Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,555)

Search Parameters:
Keywords = grid generation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 560 KiB  
Article
Exploring the Material Feasibility of a LiFePO4-Based Energy Storage System
by Caleb Scarlett and Vivek Utgikar
Energies 2025, 18(15), 4102; https://doi.org/10.3390/en18154102 (registering DOI) - 1 Aug 2025
Abstract
This paper analyzes the availability of lithium resources required to support a global decarbonized energy system featuring electrical energy storage based on lithium iron phosphate (LFP) batteries. A net-zero carbon grid consisting of existing nuclear and hydro capacity, with the balance being a [...] Read more.
This paper analyzes the availability of lithium resources required to support a global decarbonized energy system featuring electrical energy storage based on lithium iron phosphate (LFP) batteries. A net-zero carbon grid consisting of existing nuclear and hydro capacity, with the balance being a 50/50 mix of wind and solar power generation, is assumed to satisfy projected world electrical demand in 2050, incorporating the electrification of transportation. The battery electrical storage capacity needed to support this grid is estimated and translated into the required number of nominal 10 MWh LFP storage plants similar to the ones currently in operation. The total lithium required for the global storage system is determined from the number of nominal plants and the inventory of lithium in each plant. The energy required to refine this amount of lithium is accounted for in the estimation of the total lithium requirement. Comparison of the estimated lithium requirements with known global lithium resources indicates that a global storage system consisting only of LFP plants would require only around 12.3% of currently known lithium reserves in a high-economic-growth scenario. The overall cost for a global LFP-based grid-scale energy storage system is estimated to be approximately USD 17 trillion. Full article
(This article belongs to the Collection Renewable Energy and Energy Storage Systems)
22 pages, 1788 KiB  
Article
Multi-Market Coupling Mechanism of Offshore Wind Power with Energy Storage Participating in Electricity, Carbon, and Green Certificates
by Wenchuan Meng, Zaimin Yang, Jingyi Yu, Xin Lin, Ming Yu and Yankun Zhu
Energies 2025, 18(15), 4086; https://doi.org/10.3390/en18154086 (registering DOI) - 1 Aug 2025
Abstract
With the support of the dual-carbon strategy and related policies, China’s offshore wind power has experienced rapid development. However, constrained by the inherent intermittency and volatility of wind power, large-scale expansion poses significant challenges to grid integration and exacerbates government fiscal burdens. To [...] Read more.
With the support of the dual-carbon strategy and related policies, China’s offshore wind power has experienced rapid development. However, constrained by the inherent intermittency and volatility of wind power, large-scale expansion poses significant challenges to grid integration and exacerbates government fiscal burdens. To address these critical issues, this paper proposes a multi-market coupling trading model integrating energy storage-equipped offshore wind power into electricity–carbon–green certificate markets for large-scale grid networks. Firstly, a day-ahead electricity market optimization model that incorporates energy storage is established to maximize power revenue by coordinating offshore wind power generation, thermal power dispatch, and energy storage charging/discharging strategies. Subsequently, carbon market and green certificate market optimization models are developed to quantify Chinese Certified Emission Reduction (CCER) volume, carbon quotas, carbon emissions, market revenues, green certificate quantities, pricing mechanisms, and associated economic benefits. To validate the model’s effectiveness, a gradient ascent-optimized game-theoretic model and a double auction mechanism are introduced as benchmark comparisons. The simulation results demonstrate that the proposed model increases market revenues by 17.13% and 36.18%, respectively, compared to the two benchmark models. It not only improves wind power penetration and comprehensive profitability but also effectively alleviates government subsidy pressures through coordinated carbon–green certificate trading mechanisms. Full article
Show Figures

Figure 1

33 pages, 949 KiB  
Article
Evaluating Freshwater, Desalinated Water, and Treated Brine as Water Feed for Hydrogen Production in Arid Regions
by Hamad Ahmed Al-Ali and Koji Tokimatsu
Energies 2025, 18(15), 4085; https://doi.org/10.3390/en18154085 (registering DOI) - 1 Aug 2025
Abstract
Hydrogen production is increasingly vital for global decarbonization but remains a water- and energy-intensive process, especially in arid regions. Despite growing attention to its climate benefits, limited research has addressed the environmental impacts of water sourcing. This study employs a life cycle assessment [...] Read more.
Hydrogen production is increasingly vital for global decarbonization but remains a water- and energy-intensive process, especially in arid regions. Despite growing attention to its climate benefits, limited research has addressed the environmental impacts of water sourcing. This study employs a life cycle assessment (LCA) approach to evaluate three water supply strategies for hydrogen production: (1) seawater desalination without brine treatment (BT), (2) desalination with partial BT, and (3) freshwater purification. Scenarios are modeled for the United Arab Emirates (UAE), Australia, and Spain, representing diverse electricity mixes and water stress conditions. Both electrolysis and steam methane reforming (SMR) are evaluated as hydrogen production methods. Results show that desalination scenarios contribute substantially to human health and ecosystem impacts due to high energy use and brine discharge. Although partial BT aims to reduce direct marine discharge impacts, its substantial energy demand can offset these benefits by increasing other environmental burdens, such as marine eutrophication, especially in regions reliant on carbon-intensive electricity grids. Freshwater scenarios offer lower environmental impact overall but raise water availability concerns. Across all regions, feedwater for SMR shows nearly 50% lower impacts than for electrolysis. This study focuses solely on the environmental impacts associated with water sourcing and treatment for hydrogen production, excluding the downstream impacts of the hydrogen generation process itself. This study highlights the trade-offs between water sourcing, brine treatment, and freshwater purification for hydrogen production, offering insights for optimizing sustainable hydrogen systems in water-stressed regions. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production in Renewable Energy Systems)
32 pages, 1970 KiB  
Review
A Review of New Technologies in the Design and Application of Wind Turbine Generators
by Pawel Prajzendanc and Christian Kreischer
Energies 2025, 18(15), 4082; https://doi.org/10.3390/en18154082 (registering DOI) - 1 Aug 2025
Abstract
The growing global demand for electricity, driven by the development of electromobility, data centers, and smart technologies, necessitates innovative approaches to energy generation. Wind power, as a clean and renewable energy source, plays a pivotal role in the global transition towards low-carbon power [...] Read more.
The growing global demand for electricity, driven by the development of electromobility, data centers, and smart technologies, necessitates innovative approaches to energy generation. Wind power, as a clean and renewable energy source, plays a pivotal role in the global transition towards low-carbon power systems. This paper presents a comprehensive review of generator technologies used in wind turbine applications, ranging from conventional synchronous and asynchronous machines to advanced concepts such as low-speed direct-drive (DD) generators, axial-flux topologies, and superconducting generators utilizing low-temperature superconductors (LTS) and high-temperature superconductors (HTS). The advantages and limitations of each design are discussed in the context of efficiency, weight, reliability, scalability, and suitability for offshore deployment. Special attention is given to HTS-based generator systems, which offer superior power density and reduced losses, along with challenges related to cryogenic cooling and materials engineering. Furthermore, the paper analyzes selected modern generator designs to provide references for enhancing the performance of grid-synchronized hybrid microgrids integrating solar PV, wind, battery energy storage, and HTS-enhanced generators. This review serves as a valuable resource for researchers and engineers developing next-generation wind energy technologies with improved efficiency and integration potential. Full article
(This article belongs to the Special Issue Advancements in Marine Renewable Energy and Hybridization Prospects)
Show Figures

Figure 1

23 pages, 20334 KiB  
Article
Transient Stability Analysis for the Wind Power Grid-Connected System: A Manifold Topology Perspective on the Global Stability Domain
by Jinhao Yuan, Meiling Ma and Yanbing Jia
Electricity 2025, 6(3), 44; https://doi.org/10.3390/electricity6030044 (registering DOI) - 1 Aug 2025
Abstract
Large-scale wind power grid-connected systems can trigger the risk of power system instability. In order to enhance the stability margin of grid-connected systems, this paper accurately characterizes the topology of the global boundary of stability domain (BSD) of the grid-connected system based on [...] Read more.
Large-scale wind power grid-connected systems can trigger the risk of power system instability. In order to enhance the stability margin of grid-connected systems, this paper accurately characterizes the topology of the global boundary of stability domain (BSD) of the grid-connected system based on BSD theory, using the method of combining the manifold topologies and singularities at infinity. On this basis, the effect of large-scale doubly fed induction generators (DFIGs) replacing synchronous units on the BSD of the system is analyzed. Simulation results based on the IEEE 39-bus system indicate that the negative impedance characteristics and low inertia of DFIGs lead to a contraction of the stability domain. The principle of singularity invariance (PSI) proposed in this paper can effectively expand the BSD by adjusting the inertia and damping, thereby increasing the critical clearing time by about 5.16% and decreasing the dynamic response time by about 6.22% (inertia increases by about 5.56%). PSI is superior and applicable compared to traditional energy functions, and can be used to study the power angle stability of power systems with a high proportion of renewable energy. Full article
Show Figures

Figure 1

19 pages, 439 KiB  
Article
Multi-Objective Optimization for Economic and Environmental Dispatch in DC Networks: A Convex Reformulation via a Conic Approximation
by Nestor Julian Bernal-Carvajal, Carlos Arturo Mora-Peña and Oscar Danilo Montoya
Electricity 2025, 6(3), 43; https://doi.org/10.3390/electricity6030043 (registering DOI) - 1 Aug 2025
Abstract
This paper addresses the economic–environmental dispatch (EED) problem in DC power grids integrating thermoelectric and photovoltaic generation. A multi-objective optimization model is developed to minimize both fuel costs and CO2 emissions while considering power balance, voltage constraints, generation limits, and thermal line [...] Read more.
This paper addresses the economic–environmental dispatch (EED) problem in DC power grids integrating thermoelectric and photovoltaic generation. A multi-objective optimization model is developed to minimize both fuel costs and CO2 emissions while considering power balance, voltage constraints, generation limits, and thermal line capacities. To overcome the non-convexity introduced by quadratic voltage products in the power flow equations, a convex reformulation is proposed using second-order cone programming (SOCP) with auxiliary variables. This reformulation ensures global optimality and enhances computational efficiency. Two test systems are used for validation: a 6-node DC grid and an 11-node grid incorporating hourly photovoltaic generation. Comparative analyses show that the convex model achieves objective values with errors below 0.01% compared to the original non-convex formulation. For the 11-node system, the integration of photovoltaic generation led to a 24.34% reduction in operating costs (from USD 10.45 million to USD 7.91 million) and a 27.27% decrease in CO2 emissions (from 9.14 million kg to 6.64 million kg) over a 24 h period. These results confirm the effectiveness of the proposed SOCP-based methodology and demonstrate the environmental and economic benefits of renewable integration in DC networks. Full article
Show Figures

Figure 1

18 pages, 3493 KiB  
Article
Red-Billed Blue Magpie Optimizer for Modeling and Estimating the State of Charge of Lithium-Ion Battery
by Ahmed Fathy and Ahmed M. Agwa
Electrochem 2025, 6(3), 27; https://doi.org/10.3390/electrochem6030027 (registering DOI) - 31 Jul 2025
Abstract
The energy generated from renewable sources has an intermittent nature since solar irradiation and wind speed vary continuously. Hence, their energy should be stored to be utilized throughout their shortage. There are various forms of energy storage systems while the most widespread technique [...] Read more.
The energy generated from renewable sources has an intermittent nature since solar irradiation and wind speed vary continuously. Hence, their energy should be stored to be utilized throughout their shortage. There are various forms of energy storage systems while the most widespread technique is the battery storage system since its cost is low compared to other techniques. Therefore, batteries are employed in several applications like power systems, electric vehicles, and smart grids. Due to the merits of the lithium-ion (Li-ion) battery, it is preferred over other kinds of batteries. However, the accuracy of the Li-ion battery model is essential for estimating the state of charge (SOC). Additionally, it is essential for consistent simulation and operation throughout various loading and charging conditions. Consequently, the determination of real battery model parameters is vital. An innovative application of the red-billed blue magpie optimizer (RBMO) for determining the model parameters and the SOC of the Li-ion battery is presented in this article. The Shepherd model parameters are determined using the suggested optimization algorithm. The RBMO-based modeling approach offers excellent execution in determining the parameters of the battery model. The suggested approach is compared to other programmed algorithms, namely dandelion optimizer, spider wasp optimizer, barnacles mating optimizer, and interior search algorithm. Moreover, the suggested RBMO is statistically evaluated using Kruskal–Wallis, ANOVA tables, Friedman rank, and Wilcoxon rank tests. Additionally, the Li-ion battery model estimated via the RBMO is validated under variable loading conditions. The fetched results revealed that the suggested approach achieved the least errors between the measured and estimated voltages compared to other approaches in two studied cases with values of 1.4951 × 10−4 and 2.66176 × 10−4. Full article
Show Figures

Figure 1

27 pages, 31400 KiB  
Article
Multi-Scale Analysis of Land Use Transition and Its Impact on Ecological Environment Quality: A Case Study of Zhejiang, China
by Zhiyuan Xu, Fuyan Ke, Jiajie Yu and Haotian Zhang
Land 2025, 14(8), 1569; https://doi.org/10.3390/land14081569 - 31 Jul 2025
Abstract
The impacts of land use transition on ecological environment quality (EEQ) during China’s rapid urbanization have attracted growing concern. However, existing studies predominantly focus on single-scale analyses, neglecting scale effects and driving mechanisms of EEQ changes under the coupling of administrative units and [...] Read more.
The impacts of land use transition on ecological environment quality (EEQ) during China’s rapid urbanization have attracted growing concern. However, existing studies predominantly focus on single-scale analyses, neglecting scale effects and driving mechanisms of EEQ changes under the coupling of administrative units and grid scales. Therefore, this study selects Zhejiang Province—a representative rapidly transforming region in China—to establish a “type-process-ecological effect” analytical framework. Utilizing four-period (2005–2020) 30 m resolution land use data alongside natural and socio-economic factors, four spatial scales (city, county, township, and 5 km grid) were selected to systematically evaluate multi-scale impacts of land use transition on EEQ and their driving mechanisms. The research reveals that the spatial distribution, changing trends, and driving factors of EEQ all exhibit significant scale dependence. The county scale demonstrates the strongest spatial agglomeration and heterogeneity, making it the most appropriate core unit for EEQ management and planning. City and county scales generally show degradation trends, while township and grid scales reveal heterogeneous patterns of local improvement, reflecting micro-scale changes obscured at coarse resolutions. Expansive land transition including conversions of forest ecological land (FEL), water ecological land (WEL), and agricultural production land (APL) to industrial and mining land (IML) primarily drove EEQ degradation, whereas restorative ecological transition such as transformation of WEL and IML to grassland ecological land (GEL) significantly enhanced EEQ. Regarding driving mechanisms, natural factors (particularly NDVI and precipitation) dominate across all scales with significant interactive effects, while socio-economic factors primarily operate at macro scales. This study elucidates the scale complexity of land use transition impacts on ecological environments, providing theoretical and empirical support for developing scale-specific, typology-differentiated ecological governance and spatial planning policies. Full article
Show Figures

Figure 1

31 pages, 12776 KiB  
Article
Multi-Source Data Integration for Sustainable Management Zone Delineation in Precision Agriculture
by Dušan Jovanović, Miro Govedarica, Milan Gavrilović, Ranko Čabilovski and Tamme van der Wal
Sustainability 2025, 17(15), 6931; https://doi.org/10.3390/su17156931 (registering DOI) - 30 Jul 2025
Abstract
Accurate delineation of within-field management zones (MZs) is essential for implementing precision agriculture, particularly in spatially heterogeneous environments. This study evaluates the spatiotemporal consistency and practical value of MZs derived from three complementary data sources: electromagnetic conductivity (EM38-MK2), basic soil chemical properties (pH, [...] Read more.
Accurate delineation of within-field management zones (MZs) is essential for implementing precision agriculture, particularly in spatially heterogeneous environments. This study evaluates the spatiotemporal consistency and practical value of MZs derived from three complementary data sources: electromagnetic conductivity (EM38-MK2), basic soil chemical properties (pH, humus, P2O5, K2O, nitrogen), and vegetation/surface indices (NDVI, SAVI, LCI, BSI) derived from Sentinel-2 imagery. Using kriging, fuzzy k-means clustering, percentile-based classification, and Weighted Overlay Analysis (WOA), MZs were generated for a five-year period (2018–2022), with 2–8 zone classes. Stability and agreement were assessed using the Cohen Kappa, Jaccard, and Dice coefficients on systematic grid samples. Results showed that EM38-MK2 and humus-weighted BSP data produced the most consistent zones (Kappa > 0.90). Sentinel-2 indices demonstrated strong alignment with subsurface data (r > 0.85), offering a low-cost alternative in data-scarce settings. Optimal zoning was achieved with 3–4 classes, balancing spatial coherence and interpretability. These findings underscore the importance of multi-source data integration for robust and scalable MZ delineation and offer actionable guidelines for both data-rich and resource-limited farming systems. This approach promotes sustainable agriculture by improving input efficiency and allowing for targeted, site-specific field management. Full article
Show Figures

Figure 1

24 pages, 3980 KiB  
Article
A Two-Stage Restoration Method for Distribution Networks Considering Generator Start-Up and Load Recovery Under an Earthquake Disaster
by Lin Peng, Aihua Zhou, Junfeng Qiao, Qinghe Sun, Zhonghao Qian, Min Xu and Sen Pan
Electronics 2025, 14(15), 3049; https://doi.org/10.3390/electronics14153049 - 30 Jul 2025
Abstract
Earthquakes can severely disrupt power distribution networks, causing extensive outages and disconnection from the transmission grid. This paper proposes a two-stage restoration method tailored for post-earthquake distribution systems. First, earthquake-induced damage is modeled using ground motion prediction equations (GMPEs) and fragility curves, and [...] Read more.
Earthquakes can severely disrupt power distribution networks, causing extensive outages and disconnection from the transmission grid. This paper proposes a two-stage restoration method tailored for post-earthquake distribution systems. First, earthquake-induced damage is modeled using ground motion prediction equations (GMPEs) and fragility curves, and degraded network topologies are generated by Monte Carlo simulation. Then, a time-domain generator start-up model is developed as a mixed-integer linear program (MILP), incorporating cranking power and radial topology constraints. Further, a prioritized load recovery model is formulated as a mixed-integer second-order cone program (MISOCP), integrating power flow, voltage, and current constraints. Finally, case studies demonstrate the effectiveness and general applicability of the proposed method, confirming its capability to support resilient and adaptive distribution network restoration under various earthquake scenarios. Full article
Show Figures

Figure 1

19 pages, 3294 KiB  
Article
Rotation- and Scale-Invariant Object Detection Using Compressed 2D Voting with Sparse Point-Pair Screening
by Chenbo Shi, Yue Yu, Gongwei Zhang, Shaojia Yan, Changsheng Zhu, Yanhong Cheng and Chun Zhang
Electronics 2025, 14(15), 3046; https://doi.org/10.3390/electronics14153046 - 30 Jul 2025
Abstract
The Generalized Hough Transform (GHT) is a powerful method for rigid shape detection under rotation, scaling, translation, and partial occlusion conditions, but its four-dimensional accumulator incurs prohibitive computational and memory demands that prevent real-time deployment. To address this, we propose a framework that [...] Read more.
The Generalized Hough Transform (GHT) is a powerful method for rigid shape detection under rotation, scaling, translation, and partial occlusion conditions, but its four-dimensional accumulator incurs prohibitive computational and memory demands that prevent real-time deployment. To address this, we propose a framework that compresses the 4-D search space into a concise 2-D voting scheme by combining two-level sparse point-pair screening with an accelerated lookup. In the offline stage, template edges are extracted using an adaptive Canny operator with Otsu-determined thresholds, and gradient-direction differences for all point pairs are quantized to retain only those in the dominant bin, yielding rotation- and scale-invariant descriptors that populate a compact 2-D reference table. During the online stage, an adaptive grid selects only the highest-gradient pixels per cell as a base points, while a precomputed gradient-direction bucket table enables constant-time retrieval of compatible subpoints. Each valid base–subpoint pair is mapped to indices in the lookup table, and “fuzzy” votes are cast over a 3 × 3 neighborhood in the 2-D accumulator, whose global peak determines the object center. Evaluation on 200 real industrial parts—augmented to 1000 samples with noise, blur, occlusion, and nonlinear illumination—demonstrates that our method maintains over 90% localization accuracy, matches the classical GHT, and achieves a ten-fold speedup, outperforming IGHT and LI-GHT variants by 2–3×, thereby delivering a robust, real-time solution for industrial rigid object localization. Full article
Show Figures

Figure 1

20 pages, 3272 KiB  
Article
Mobile Robot Path Planning Based on Fused Multi-Strategy White Shark Optimisation Algorithm
by Dazhang You, Junjie Yu, Zhiyuan Jia, Yepeng Zhang and Zhiyuan Yang
Appl. Sci. 2025, 15(15), 8453; https://doi.org/10.3390/app15158453 - 30 Jul 2025
Viewed by 40
Abstract
Addressing the limitations of existing path planning algorithms for mobile robots in complex environments, such as poor adaptability, low convergence efficiency, and poor path quality, this study establishes a clear connection between mobile robots and real-world challenges such as unknown environments, dynamic obstacle [...] Read more.
Addressing the limitations of existing path planning algorithms for mobile robots in complex environments, such as poor adaptability, low convergence efficiency, and poor path quality, this study establishes a clear connection between mobile robots and real-world challenges such as unknown environments, dynamic obstacle avoidance, and smooth motion through innovative strategies. A novel multi-strategy fusion white shark optimization algorithm is proposed, focusing on actual scenario requirements, to provide optimal solutions for mobile robot path planning. First, the Chaotic Elite Pool strategy is employed to generate an elite population, enhancing population diversity and improving the quality of initial solutions, thereby boosting the algorithm’s global search capability. Second, adaptive weights are introduced, and the traditional simulated annealing algorithm is improved to obtain the Rapid Annealing Method. The improved simulated annealing algorithm is then combined with the White Shark algorithm to avoid getting stuck in local optima and accelerate convergence speed. Finally, third-order Bézier curves are used to smooth the path. Path length and path smoothness are used as fitness evaluation metrics, and an evaluation function is established in conjunction with a non-complete model that reflects actual motion to assess the effectiveness of path planning. Simulation results show that on the simple 20 × 20 grid map, the fusion of the Fused Multi-strategy White Shark Optimisation algorithm (FMWSO) outperforms WSO, D*, A*, and GWO by 8.43%, 7.37%, 2.08%, and 2.65%, respectively, in terms of path length. On the more complex 40 × 40 grid map, it improved by 6.48%, 26.76%, 0.95%, and 2.05%, respectively. The number of turning points was the lowest in both maps, and the path smoothness was lower. The algorithm’s runtime is optimal on the 20 × 20 map, outperforming other algorithms by 40.11%, 25.93%, 31.16%, and 9.51%, respectively. On the 40 × 40 map, it is on par with A*, and outperforms WSO, D*, and GWO by 14.01%, 157.38%, and 3.48%, respectively. The path planning performance is significantly better than other algorithms. Full article
(This article belongs to the Section Robotics and Automation)
Show Figures

Figure 1

19 pages, 4860 KiB  
Article
Load-Flow-Based Calculation of Initial Short-Circuit Currents for Converter-Based Power System
by Deepak Deepak, Anisatur Rizqi Oetoyo, Krzysztof Rudion, Christoph John and Hans Abele
Energies 2025, 18(15), 4045; https://doi.org/10.3390/en18154045 - 30 Jul 2025
Viewed by 96
Abstract
Short-circuit current is a key characteristic value for synchronous generator-based power systems. It is employed for different applications during the planning and operation phases. The proportion of converter-interfaced units is increasing in order to integrate more renewable energy sources into the system. These [...] Read more.
Short-circuit current is a key characteristic value for synchronous generator-based power systems. It is employed for different applications during the planning and operation phases. The proportion of converter-interfaced units is increasing in order to integrate more renewable energy sources into the system. These units have different fault current characteristics due to their physical properties and operation strategies. Consequently, the network’s short-circuit current profile is changing, both in terms of magnitude and injection time. Therefore, accurately estimating fault currents is crucial for reliable power system planning and operation. Traditionally, two calculation methods are employed: the equivalent voltage source (IEC 60909/VDE 0102) and the superimposition (complete) method. In this work, the assumptions, simplifications, and limitations from both types of methods are addressed. As a result, a new load-flow-based method is presented, improving the static modeling of generating units and the accuracy in the estimation of short-circuit currents. The method is tested for mixed generation types comprising of synchronous generators, and grid-following (current source) and grid-forming (voltage source before and current source after the current limit) converters. All methods are compared against detailed time-domain RMS simulations using a modified IEEE-39 bus system and a real network from ENTSO-E. It is shown that the proposed method provides the best accuracy in the calculation of initial short-circuit currents for converter-based power systems. Full article
Show Figures

Figure 1

16 pages, 8222 KiB  
Article
Multi-Dimensional Feature Perception Network for Open-Switch Fault Diagnosis in Grid-Connected PV Inverters
by Yuxuan Xie, Yaoxi He, Yong Zhan, Qianlin Chang, Keting Hu and Haoyu Wang
Energies 2025, 18(15), 4044; https://doi.org/10.3390/en18154044 - 30 Jul 2025
Viewed by 70
Abstract
Intelligent monitoring and fault diagnosis of PV grid-connected inverters are crucial for the operation and maintenance of PV power plants. However, due to the significant influence of weather conditions on the operating status of PV inverters, the accuracy of traditional fault diagnosis methods [...] Read more.
Intelligent monitoring and fault diagnosis of PV grid-connected inverters are crucial for the operation and maintenance of PV power plants. However, due to the significant influence of weather conditions on the operating status of PV inverters, the accuracy of traditional fault diagnosis methods faces challenges. To address the issue of open-circuit faults in power switching devices, this paper proposes a multi-dimensional feature perception network. This network captures multi-scale fault features under complex operating conditions through a multi-dimensional dilated convolution feature enhancement module and extracts non-causal relationships under different conditions using convolutional feature fusion with a Transformer. Experimental results show that the proposed network achieves fault diagnosis accuracies of 97.3% and 96.55% on the inverter dataset and the generalization performance dataset, respectively. Full article
Show Figures

Figure 1

16 pages, 3664 KiB  
Article
Wave Prediction Error Compensation and PTO Optimization Control Method for Improving the WEC Power Quality
by Tianlong Lan, Jiarui Wang, Luliang He, Peng Qian, Dahai Zhang and Bo Feng
Energies 2025, 18(15), 4043; https://doi.org/10.3390/en18154043 - 29 Jul 2025
Viewed by 108
Abstract
Reliable wave prediction plays a significant role in wave energy converter (WEC) research, but there are still prediction errors that would increase the uncertainty for the power grid and reduce the power quality. The efficiency and stability of the power take-off (PTO) system [...] Read more.
Reliable wave prediction plays a significant role in wave energy converter (WEC) research, but there are still prediction errors that would increase the uncertainty for the power grid and reduce the power quality. The efficiency and stability of the power take-off (PTO) system are also important research topics in WEC applications. In order to solve the above-mentioned problems, this paper presents a model predictive control (MPC) method composed of a prediction error compensation controller and a PTO optimization controller. This work aims to address the limitations of existing wave prediction methods and improve the efficiency and stability of hydraulic PTO systems in WECs. By controlling the charging and discharging of the accumulator, the power quality is enhanced by reducing grid frequency fluctuations and voltage flicker through prediction error compensation. In addition, an efficient and stable hydraulic PTO system can be obtained by keeping the operation pressure of the hydraulic motor at the optimal range. Thus, smoother power output minimizes grid-balancing penalties and storage wear, and stable hydraulic pressure extends PTO component lifespan. Finally, comparative numerical simulation studies are provided to show the efficacy of the proposed method. The results validate that the dual-controller MPC framework reduces power deviations by 74.3% and increases average power generation by 31% compared to the traditional method. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

Back to TopTop