Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (208)

Search Parameters:
Keywords = green solar cell

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3149 KiB  
Review
Research Progress and Future Perspectives on Photonic and Optoelectronic Devices Based on p-Type Boron-Doped Diamond/n-Type Titanium Dioxide Heterojunctions: A Mini Review
by Shunhao Ge, Dandan Sang, Changxing Li, Yarong Shi, Qinglin Wang and Dao Xiao
Nanomaterials 2025, 15(13), 1003; https://doi.org/10.3390/nano15131003 - 29 Jun 2025
Cited by 1 | Viewed by 516
Abstract
Titanium dioxide (TiO2) is a wide-bandgap semiconductor material with broad application potential, known for its excellent photocatalytic performance, high chemical stability, low cost, and non-toxicity. These properties make it highly attractive for applications in photovoltaic energy, environmental remediation, and optoelectronic devices. [...] Read more.
Titanium dioxide (TiO2) is a wide-bandgap semiconductor material with broad application potential, known for its excellent photocatalytic performance, high chemical stability, low cost, and non-toxicity. These properties make it highly attractive for applications in photovoltaic energy, environmental remediation, and optoelectronic devices. For instance, TiO2 is widely used as a photocatalyst for hydrogen production via water splitting and for degrading organic pollutants, thanks to its efficient photo-generated electron–hole separation. Additionally, TiO2 exhibits remarkable performance in dye-sensitized solar cells and photodetectors, providing critical support for advancements in green energy and photoelectric conversion technologies. Boron-doped diamond (BDD) is renowned for its exceptional electrical conductivity, high hardness, wide electrochemical window, and outstanding chemical inertness. These unique characteristics enable its extensive use in fields such as electrochemical analysis, electrocatalysis, sensors, and biomedicine. For example, BDD electrodes exhibit high sensitivity and stability in detecting trace chemicals and pollutants, while also demonstrating excellent performance in electrocatalytic water splitting and industrial wastewater treatment. Its chemical stability and biocompatibility make it an ideal material for biosensors and implantable devices. Research indicates that the combination of TiO2 nanostructures and BDD into heterostructures can exhibit unexpected optical and electrical performance and transport behavior, opening up new possibilities for photoluminescence and rectifier diode devices. However, applications based on this heterostructure still face challenges, particularly in terms of photodetector, photoelectric emitter, optical modulator, and optical fiber devices under high-temperature conditions. This article explores the potential and prospects of their combined heterostructures in the field of optoelectronic devices such as photodetector, light emitting diode (LED), memory, field effect transistor (FET) and sensing. TiO2/BDD heterojunction can enhance photoresponsivity and extend the spectral detection range which enables stability in high-temperature and harsh environments due to BDD’s thermal conductivity. This article proposes future research directions and prospects to facilitate the development of TiO2 nanostructured materials and BDD-based heterostructures, providing a foundation for enhancing photoresponsivity and extending the spectral detection range enables stability in high-temperature and high-frequency optoelectronic devices field. Further research and exploration of optoelectronic devices based on TiO2-BDD heterostructures hold significant importance, offering new breakthroughs and innovations for the future development of optoelectronic technology. Full article
(This article belongs to the Special Issue Nanoscale Photonics and Optoelectronics)
Show Figures

Graphical abstract

24 pages, 4777 KiB  
Review
Photostability of Perovskite Solar Cells: Challenges and Strategies
by Ruohan Liu, Runnan Yu and Zhan’ao Tan
Nanomaterials 2025, 15(11), 786; https://doi.org/10.3390/nano15110786 - 23 May 2025
Viewed by 834
Abstract
Perovskite solar cells (PSCs) have been regarded as a revolutionary technology in the photovoltaic field, offering a promising pathway for efficient and cost-effective solar energy conversion and demonstrating broad prospects for future green energy technologies. However, critical stability challenges, specifically degradation induced by [...] Read more.
Perovskite solar cells (PSCs) have been regarded as a revolutionary technology in the photovoltaic field, offering a promising pathway for efficient and cost-effective solar energy conversion and demonstrating broad prospects for future green energy technologies. However, critical stability challenges, specifically degradation induced by humidity, light, or heat, severely hinder the commercialization of this technology. Specifically, ultraviolet (UV) radiation in the solar spectrum is a major factor leading to the degradation of perovskite materials. This review focuses on the challenges and strategies for addressing the photostability issues of PSCs. A variety of strategies have been explored, which can be classified as external protection (such as UV-blocking encapsulation technologies) and internal optimization approaches (including precise compositional tuning, the incorporation of functional additives, interface engineering, and improvements to charge transport layers). Finally, this review delves into the key scientific challenges and technological bottlenecks currently faced in addressing the UV stability of PSCs and proposes future directions for solving UV stability issues. It also provides an outlook on the future development prospects of these technologies. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Graphical abstract

22 pages, 2259 KiB  
Article
Dynamical Characteristics of Isolated Donors, Acceptors, and Complex Defect Centers in Novel ZnO
by Devki N. Talwar and Piotr Becla
Nanomaterials 2025, 15(10), 749; https://doi.org/10.3390/nano15100749 - 16 May 2025
Cited by 1 | Viewed by 361
Abstract
Novel wide-bandgap ZnO, BeO, and ZnBeO materials have recently gained considerable interest due to their stellar optoelectronic properties. These semiconductors are being used in developing high-resolution, flexible, transparent nanoelectronics/photonics and achieving high-power radio frequency modules for sensors/biosensors, photodetectors/solar cells, and resistive random-access memory [...] Read more.
Novel wide-bandgap ZnO, BeO, and ZnBeO materials have recently gained considerable interest due to their stellar optoelectronic properties. These semiconductors are being used in developing high-resolution, flexible, transparent nanoelectronics/photonics and achieving high-power radio frequency modules for sensors/biosensors, photodetectors/solar cells, and resistive random-access memory applications. Despite earlier evidence of attaining p-type wz ZnO with N doping, the problem persists in achieving reproducible p-type conductivity. This issue is linked to charging compensation by intrinsic donors and/or background impurities. In ZnO: Al (Li), the vibrational features by infrared and Raman spectroscopy have been ascribed to the presence of isolated AlZn(LiZn) defects, nearest-neighbor (NN) [AlZnNO] pairs, and second NN [AlZnOLiZn;VZnOLiZn] complexes. However, no firm identification has been established. By integrating accurate perturbation models in a realistic Green’s function method, we have meticulously simulated the impurity vibrational modes of AlZn(LiZn) and their bonding to form complexes with dopants as well as intrinsic defects. We strongly feel that these phonon features in doped ZnO will encourage spectroscopists to perform similar measurements to check our theoretical conjectures. Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Figure 1

24 pages, 7743 KiB  
Article
Physiological Response of Olive Trees Under Xylella fastidiosa Infection and Thymol Therapy Monitored Through Advanced IoT Sensors
by Claudia Cagnarini, Paolo De Angelis, Dario Liberati, Riccardo Valentini, Valentina Falanga, Franco Valentini, Crescenza Dongiovanni, Mauro Carrieri and Maria Vincenza Chiriacò
Plants 2025, 14(9), 1380; https://doi.org/10.3390/plants14091380 - 2 May 2025
Viewed by 667
Abstract
Since its first detection in 2013, Xylella fastidiosa subsp. pauca (Xfp) has caused a devastating Olive Quick Decline Syndrome (OQDS) outbreak in Southern Italy. Effective disease surveillance and treatment strategies are urgently needed to mitigate its impact. This study investigates the [...] Read more.
Since its first detection in 2013, Xylella fastidiosa subsp. pauca (Xfp) has caused a devastating Olive Quick Decline Syndrome (OQDS) outbreak in Southern Italy. Effective disease surveillance and treatment strategies are urgently needed to mitigate its impact. This study investigates the short-term (1.5 years) effects of thymol-based treatments on infected olive trees of the susceptible cultivar Cellina di Nardò in two orchards in Salento, Apulia region. Twenty trees per trial received a 3% thymol solution either alone or encapsulated in a cellulose nanoparticle carrier. Over two years, sap flux density and canopy-transmitted solar radiation were monitored using TreeTalker sensors, and spectral greenness indices were calculated. Xfp cell concentrations in plant tissues were quantified via qPCR. Neither thymol treatment halted disease progression nor significantly reduced bacterial load, though the Xfp cell concentration reduction increased over time in the preventive trial. Symptomatic trees exhibited increased sap flux density, though the treatment mitigated this effect in the curative trial. Greenness indices remained lower in infected trees, but the response to symptom severity was delayed. These findings underscore the need for longer-term studies, investigation of synergistic effects with other phytocompounds, and integration of real-time sensor data into adaptive disease management protocols. Full article
Show Figures

Graphical abstract

20 pages, 3197 KiB  
Article
Day-Ahead Optimal Scheduling of an Integrated Electricity-Heat-Gas-Cooling-Hydrogen Energy System Considering Stepped Carbon Trading
by Zhuan Zhou, Weifang Lin, Jiayu Bian and Xuan Ren
Energies 2025, 18(9), 2249; https://doi.org/10.3390/en18092249 - 28 Apr 2025
Viewed by 402
Abstract
Within the framework of “dual carbon”, intending to enhance the use of green energies and minimize the emissions of carbon from energy systems, this study suggests a cost-effective low-carbon scheduling model that accounts for stepwise carbon trading for an integrated electricity, heat, gas, [...] Read more.
Within the framework of “dual carbon”, intending to enhance the use of green energies and minimize the emissions of carbon from energy systems, this study suggests a cost-effective low-carbon scheduling model that accounts for stepwise carbon trading for an integrated electricity, heat, gas, cooling, and hydrogen energy system. Firstly, given the clean and low-carbon attributes of hydrogen energy, a refined two-step operational framework for electricity-to-gas conversion is proposed. Building upon this foundation, a hydrogen fuel cell is integrated to formulate a multi-energy complementary coupling network. Second, a phased carbon trading approach is established to further explore the mechanism’s carbon footprint potential. And then, an environmentally conscious and economically viable power dispatch model is developed to minimize total operating costs while maintaining ecological sustainability. This objective optimization framework is effectively implemented and solved using the CPLEX solver. Through a comparative analysis involving multiple case studies, the findings demonstrate that integrating electric-hydrogen coupling with phased carbon trading effectively enhances wind and solar energy utilization rates. This approach concurrently reduces the system’s carbon emissions by 34.4% and lowers operating costs by 58.6%. Full article
Show Figures

Figure 1

24 pages, 4171 KiB  
Article
Energy Management of a 1 MW Photovoltaic Power-to-Electricity and Power-to-Gas for Green Hydrogen Storage Station
by Dalila Hidouri, Ines Ben Omrane, Kassmi Khalil and Adnen Cherif
World Electr. Veh. J. 2025, 16(4), 227; https://doi.org/10.3390/wevj16040227 - 11 Apr 2025
Viewed by 823
Abstract
Green hydrogen is increasingly recognized as a sustainable energy vector, offering significant potential for the industrial sector, buildings, and sustainable transport. As countries work to establish infrastructure for hydrogen production, transport, and energy storage, they face several challenges, including high costs, infrastructure complexity, [...] Read more.
Green hydrogen is increasingly recognized as a sustainable energy vector, offering significant potential for the industrial sector, buildings, and sustainable transport. As countries work to establish infrastructure for hydrogen production, transport, and energy storage, they face several challenges, including high costs, infrastructure complexity, security concerns, maintenance requirements, and the need for public acceptance. To explore these challenges and their environmental impact, this study proposes a hybrid sustainable infrastructure that integrates photovoltaic solar energy for the production and storage of green hydrogen, with PEMFC fuel cells and a hybrid Power-to-Electricity (PtE) and Power-to-Gas (PtG) configurations. The proposed system architecture is governed by an innovative energy optimization and management (EMS) algorithm, allowing forecasting, control, and supervision of various PV–hydrogen–Grid transfer scenarios. Additionally, comprehensive daily and seasonal simulations were performed to evaluate power sharing, energy transfer, hydrogen production, and storage capabilities. Dynamic performance assessments were conducted under different conditions of solar radiation, temperature, and load, demonstrating the system’s adaptability. The results indicate an overall efficiency of 62%, with greenhouse gas emissions reduced to 1% and a daily production of hydrogen of around 250 kg equivalent to 8350 KWh/day. Full article
Show Figures

Figure 1

23 pages, 3765 KiB  
Article
Electro-Refinery in Organics to Produce Energy Carriers: Co-Generation of Green Hydrogen and Carboxylic Acids by Glycerol Electrooxidation Using Dimensionally Stable Anode
by Letícia M. G. da Silva, Letícia G. A. Costa, José E. L. Santos, Emily C. T. de A. Costa, Aruzza M. de Morais Araújo, Amanda D. Gondim, Lívia N. Cavalcanti, Marco A. Quiroz, Elisama V. dos Santos and Carlos A. Martínez-Huitle
Catalysts 2025, 15(4), 333; https://doi.org/10.3390/catal15040333 - 31 Mar 2025
Cited by 2 | Viewed by 653
Abstract
The urgency to decarbonize fuels has contributed to a rise in biofuel production, which has culminated in a significant increase in the waste quantity of glycerol produced. Therefore, to convert glycerol waste into high-value products, electrochemical oxidation (EO) is a viable alternative for [...] Read more.
The urgency to decarbonize fuels has contributed to a rise in biofuel production, which has culminated in a significant increase in the waste quantity of glycerol produced. Therefore, to convert glycerol waste into high-value products, electrochemical oxidation (EO) is a viable alternative for the co-generation of carboxylic acids, such as formic acid (FA) and green hydrogen (H2), which are considered energy carriers. The aim of this study is the electroconversion of glycerol into FA by EO using a divided electrochemical cell, driven by a photovoltaic (PV) system, with a dimensionally stable anode (DSA, Ti/TiO2-RuO2-IrO2) electrode as an anode and Ni-Fe stainless steel (SS) mesh as a cathode. To optimize the experimental conditions, studies were carried out evaluating the effects of applied current density (j), electrolyte concentration, electrolysis time, and electrochemical cell configuration (undivided and divided). According to the results, the optimum experimental conditions were achieved at 90 mA cm−2, 0.1 mol L−1 of Na2SO4 as a supporting electrolyte, and 480 min of electrolysis. In this condition, 256.21 and 211.17 mg L−1 of FA were obtained for the undivided and divided cells, respectively, while the co-generation of 6.77 L of dry H2 was achieved in the divided cell. The electroconversion process under the optimum conditions was also carried out with a real sample, where organic acids like formic and acetic acids were co-produced simultaneously with green H2. Based on the preliminary economic analysis, the integrated-hybrid process is an economically viable and promising alternative when it is integrated with renewable energy sources such as solar energy. Full article
Show Figures

Graphical abstract

17 pages, 5418 KiB  
Article
Preparation of Copper Oxide Film at Low Temperature in Basic Conditions on a Copper Substrate
by Francesca Irene Barbaccia, Tilde de Caro, Fulvio Federici, Alessio Mezzi, Lucia Sansone, Michele Giordano and Andrea Macchia
Materials 2025, 18(7), 1487; https://doi.org/10.3390/ma18071487 - 26 Mar 2025
Viewed by 652
Abstract
Copper is widely used in both its metallic form and as oxide across numerous scientific and industrial domains. The primary copper oxides, cuprite (Cu2O) and tenorite (CuO), naturally form on the copper surface and play a crucial role in advanced technologies, [...] Read more.
Copper is widely used in both its metallic form and as oxide across numerous scientific and industrial domains. The primary copper oxides, cuprite (Cu2O) and tenorite (CuO), naturally form on the copper surface and play a crucial role in advanced technologies, such as solar cells, lithium batteries, and sensors. Tenorite is appreciated for its optical properties, stability, low toxicity, and reactivity. While copper oxide thin films are traditionally synthesized through thermal treatments and oxidation in alkaline environments, these conventional high-temperature methods not only require significant energy consumption but can also compromise the metal–film interface. This study aims to develop a sustainable alternative approach for forming a homogeneous CuO layer on a copper substrate through environmentally friendly treatments based on low temperature, cost-effective, and time-saving procedures. Three different eco-conscious treatments were investigated: (i) immersion in NaOH basic solution, (ii) exposure to NaOH basic solution vapours, and (iii) a combined treatment involving both immersion and vapour exposure. This green synthesis approach significantly reduces energy consumption compared to traditional thermal methods while maintaining product quality. The surface oxide layer was investigated through an optical microscope (OM), scanning electron microscopy (SEM), spectrocolorimetric analysis, peel-off test, µ-Raman and X-ray photoelectron spectroscopy (XPS) analysis to investigate the surface oxidation state. Full article
Show Figures

Figure 1

24 pages, 1640 KiB  
Article
Enhancing Sustainable Strategic Governance for Energy-Consumption Reduction Towards Carbon Neutrality in the Energy and Transportation Sectors
by Pruethsan Sutthichaimethee, Worawat Sa-Ngiamvibool, Buncha Wattana, Jianhui Luo and Supannika Wattana
Sustainability 2025, 17(6), 2659; https://doi.org/10.3390/su17062659 - 17 Mar 2025
Cited by 1 | Viewed by 581
Abstract
This research aims to identify appropriate strategies for reducing CO2 emissions under the carbon neutrality framework within Smart City Thailand. The Path Solow model based on vector moving average–GARCH in mean with environmental pollution (PS–VMA–GARCHM–EnPoll model) has been developed, and it is [...] Read more.
This research aims to identify appropriate strategies for reducing CO2 emissions under the carbon neutrality framework within Smart City Thailand. The Path Solow model based on vector moving average–GARCH in mean with environmental pollution (PS–VMA–GARCHM–EnPoll model) has been developed, and it is a highly suitable tool for environmental protection. This model can also be applied to other sectors and stands out from previous models by effectively prioritizing key factors for long-term strategic planning in a concrete and efficient manner. Additionally, the model illustrates the direction of causal relationships, both positive and negative, which is highly beneficial for more concrete policy formulation. This allows the government to determine which factors should be reduced or receive less support and which factors should be promoted for greater growth compared to the past. The findings suggest two strategic approaches to reducing CO2 emissions: (1) New-scenario policy based on high-sensitivity indicators—By selecting indicators with a sensitivity analysis value above 90%, including clean technology, renewable energy rate, biomass energy, electric vehicles, and green material rate, CO2 emissions can be reduced by 43.06%, resulting in a total CO2 gas emission of 398.01 Mt CO2 Eq. by 2050, which is below Thailand’s carrying capacity threshold of 450.07 Mt CO2 Eq.; and (2) Expanded-scenario policy using all indicators with sensitivity above 80%—By incorporating additional indicators, such as waste biomass, gasohol use rate, fatty acid methyl ester rate, and solar cell rate, along with those in the first scenario, CO2 emissions can be reduced by 60.65%, leading to a projected CO2 gas emission of 275.90 Mt CO2 Eq. by 2050, which aligns with Thailand’s national strategy goal of reducing CO2 gas emissions by at least 40% by 2050 and sets the country on the right path toward achieving net-zero greenhouse gas emissions by 2065. Thus, implementing the PS–VMA–GARCHM–EnPoll model can effectively contribute to the long-term national strategy for greenhouse gas reduction, ensuring sustainable environmental management for the future. Full article
Show Figures

Figure 1

24 pages, 2365 KiB  
Article
Green Hydrogen Generation by Water Photoelectrolysis: Economic and Environmental Analysis
by Gaetano Maggio, Salvatore Vasta, Agatino Nicita, Stefano Trocino and Mauro Giorgianni
Energies 2025, 18(6), 1439; https://doi.org/10.3390/en18061439 - 14 Mar 2025
Viewed by 772
Abstract
Water photoelectrolysis cells based on photoelectrochemical water splitting seem to be an interesting alternative to other traditional green hydrogen generation processes (e.g., water electrolysis). Unfortunately, the practical application of this technology is currently hindered by several difficulties: low solar-to-hydrogen (STH) efficiency, expensive electrode [...] Read more.
Water photoelectrolysis cells based on photoelectrochemical water splitting seem to be an interesting alternative to other traditional green hydrogen generation processes (e.g., water electrolysis). Unfortunately, the practical application of this technology is currently hindered by several difficulties: low solar-to-hydrogen (STH) efficiency, expensive electrode materials, etc. A novel concept, based on a tandem photoelectrolysis cell configuration with an anion-conducting membrane separating the photoanode from the photocathode, has already been proposed in the literature. This approach allows the use of low-cost metal oxide electrodes and nickel-based co-catalysts. In this paper, we conducted a study to evaluate the economic and environmental sustainability of this technology, using the environmental life cycle cost. Preliminary results have revealed two main interesting aspects: the negligible percentage of externalities in the total cost (<0.15%), which means a positive environmental impact, and as evidenced by the net present value (NPV), there are potentially financial conditions that favour future investment. In fact, an NPV higher than 150,000 EUR can be achieved after 15 years. Full article
Show Figures

Figure 1

16 pages, 9618 KiB  
Article
Copper Hexacyanoferrates Obtained via Flavocytochrome b2 Assistance: Characterization and Application
by Galina Gayda, Olha Demkiv, Nataliya Stasyuk, Halyna Klepach, Roman Serkiz, Faina Nakonechny, Mykhailo Gonchar and Marina Nisnevitch
Biosensors 2025, 15(3), 157; https://doi.org/10.3390/bios15030157 - 2 Mar 2025
Cited by 1 | Viewed by 910
Abstract
Artificial enzymes or nanozymes (NZs) are gaining significant attention in biotechnology due to their stability and cost-effectiveness. NZs can offer several advantages over natural enzymes, such as enhanced stability under harsh conditions, longer shelf life, and reduced production costs. The booming interest in [...] Read more.
Artificial enzymes or nanozymes (NZs) are gaining significant attention in biotechnology due to their stability and cost-effectiveness. NZs can offer several advantages over natural enzymes, such as enhanced stability under harsh conditions, longer shelf life, and reduced production costs. The booming interest in NZs is likely to continue as their potential applications expand. In our previous studies, we reported the “green” synthesis of copper hexacyanoferrate (gCuHCF) using the oxidoreductase flavocytochrome b2 (Fcb2). Organic–inorganic micro-nanoparticles were characterized in detail, including their structure, composition, catalytic activity, and electron-mediator properties. An SEM analysis revealed that gCuHCF possesses a flower-like structure well-suited for concentrating and stabilizing Fcb2. As an effective peroxidase (PO) mimic, gCuHCF has been successfully employed for H2O2 detection in amperometric sensors and in several oxidase-based biosensors. In the current study, we demonstrated the uniqueness of gCuHCF that lies in its multifunctionality, serving as a PO mimic, a chemosensor for ammonium ions, a biosensor for L-lactate, and exhibiting perovskite-like properties. This exceptional ability of gCuHCF to enhance fluorescence under blue light irradiation is being reported for the first time. Using gCuHCF as a PO-like NZ, novel oxidase-based sensors were developed, including an optical biosensor for L-arginine analysis and electrochemical biosensors for methanol and glycerol determination. Thus, gCuHCF, synthesized via Fcb2, presents a promising platform for the development of amperometric and optical biosensors, bioreactors, biofuel cells, solar cells, and other advanced devices. The innovative approach of utilizing biocatalysts for nanoparticle synthesis highlights a groundbreaking direction in materials science and biotechnology. Full article
Show Figures

Figure 1

19 pages, 6243 KiB  
Article
Defect Passivation in Perovskite Solar Cells Using Polysuccinimide-Based Green Polymer Additives
by Sergey S. Kozlov, Olga V. Alexeeva, Anna B. Nikolskaia, Vasilisa I. Petrova, Olga K. Karyagina, Alexey L. Iordanskii, Liudmila L. Larina and Oleg I. Shevaleevskiy
Polymers 2025, 17(5), 653; https://doi.org/10.3390/polym17050653 - 28 Feb 2025
Viewed by 1245
Abstract
Controlling traps and structural defects in perovskite absorber layers is crucial for enhancing both the device efficiency and long-term stability of perovskite solar cells (PSCs). Here we demonstrate the modification of perovskite films by introducing low-cost green polymers, polysuccinimide (PSI) and polyasparagine (PASP), [...] Read more.
Controlling traps and structural defects in perovskite absorber layers is crucial for enhancing both the device efficiency and long-term stability of perovskite solar cells (PSCs). Here we demonstrate the modification of perovskite films by introducing low-cost green polymers, polysuccinimide (PSI) and polyasparagine (PASP), into the perovskite layer. Structural, morphological and optoelectronic properties of polymer-modified perovskite films were probed by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) and UV-Vis spectroscopy. The incorporation of PSI triggers interactions between the polymer and perovskite, leading to the passivation of surface defects at the grain boundaries and improved morphology of perovskite films. This defect passivation boosted PSC performance, providing power conversion efficiency (PCE) values up to 20.1%. An optimal polymer concentration of 0.1 mg/mL in the perovskite precursor solution was identified for an improvement in the photovoltaic performance. It was shown that the primary factor leading to the observed enhancement in the power conversion efficiency for PSI-modified PSCs is the increase in the lifetime of charge carriers due to the efficient passivation of surface defects and suppression of recombination losses. Additionally, PSI-modified PSCs demonstrated enhanced stability, retaining over 80% of their initial efficiency after 40 days of storage under ambient conditions without encapsulation. The obtained results highlight the effectiveness of green polymer additives in passivating surface defects in perovskite films and provide a viable approach for improving the stability and performance of perovskite solar cells. Full article
(This article belongs to the Special Issue Polymeric Materials in Optoelectronic Devices and Energy Applications)
Show Figures

Figure 1

31 pages, 10184 KiB  
Article
Coupled Dissolution with Reprecipitation (CDR) Reactions and Their Impact on Copper Sulphide Mineral Surface Area and Dissolution Rates
by Eric O. Ansah, Jay R. Black and Ralf R. Haese
Minerals 2025, 15(3), 214; https://doi.org/10.3390/min15030214 - 23 Feb 2025
Cited by 1 | Viewed by 699
Abstract
Copper is a critical metal required for green energy technologies such as wind turbines and solar cells. However, copper supply is limited by copper recovery from primary copper sulphides (e.g., chalcopyrite-CuFeS2) due to passivating reaction products. Therefore, this study examined surface [...] Read more.
Copper is a critical metal required for green energy technologies such as wind turbines and solar cells. However, copper supply is limited by copper recovery from primary copper sulphides (e.g., chalcopyrite-CuFeS2) due to passivating reaction products. Therefore, this study examined surface ‘passivation’ of primary copper sulphide minerals undergoing coupled dissolution with reprecipitation (CDR) reactions and the associated mineral surface changes in acidic and chloride-rich lixiviants (FeCl3-only, AlCl3-rich, NaCl-rich, and CaCl2-rich lixiviants). Acidic FeCl3-only, NaCl-rich, and CaCl2-rich lixiviants resulted in only bornite dissolution and the formation of a residual Cu-S phase and Fe-SO4 phase on the chalcopyrite surface. In contrast, leaching with the AlCl3-rich lixiviant resulted in both chalcopyrite and bornite dissolution with limited hydrolysis of Fe3+ to Fe-hydroxy sulphates and minimal Fe3+ flux inhibition to the copper sulphide minerals surface due to the ion exchange mechanism between Al3+ and Fe3+. Further, there was preferential formation of an Al-SO4 phase at consistently high Eh and acidity, thereby a high availability of Fe3+ in solution for enhanced copper dissolution from both bornite and chalcopyrite. These findings could serve as a reference for coupled dissolution with reprecipitation reactions during copper sulphide leaching, offering a pathway to more efficient and sustainable copper extraction from low-grade ores. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Graphical abstract

22 pages, 2516 KiB  
Review
Microbial Fuel Cells and Microbial Electrolysis Cells for the Generation of Green Hydrogen and Bioenergy via Microorganisms and Agro-Waste Catalysts
by Xolile Fuku, Ilunga Kamika and Tshimangadzo S. Munonde
Nanomanufacturing 2025, 5(1), 3; https://doi.org/10.3390/nanomanufacturing5010003 - 10 Feb 2025
Cited by 2 | Viewed by 2440
Abstract
A national energy crisis has emerged in South Africa due to the country’s increasing energy needs in recent years. The reliance on fossil fuels, especially oil and gas, is unsustainable due to scarcity, emissions, and environmental repercussions. Researchers from all over the world [...] Read more.
A national energy crisis has emerged in South Africa due to the country’s increasing energy needs in recent years. The reliance on fossil fuels, especially oil and gas, is unsustainable due to scarcity, emissions, and environmental repercussions. Researchers from all over the world have recently concentrated their efforts on finding carbon-free, renewable, and alternative energy sources and have investigated microbiology and biotechnology as a potential remedy. The usage of microbial electrolytic cells (MECs) and microbial fuel cells (MFCs) is one method for resolving the problem. These technologies are evolving as viable options for hydrogen and bioenergy production. The renewable energy technologies initiative in South Africa, which is regarded as a model for other African countries, has developed in the allocation of over 6000 MW of generation capacity to bidders across several technologies, primarily wind and solar. With a total investment value of R33.7 billion, the Eastern Cape’s renewable energy initiatives have created 18,132 jobs, with the province awarded 16 wind farms and one solar energy farm. Utilizing wastewater as a source of energy in MFCs has been recommended as most treatments, such as activated sludge processes and trickling filter plants, require roughly 1322 kWh per million gallons, whereas MFCs only require a small amount of external power to operate. The cost of wastewater treatment using MFCs for an influent flow of 318 m3 h−1 has been estimated to be only 9% (USD 6.4 million) of the total cost of treatment by a conventional wastewater treatment plant (USD 68.2 million). Currently, approximately 500 billion cubic meters of hydrogen (H2) are generated worldwide each year, exhibiting a growth rate of 10%. This production primarily comes from natural gas (40%), heavy oils and naphtha (30%), coal (18%), electrolysis (4%), and biomass (1%). The hydrogen produced is utilized in the manufacturing of ammonia (49%), the refining of petroleum (37%), the production of methanol (8%), and in a variety of smaller applications (6%). Considering South Africa’s energy issue, this review article examines the production of wastewater and its impacts on society as a critical issue in the global scenario and as a source of green energy. Full article
Show Figures

Figure 1

19 pages, 5444 KiB  
Article
Portable Solar-Integrated Open-Source Chemistry Lab for Water Treatment with Electrolysis
by Giorgio Antonini, Md Motakabbir Rahman, Cameron Brooks, Domenico Santoro, Christopher Muller, Ahmed Al-Omari, Katherine Bell and Joshua M. Pearce
Technologies 2025, 13(2), 57; https://doi.org/10.3390/technologies13020057 - 1 Feb 2025
Cited by 1 | Viewed by 2914
Abstract
Harnessing solar energy offers a sustainable alternative for powering electrolysis for green hydrogen production as well as wastewater treatment. The high costs and logistical challenges of electrolysis have resulted in limited widespread investigation and implementation of electrochemical technologies on an industrial scale. To [...] Read more.
Harnessing solar energy offers a sustainable alternative for powering electrolysis for green hydrogen production as well as wastewater treatment. The high costs and logistical challenges of electrolysis have resulted in limited widespread investigation and implementation of electrochemical technologies on an industrial scale. To overcome these challenges, this study designs and tests a new approach to chemical experiments and wastewater treatment research using a portable standalone open-source solar photovoltaic (PV)-powered station that can be located onsite at a wastewater treatment plant with unreliable electrical power. The experimental system is equipped with an energy monitoring data acquisition system. In addition, sensors enable real-time monitoring of gases—CO, CO2, CH4, H2, H2S, and NH3—along with temperature, humidity, and volatile organic compounds, enhancing safety during electrochemical experiments on wastewater, which may release hazardous gases. SAMA software was used to evaluate energy-sharing scenarios under different grid-connected conditions, and the system can operate off the power grid for 98% of the year in Ontario, Canada. The complete system was tested utilizing a laboratory-scale electrolyzer (electrodes of SS316L, Duplex 2205, titanium grade II and graphite) with electrolyte solutions of potassium hydroxide, sulfuric acid, and secondary wastewater effluent. The electrolytic cell specifically developed for testing electrode materials and wastewater showed a Faraday efficiency up to 95% and an energy efficiency of 55% at STP, demonstrating the potential for use of this technology in future work. Full article
(This article belongs to the Section Environmental Technology)
Show Figures

Figure 1

Back to TopTop