogas produced during fermentation can be temporarily stored in a biogas tank above the digester and later used in an enlarged CHP unit to generate electricity and heat during peak demand periods. While demand-driven biogas plants operate similarly to traditional installations, their development requires navigating regulatory and administrative procedures, particularly those related to the grid connection of the generated electricity. In Poland, it has only recently become possible to obtain grid connection conditions for such installations, following the adoption of the Act of 28 July 2023, which amended the Energy Law and certain other acts. However, the biogas sector still faces challenges, particularly the need for effective incentive mechanisms and the removal of regulatory and economic barriers, especially given its estimated potential of up to 7.4 GW. Full article
Show Figures

Figure 1

26 pages, 3954 KiB  
Article
Bi-Level Planning of Grid-Forming Energy Storage–Hydrogen Storage System Considering Inertia Response and Frequency Parameter Optimization
by Dongqi Huang, Pengwei Sun, Wenfeng Yao, Chang Liu, Hefeng Zhai and Yehao Gao
Energies 2025, 18(15), 3915; https://doi.org/10.3390/en18153915 - 23 Jul 2025
Viewed by 258
Abstract
Energy storage plays an essential role in stabilizing fluctuations in renewable energy sources such as wind and solar, enabling surplus electricity retention, and delivering dynamic frequency regulation. However, relying solely on a single form of storage often proves insufficient due to constraints in [...] Read more.
Energy storage plays an essential role in stabilizing fluctuations in renewable energy sources such as wind and solar, enabling surplus electricity retention, and delivering dynamic frequency regulation. However, relying solely on a single form of storage often proves insufficient due to constraints in performance, capacity, and cost-effectiveness. To tackle frequency regulation challenges in remote desert-based renewable energy hubs—where traditional power infrastructure is unavailable—this study introduces a planning framework for an electro-hydrogen energy storage system with grid-forming capabilities, designed to supply both inertia and frequency response. At the system design stage, a direct current (DC) transmission network is modeled, integrating battery and hydrogen storage technologies. Using this configuration, the capacity settings for both grid-forming batteries and hydrogen units are optimized. This study then explores how hydrogen systems—comprising electrolyzers, storage tanks, and fuel cells—and grid-forming batteries contribute to inertial support. Virtual inertia models are established for each technology, enabling precise estimation of the total synthetic inertia provided. At the operational level, this study addresses stability concerns stemming from renewable generation variability by introducing three security indices. A joint optimization is performed for virtual inertia constants, which define the virtual inertia provided by energy storage systems to assist in frequency regulation, and primary frequency response parameters within the proposed storage scheme are optimized in this model. This enhances the frequency modulation potential of both systems and confirms the robustness of the proposed approach. Lastly, a real-world case study involving a 13 GW renewable energy base in Northwest China, connected via a ±10 GW HVDC export corridor, demonstrates the practical effectiveness of the optimization strategy and system configuration. Full article
(This article belongs to the Special Issue Advanced Battery Management Strategies)
Show Figures

Figure 1

19 pages, 3397 KiB  
Article
Large-Scale Transmission Expansion Planning with Network Synthesis Methods for Renewable-Heavy Synthetic Grids
by Adam B. Birchfield, Jong-oh Baek and Joshua Xia
Energies 2025, 18(14), 3844; https://doi.org/10.3390/en18143844 - 19 Jul 2025
Viewed by 199
Abstract
With increasing electrification and the connection of more renewable resources at the transmission level, bulk interconnected electric grids need to plan network expansion with new transmission facilities. The transmission expansion planning (TEP) problem is particularly challenging because of the combinatorial, integer optimization nature [...] Read more.
With increasing electrification and the connection of more renewable resources at the transmission level, bulk interconnected electric grids need to plan network expansion with new transmission facilities. The transmission expansion planning (TEP) problem is particularly challenging because of the combinatorial, integer optimization nature of the problem and the complexity of engineering analysis for any one possible solution. Network synthesis methods, that is, heuristic-based techniques for building synthetic electric grid models based on complex network properties, have been developed in recent years and have the capability of balancing multiple aspects of power system design while efficiently considering large numbers of candidate lines to add. This paper presents a methodology toward scalability in addressing the large-scale TEP problem by applying network synthesis methods. The algorithm works using a novel heuristic method, inspired by simulated annealing, which alternates probabilistic removal and targeted addition, balancing the fixed cost of transmission investment with objectives of resilience via power flow contingency robustness. The methodology is demonstrated in a test case that expands a 2000-bus interconnected synthetic test case on the footprint of Texas with new transmission to support 2025-level load and generation. Full article
Show Figures

Figure 1

27 pages, 1734 KiB  
Review
Outage Rates and Failure Removal Times for Power Lines and Transformers
by Paweł Pijarski and Adrian Belowski
Appl. Sci. 2025, 15(14), 8030; https://doi.org/10.3390/app15148030 - 18 Jul 2025
Viewed by 280
Abstract
The dynamic development of distributed sources (mainly RES) contributes to the emergence of, among others, balance and overload problems. For this reason, many RES do not receive conditions for connection to the power grid in Poland. Operators sometimes extend permits based on the [...] Read more.
The dynamic development of distributed sources (mainly RES) contributes to the emergence of, among others, balance and overload problems. For this reason, many RES do not receive conditions for connection to the power grid in Poland. Operators sometimes extend permits based on the possibility of periodic power reduction in RES in the event of the problems mentioned above. Before making a decision, investors, for economic reasons, need information on the probability of annual power reduction in their potential installation. Analyses that allow one to determine such a probability require knowledge of the reliability indicators of transmission lines and transformers, as well as failure removal times. The article analyses the available literature on the annual risk of outages of these elements and methods to determine the appropriate reliability indicators. Example calculations were performed for two networks (test and real). The values of indicators and times that can be used in practice were indicated. The unique contribution of this article lies not only in the comprehensive comparison of current, relevant transmission line and transformer reliability analysis methods but also in developing the first reliability indices for the Polish power system in more than 30 years. It is based on the relationships presented in the article and their comparison with results reported in the international literature. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

16 pages, 2472 KiB  
Article
Performance Evaluation of DAB-Based Partial- and Full-Power Processing for BESS in Support of Trolleybus Traction Grids
by Jiayi Geng, Rudolf Francesco Paternost, Sara Baldisserri, Mattia Ricco, Vitor Monteiro, Sheldon Williamson and Riccardo Mandrioli
Electronics 2025, 14(14), 2871; https://doi.org/10.3390/electronics14142871 - 18 Jul 2025
Viewed by 269
Abstract
The energy transition toward greater electrification leads to incentives in public transportation fed by catenary-powered networks. In this context, emerging technological devices such as in-motion-charging vehicles and electric vehicle charging points are expected to be operated while connected to trolleybus networks as part [...] Read more.
The energy transition toward greater electrification leads to incentives in public transportation fed by catenary-powered networks. In this context, emerging technological devices such as in-motion-charging vehicles and electric vehicle charging points are expected to be operated while connected to trolleybus networks as part of new electrification projects, resulting in a significant demand for power. To enable a significant increase in electric transportation without compromising technical compliance for voltage and current at grid systems, the implementation of stationary battery energy storage systems (BESSs) can be essential for new electrification projects. A key challenge for BESSs is the selection of the optimal converter topology for charging their batteries. Ideally, the chosen converter should offer the highest efficiency while minimizing size, weight, and cost. In this context, a modular dual-active-bridge converter, considering its operation as a full-power converter (FPC) and a partial-power converter (PPC) with module-shedding control, is analyzed in terms of operation efficiencies and thermal behavior. The goal is to clarify the advantages, disadvantages, challenges, and trade-offs of both power-processing techniques following future trends in the electric transportation sector. The results indicate that the PPC achieves an efficiency of 98.58% at the full load of 100 kW, which is 1.19% higher than that of FPC. Additionally, higher power density and cost effectiveness are confirmed for the PPC. Full article
Show Figures

Figure 1

12 pages, 231 KiB  
Systematic Review
Cybersecurity Issues in Electrical Protection Relays: A Systematic Review
by Giovanni Battista Gaggero, Paola Girdinio and Mario Marchese
Energies 2025, 18(14), 3796; https://doi.org/10.3390/en18143796 - 17 Jul 2025
Viewed by 218
Abstract
The increasing digitalization of power systems has revolutionized the functionality and efficiency of electrical protection relays. These digital relays enhance fault detection, monitoring, and response mechanisms, ensuring the reliability and stability of power networks. However, their connectivity and reliance on communication protocols introduce [...] Read more.
The increasing digitalization of power systems has revolutionized the functionality and efficiency of electrical protection relays. These digital relays enhance fault detection, monitoring, and response mechanisms, ensuring the reliability and stability of power networks. However, their connectivity and reliance on communication protocols introduce significant cybersecurity risks, making them potential targets for malicious attacks. Cyber threats against digital protection relays can lead to severe consequences, including cascading failures, equipment damage, and compromised grid security. This paper presents a comprehensive review of cybersecurity challenges in digital electrical protection relays, focusing on four key areas: (1) a taxonomy of cyber attack models targeting protection relays, (2) the associated risks and their potential impact on power systems, (3) existing mitigation strategies to enhance relay security, and (4) future research directions to strengthen resilience against cyber threats. Full article
Show Figures

Figure 1

13 pages, 1097 KiB  
Article
Research on an Algorithm of Power System Node Importance Assessment Based on Topology–Parameter Co-Analysis
by Guowei Sun, Xianming Sun, Junqi Geng and Guangyang Han
Energies 2025, 18(14), 3778; https://doi.org/10.3390/en18143778 - 17 Jul 2025
Viewed by 262
Abstract
As power grids continue to expand in scale, the occurrence of cascading failures within them can lead to significant economic losses. Therefore, assessing the criticality of grid nodes is crucial for ensuring the secure and stable operation of power systems and for mitigating [...] Read more.
As power grids continue to expand in scale, the occurrence of cascading failures within them can lead to significant economic losses. Therefore, assessing the criticality of grid nodes is crucial for ensuring the secure and stable operation of power systems and for mitigating losses when cascading failures occur. The classical Local Link Similarity (LLS) algorithm in complex networks evaluates the importance of network nodes from a neighborhood topology perspective, but it suffers from issues such as the excessive weighting of node degrees and the neglect of electrical parameters. Based on the classical algorithm, this paper first develops the Improved Local Link Similarity (ILLS) algorithm by substituting alternative similarity metrics and comparatively evaluating their performance. Building upon the ILLS, we then propose the Electrical LLS (ELLS) algorithm by integrating node power flow and electrical coupling connectivity as multiplicative factors, with optimal combinations determined via simulation experiments. Compared to classical approaches, ELLS demonstrates superior adaptability to power grid contexts and delivers enhanced accuracy in power system node importance assessments. These algorithms are applied to rank the node importance in the IEEE 300-bus system. Their performance is evaluated using the loss-of-load-size metric, comparing ELLS, ILLS, and the classical algorithm. The results demonstrate that under the loss-of-load-size metric, the ELLS algorithm achieves approximately 25% higher accuracy compared to both the ILLS and the classical algorithm, validating its effectiveness. Full article
Show Figures

Figure 1

23 pages, 20707 KiB  
Article
Research on Energy Storage-Based DSTATCOM for Integrated Power Quality Enhancement and Active Voltage Support
by Peng Wang, Jianxin Bi, Fuchun Li, Chunfeng Liu, Yuanhui Sun, Wenhuan Cheng, Yilong Wang and Wei Kang
Electronics 2025, 14(14), 2840; https://doi.org/10.3390/electronics14142840 - 15 Jul 2025
Viewed by 247
Abstract
With the increasing penetration of distributed generation and the diversification of electrical equipment, distribution networks face issues like three-phase unbalance and harmonic currents, while the voltage stability and inertia of the grid-connected system also decrease. A certain amount of energy storage is needed [...] Read more.
With the increasing penetration of distributed generation and the diversification of electrical equipment, distribution networks face issues like three-phase unbalance and harmonic currents, while the voltage stability and inertia of the grid-connected system also decrease. A certain amount of energy storage is needed in a Distribution Static Synchronous Compensator (DSTATCOM) to manage power quality and actively support voltage and inertia in the network. This paper first addresses the limitations of traditional dq0 compensation algorithms in effectively filtering out negative-sequence twice-frequency components. An improved dq0 compensation algorithm is proposed to reduce errors in detecting positive-sequence fundamental current under unbalanced three-phase conditions. Second, considering the impedance ratio characteristics of the distribution network, while reactive power voltage regulation is common, active power regulation is more effective in high-resistance distribution networks. A grid-forming model-based active and reactive power coordinated voltage regulation method is proposed. This method uses synchronous control to establish a virtual three-phase voltage internal electromotive force, forming a comprehensive compensation strategy that combines power quality improvement and active voltage support, exploring the potential of energy storage DSTATCOM applications in distribution networks. Finally, simulation and experimental results demonstrate the effectiveness of the proposed control method. Full article
Show Figures

Figure 1

18 pages, 10564 KiB  
Article
Handling Data Structure Issues with Machine Learning in a Connected and Autonomous Vehicle Communication System
by Pranav K. Jha and Manoj K. Jha
Vehicles 2025, 7(3), 73; https://doi.org/10.3390/vehicles7030073 - 11 Jul 2025
Viewed by 251
Abstract
Connected and Autonomous Vehicles (CAVs) remain vulnerable to cyberattacks due to inherent security gaps in the Controller Area Network (CAN) protocol. We present a structured Python (3.11.13) framework that repairs structural inconsistencies in a public CAV dataset to improve the reliability of machine [...] Read more.
Connected and Autonomous Vehicles (CAVs) remain vulnerable to cyberattacks due to inherent security gaps in the Controller Area Network (CAN) protocol. We present a structured Python (3.11.13) framework that repairs structural inconsistencies in a public CAV dataset to improve the reliability of machine learning-based intrusion detection. We assess the effect of training data volume and compare Random Forest (RF) and Extreme Gradient Boosting (XGBoost) classifiers across four attack types: DoS, Fuzzy, RPM spoofing, and GEAR spoofing. XGBoost outperforms RF, achieving 99.2 % accuracy on the DoS dataset and 100 % accuracy on the Fuzzy, RPM, and GEAR datasets. The Synthetic Minority Oversampling Technique (SMOTE) further enhances minority-class detection without compromising overall performance. This methodology provides a generalizable framework for anomaly detection in other connected systems, including smart grids, autonomous defense platforms, and industrial control networks. Full article
Show Figures

Figure 1

18 pages, 1184 KiB  
Article
A Confidential Transmission Method for High-Speed Power Line Carrier Communications Based on Generalized Two-Dimensional Polynomial Chaotic Mapping
by Zihan Nie, Zhitao Guo and Jinli Yuan
Appl. Sci. 2025, 15(14), 7813; https://doi.org/10.3390/app15147813 - 11 Jul 2025
Viewed by 283
Abstract
The deep integration of smart grid and Internet of Things technologies has made high-speed power line carrier communication a key communication technology in energy management, industrial monitoring, and smart home applications, owing to its advantages of requiring no additional wiring and offering wide [...] Read more.
The deep integration of smart grid and Internet of Things technologies has made high-speed power line carrier communication a key communication technology in energy management, industrial monitoring, and smart home applications, owing to its advantages of requiring no additional wiring and offering wide coverage. However, the inherent characteristics of power line channels, such as strong noise, multipath fading, and time-varying properties, pose challenges to traditional encryption algorithms, including low key distribution efficiency and weak anti-interference capabilities. These issues become particularly pronounced in high-speed transmission scenarios, where the conflict between data security and communication reliability is more acute. To address this problem, a secure transmission method for high-speed power line carrier communication based on generalized two-dimensional polynomial chaotic mapping is proposed. A high-speed power line carrier communication network is established using a power line carrier routing algorithm based on the minimal connected dominating set. The autoregressive moving average model is employed to determine the degree of transmission fluctuation deviation in the high-speed power line carrier communication network. Leveraging the complex dynamic behavior and anti-decoding capability of generalized two-dimensional polynomial chaotic mapping, combined with the deviation, the communication key is generated. This process yields encrypted high-speed power line carrier communication ciphertext that can resist power line noise interference and signal attenuation, thereby enhancing communication confidentiality and stability. By applying reference modulation differential chaotic shift keying and integrating the ciphertext of high-speed power line carrier communication, a secure transmission scheme is designed to achieve secure transmission in high-speed power line carrier communication. The experimental results demonstrate that this method can effectively establish a high-speed power line carrier communication network and encrypt information. The maximum error rate obtained by this method is 0.051, and the minimum error rate is 0.010, confirming its ability to ensure secure transmission in high-speed power line carrier communication while improving communication confidentiality. Full article
Show Figures

Figure 1

15 pages, 3481 KiB  
Article
Rolling Bearing Degradation Identification Method Based on Improved Monopulse Feature Extraction and 1D Dilated Residual Convolutional Neural Network
by Chang Liu, Haiyang Wu, Gang Cheng, Hui Zhou and Yusong Pang
Sensors 2025, 25(14), 4299; https://doi.org/10.3390/s25144299 - 10 Jul 2025
Viewed by 222
Abstract
To address the challenges of extracting rolling bearing degradation information and the insufficient performance of conventional convolutional networks, this paper proposes a rolling bearing degradation state identification method based on the improved monopulse feature extraction and a one-dimensional dilated residual convolutional neural network [...] Read more.
To address the challenges of extracting rolling bearing degradation information and the insufficient performance of conventional convolutional networks, this paper proposes a rolling bearing degradation state identification method based on the improved monopulse feature extraction and a one-dimensional dilated residual convolutional neural network (1D-DRCNN). First, the fault pulse envelope waveform features are extracted through phase scanning and synchronous averaging, and a two-stage grid search strategy is employed to achieve FCC calibration. Subsequently, a 1D-DRCNN model is constructed to identify rolling bearing degradation states under different working conditions. The experimental study collects the vibration signals of nine degradation states, including the different sizes of inner and outer ring local faults as well as normal conditions, to comparatively analyze the proposed method’s rapid calibration capability and feature extraction quality. Furthermore, t-SNE visualization is utilized to analyze the network response to bearing degradation features. Finally, the degradation state identification performance across different network architectures is compared in pattern recognition experiments. The results show that the proposed improved feature extraction method significantly reduces the iterative calibration computational burden while effectively extracting local fault degradation information and overcoming complex working condition influence. The established 1D-DRCNN model integrates the advantages of dilated convolution and residual connections and can deeply mine sensitive features and accurately identify different bearing degradation states. The overall recognition accuracy can reach 97.33%. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

Back to TopTop