Preparation of Copper Oxide Film at Low Temperature in Basic Conditions on a Copper Substrate
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Buccolieri, G.; Castellano, A.; Serra, A.; Zavarise, G.; Palmiero, E.; Buccolieri, A. Archaeometric analysis of patinas of the outdoor copper statue Sant’Oronzo (Lecce, Italy) preparatory to the restoration. Microchem. J. 2020, 154, 104538. [Google Scholar] [CrossRef]
- Porcaro, M.; Barbaro, B.; Canovaro, C.; Artioli, G.; Lucarelli, C.; Lugli, F.; Depalmas, A.; Brunetti, A. A multi analytical characterization of a small bronze figurine from Gran Carro site (Bolsena Lake, Italy). J. Archaeol. Sci. Rep. 2023, 51, 104230. [Google Scholar] [CrossRef]
- General-Toro, P.; Bordalo, R.; Moreira, P.R.; Vieira, E.; Brunetti, A.; Iannaccone, R.; Bottaini, C. Art Casting in Portuguese 19th Century Industrial Foundries: A Multi-Analytical Study of an Emblematic Copper-Based Alloy Monument. Heritage 2021, 4, 3050–3064. [Google Scholar] [CrossRef]
- Merkl, P.; Long, S.; McInerney, G.M.; Sotiriou, G.A. Antiviral Activity of Silver, Copper Oxide and Zinc Oxide Nanoparticle Coatings against SARS-CoV-2. Nanomaterials 2021, 11, 1312. [Google Scholar] [CrossRef]
- Waris, A.; Din, M.; Ali, A.; Ali, M.; Afridi, S.; Baset, A.; Khan, A.U. A comprehensive review of green synthesis of copper oxide nanoparticles and their diverse biomedical applications. Inorg. Chem. Commun. 2021, 123, 108369. [Google Scholar] [CrossRef]
- Verma, N.; Kumar, N. Synthesis and Biomedical Applications of Copper Oxide Nanoparticles: An Expanding Horizon. ACS Biomater. Sci. Eng. 2019, 5, 1170–1188. [Google Scholar] [CrossRef]
- Steinhauer, S. Gas Sensors Based on Copper Oxide Nanomaterials: A Review. Chemosensors 2021, 9, 51. [Google Scholar] [CrossRef]
- Bao, J.; Huang, T.; Wang, Z.; Yang, H.; Geng, X.; Xu, G.; Samalo, M.; Sakinati, M.; Huo, D.; Hou, C. 3D graphene/copper oxide nano-flowers based acetylcholinesterase biosensor for sensitive detection of organophosphate pesticides. Sens. Actuators B Chem. 2019, 279, 95–101. [Google Scholar] [CrossRef]
- Di Tocco, A.; Robledo, S.; Osuna, Y.; Sandoval-Cortez, J.; Granero, A.; Vettorazzi, N.; Martínez, J.; Segura, E.; Iliná, A.; Zon, M.; et al. Development of an electrochemical biosensor for the determination of triglycerides in serum samples based on a lipase/magnetite-chitosan/copper oxide nanoparticles/multiwalled carbon nanotubes/pectin composite. Talanta 2018, 190, 30–37. [Google Scholar] [CrossRef]
- Majumdar, D.; Ghosh, S. Recent advancements of copper oxide based nanomaterials for supercapacitor applications. J. Energy Storage 2021, 34, 101995. [Google Scholar] [CrossRef]
- Geuli, O.; Mandler, D. The synergistic effect of benzotriazole and trimethylsiloxysilicate towards corrosion protection of printed Cu-based electronics. Corros. Sci. 2018, 143, 329–336. [Google Scholar] [CrossRef]
- Vikraman, D.; Park, H.J.; Kim, S.-I.; Thaiyan, M. Magnetic, structural and optical behavior of cupric oxide layers for solar cells. J. Alloys Compd. 2016, 686, 616–627. [Google Scholar] [CrossRef]
- Song, P.; Shen, S.; Li, C.-C.; Guo, X.-Y.; Wen, Y.; Yang, H.-F. Insight in layer-by-layer assembly of cysteamine and l-cysteine on the copper surface by electrochemistry and Raman spectroscopy. Appl. Surf. Sci. 2015, 328, 86–94. [Google Scholar] [CrossRef]
- Fateh, A.; Aliofkhazraei, M.; Rezvanian, A.R. Review of corrosive environments for copper and its corrosion inhibitors. Arab. J. Chem. 2020, 13, 481–544. [Google Scholar] [CrossRef]
- Jamil, F.; Hassan, F.; Shoeibi, S.; Khiadani, M. Application of advanced energy storage materials in direct solar desalination: A state of art review. Renew. Sustain. Energy Rev. 2023, 186, 113663. [Google Scholar] [CrossRef]
- Ontiveros, M.A.; Quintero, Y.; Llanquilef, A.; Morel, M.; Martínez, L.A.; García, A.G.; Garcia, A. Anti-Biofouling and Desalination Properties of Thin Film Composite Reverse Osmosis Membranes Modified with Copper and Iron Nanoparticles. Materials 2019, 12, 2081. [Google Scholar] [CrossRef]
- RMiller, J.; Adeleye, A.S.; Page, H.M.; Kui, L.; Lenihan, H.S.; Keller, A.A. Nano and traditional copper and zinc antifouling coatings: Metal release and impact on marine sessile invertebrate communities. J. Nanoparticle Res. 2020, 22, 129. [Google Scholar] [CrossRef]
- Farhadi, S.; Siadatnasab, F. Copper(I) sulfide (Cu2S) nanoparticles from Cu(II) diethyldithiocarbamate: Synthesis, characterization and its application in ultrasound-assisted catalytic degradation of organic dye pollutants. Mater. Res. Bull. 2016, 83, 345–353. [Google Scholar] [CrossRef]
- Oral, A.Y.; Menşur, E.; Aslan, M.H.; Başaran, E. The preparation of copper(II) oxide thin films and the study of their microstructures and optical properties. Mater. Chem. Phys. 2004, 83, 140–144. [Google Scholar] [CrossRef]
- Pierson, J.F.; Thobor-Keck, A.; Billard, A. Cuprite, paramelaconite and tenorite films deposited by reactive magnetron sputtering. Appl. Surf. Sci. 2003, 210, 359–367. [Google Scholar] [CrossRef]
- Gattinoni, C.; Michaelides, A. Atomistic details of oxide surfaces and surface oxidation: The example of copper and its oxides. Surf. Sci. Rep. 2015, 70, 424–447. [Google Scholar] [CrossRef]
- Jayatissa, A.H.; Guo, K.; Jayasuriya, A.C. Fabrication of cuprous and cupric oxide thin films by heat treatment. Appl. Surf. Sci. 2009, 255, 9474–9479. [Google Scholar] [CrossRef]
- Prasanth, D.; Sibin, K.P.; Barshilia, H.C. Optical properties of sputter deposited nanocrystalline CuO thin films. Thin Solid Film. 2019, 673, 78–85. [Google Scholar] [CrossRef]
- Dhineshbabu, N.R.; Rajendran, V.; Nithyavathy, N.; Vetumperumal, R. Study of structural and optical properties of cupric oxide nanoparticles. Appl. Nanosci. 2016, 6, 933–939. [Google Scholar] [CrossRef]
- Debbichi, L.; de Lucas, M.C.M.; Pierson, J.F.; Krüger, P. Vibrational Properties of CuO and Cu4O3 from First-Principles Calculations, and Raman and Infrared Spectroscopy. J. Phys. Chem. C 2012, 116, 10232–10237. [Google Scholar] [CrossRef]
- John, A.O. The Inter-play of the Opto-Electrical Properties of Cuprite and Tenorite Semiconductors for Solar Cell Application. Am. J. Nano Res. Appl. 2017, 5, 81. [Google Scholar] [CrossRef]
- Al-Kuhaili, M.F. Characterization of copper oxide thin films deposited by the thermal evaporation of cuprous oxide (Cu2O). Vacuum 2008, 82, 623–629. [Google Scholar] [CrossRef]
- Zhang, W.; Ding, S.; Yang, Z.; Liu, A.; Qian, Y.; Tang, S.; Yang, S. Growth of novel nanostructured copper oxide (CuO) films on copper foil. J. Cryst. Growth 2006, 291, 479–484. [Google Scholar] [CrossRef]
- Karapetyan, A.; Reymers, A.; Giorgio, S.; Fauquet, C.; Sajti, L.; Nitsche, S.; Nersesyan, M.; Gevorgyan, V.; Marine, W. Cuprous oxide thin films prepared by thermal oxidation of copper layer. Morphological and optical properties. J. Lumin. 2015, 159, 325–332. [Google Scholar] [CrossRef]
- Tang, C.; Sun, F.; Chen, Z.; Chen, D.; Liu, Z. Improved thermal oxidation growth of non-flaking CuO nanorod arrays on Si substrate from Cu film and their nanoscale electrical properties for electronic devices. Ceram. Int. 2019, 45, 14562–14567. [Google Scholar] [CrossRef]
- Castrejón-Sánchez, V.-H.; Solís, A.C.; López, R.; Encarnación-Gomez, C.; Morales, F.M.; Vargas, O.S.; Mastache-Mastache, J.E.; Sánchez, G.V. Thermal oxidation of copper over a broad temperature range: Towards the formation of cupric oxide (CuO). Mater. Res. Express 2019, 6, 075909. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, K.; Xu, D.; Yang, G.; Huang, H.; Nie, F.; Liu, C.; Yang, S. CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications. Prog. Mater. Sci. 2014, 60, 208–337. [Google Scholar] [CrossRef]
- Lillo-Ramiro, J.; Guerrero-Villalba, J.M.; Mota-González, M.d.L.; Tostado, F.S.A.; Gutiérrez-Heredia, G.; Mejía-Silva, I.; Castillo, A.C. Optical and microstructural characteristics of CuO thin films by sol gel process and introducing in non-enzymatic glucose biosensor applications. Optik 2021, 229, 166238. [Google Scholar] [CrossRef]
- Yu, J.; Tian, H.; Huang, M.; Xu, X. Facile Synthesis of Ag NP Films via Evaporation-Induced Self-Assembly and the BA-Sensing Properties. Foods 2023, 12, 1285. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.R. Green synthesis, morphological and optical studies of CuO nanoparticles. J. Mol. Struct. 2017, 1150, 553–557. [Google Scholar] [CrossRef]
- Sahu, K.; Choudhary, S.; Khan, S.A.; Pandey, A.; Mohapatra, S. Thermal evolution of morphological, structural, optical and photocatalytic properties of CuO thin films. Nano-Struct. Nano-Objects 2019, 17, 92–102. [Google Scholar] [CrossRef]
- Kumar, S.K.; Murugesan, S.; Suresh, S. Preparation and characterization of CuO nanostructures on copper substrate as selective solar absorbers. Mater. Chem. Phys. 2014, 143, 1209–1214. [Google Scholar] [CrossRef]
- Toe, C.Y.; Zheng, Z.; Wu, H.; Scott, J.; Amal, R.; Ng, Y.H. Photocorrosion of Cuprous Oxide in Hydrogen Production: Rationalising Self-Oxidation or Self-Reduction. Angew. Chem. Int. Ed. 2018, 57, 13613–13617. [Google Scholar] [CrossRef]
- ElFaham, M.M.; Mostafa, A.M.; Toghan, A. Facile synthesis of Cu2O nanoparticles using pulsed laser ablation method for optoelectronic applications. Colloids Surf. A Physicochem. Eng. Asp. 2021, 630, 127562. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Karuppasamy, K.; Lee, S.J.; Shwetharani, R.; Kim, H.-S.; Pasha, S.K.K.; Ashokkumar, M.; Choi, M.Y. Fundamentals and comprehensive insights on pulsed laser synthesis of advanced materials for diverse photo- and electrocatalytic applications. Light Sci. Appl. 2022, 11, 250. [Google Scholar] [CrossRef]
- Begildayeva, T.; Lee, S.J.; Yu, Y.; Park, J.; Kim, T.H.; Theerthagiri, J.; Ahn, A.; Jung, H.J.; Choi, M.Y. Production of copper nanoparticles exhibiting various morphologies via pulsed laser ablation in different solvents and their catalytic activity for reduction of toxic nitroaromatic compounds. J. Hazard. Mater. 2021, 409, 124412. [Google Scholar] [CrossRef] [PubMed]
- Letchumanan, D.; Sok, S.P.M.; Ibrahim, S.; Nagoor, N.H.; Arshad, N.M. Arshad. Plant-Based Biosynthesis of Copper/Copper Oxide Nanoparticles: An Update on Their Applications in Biomedicine, Mechanisms, and Toxicity. Biomolecules 2021, 11, 564. [Google Scholar] [CrossRef]
- Yadav, S.; Jain, A.; Malhotra, P. A review on the sustainable routes for the synthesis and applications of cuprous oxide nanoparticles and their nanocomposites. Green Chem. 2019, 21, 937–955. [Google Scholar] [CrossRef]
- Surendhiran, S.; Gowthambabu, V.; Balamurugan, A.; Sudha, M.; Kumar, V.S.; Suresh, K. Rapid green synthesis of CuO nanoparticles and evaluation of its photocatalytic and electrochemical corrosion inhibition performance. Mater. Today Proc. 2021, 47, 1011–1016. [Google Scholar] [CrossRef]
- Vivas, L.; Chi-Duran, I.; Enríquez, J.; Barraza, N.; Singh, D.P. Ascorbic acid based controlled growth of various Cu and Cu2O nanostructures. Mater. Res. Express 2019, 6, 065033. [Google Scholar] [CrossRef]
- Neupane, M.P.; Kim, Y.K.; Park, I.S.; Kim, K.A.; Lee, M.H.; Bae, T.S. Temperature driven morphological changes of hydrothermally prepared copper oxide nanoparticles. Surf. Interface Anal. 2009, 41, 259–263. [Google Scholar] [CrossRef]
- Mikić, D.; Ćurković, H.O. Protection of Patinated Bronze with Long-Chain Phosphonic Acid/Organic Coating Combined System. Materials 2023, 16, 1660. [Google Scholar] [CrossRef]
- Fan, J.; Tang, D.; Wang, D. Spontaneous growth of CuO nanoflakes and microflowers on copper in alkaline solutions. J. Alloys Compd. 2017, 704, 624–630. [Google Scholar] [CrossRef]
- Aromaa, J.; Kekkonen, M.; Mousapour, M.; Jokilaakso, A.; Lundström, M. The Oxidation of Copper in Air at Temperatures up to 100 °C. Corros. Mater. Degrad. 2021, 2, 625–640. [Google Scholar] [CrossRef]
- Shan, J.; Shan, C.-H.; Huang, C.; Wu, Y.-P.; Lia, Y.-K.; Chen, W.-J. Study of Microstructure and Mechanical Properties of Electrodeposited Cu on Silicon Heterojunction Solar Cells. Metals 2023, 13, 1223. [Google Scholar] [CrossRef]
- Bartlett, M.D.; Case, S.W.; Kinloch, A.J.; Dillard, D.A. Peel tests for quantifying adhesion and toughness: A review. Prog. Mater. Sci. 2023, 137, 101086. [Google Scholar] [CrossRef]
- Arslan, B.; Demirci, G.; Erdoğan, M.; Karakaya, İ. Formation and characterization of infrared absorbing copper oxide surfaces. Appl. Surf. Sci. 2017, 402, 218–224. [Google Scholar] [CrossRef]
- Ghaedi, A.M.; Karamipour, S.; Vafaei, A.; Baneshi, M.M.; Kiarostami, V. Optimization and modeling of simultaneous ultrasound-assisted adsorption of ternary dyes using copper oxide nanoparticles immobilized on activated carbon using response surface methodology and artificial neural network. Ultrason. Sonochem. 2019, 51, 264–280. [Google Scholar] [CrossRef] [PubMed]
- Ning, W.; Xia, C.; Xiaolan, C.; Yanjun, X.; Lin, G. Porous cuprite films: Facile solution deposition and their application for nitrite sensing. Analyst 2010, 135, 2106. [Google Scholar] [CrossRef]
- De Caro, T.; Angelini, E.; Sebar, L.E. Number 1, 234-240 ACTA IMEKO. 2021. Available online: www.imeko.org (accessed on 22 February 2025).
- Ospitali, F.; Chiavari, C.; Martini, C.; Bernardi, E.; Passarini, F.; Robbiola, L. The characterization of Sn-based corrosion products in ancient bronzes: A Raman approach. J. Raman Spectrosc. 2012, 43, 1596–1603. [Google Scholar] [CrossRef]
- Htay, M.T.; Okamura, M.; Yoshizawa, R.; Hashimoto, Y.; Ito, K. Synthesis of a cuprite thin film by oxidation of a Cu metal precursor utilizing ultrasonically generated water vapor. Thin Solid Film. 2014, 556, 211–215. [Google Scholar] [CrossRef]
- Montoya, N.; Montagna, E.; Lee, Y.; Doménech-Carbó, M.T.; Doménech-Carbó, A. Raman spectroscopy characterization of 10-cash productions from the late Chinese emperors to the Republic. J. Raman Spectrosc. 2017, 48, 1337–1345. [Google Scholar] [CrossRef]
- Purusottam-Reddy, B.; Sivajee-Ganesh, K.; Jayanth-Babu, K.; Hussain, O.M.; Julien, C.M. Microstructure and supercapacitive properties of rf-sputtered copper oxide thin films: Influence of O2/Ar ratio. Ionics 2015, 21, 2319–2328. [Google Scholar] [CrossRef]
- Moumen, A.; Hartiti, B.; Thevenin, P.; Siadat, M. Synthesis and characterization of CuO thin films grown by chemical spray pyrolysis. Opt. Quantum Electron. 2017, 49, 70. [Google Scholar] [CrossRef]
- Murali, D.S.; Aryasomayajula, S. Thermal conversion of Cu4O3 into CuO and Cu2O and the electrical properties of magnetron sputtered Cu4O3 thin films. Appl. Phys. A 2018, 124, 279. [Google Scholar] [CrossRef]
- Jagadish, K.A.; Kekuda, D. Thermal annealing effect on phase evolution, physical properties of DC sputtered copper oxide thin films and transport behavior of ITO/CuO/Al Schottky diodes. Appl. Phys. A 2024, 130, 315. [Google Scholar] [CrossRef]
- Li, J.; Li, J.; Jiang, Q.; Jiang, Q.; Xing, X.; Xing, X.; Sun, C.; Sun, C.; Wang, Y.; Wang, Y.; et al. Surface Structure Reformulation from CuO to Cu/Cu(OH)2 for Highly Efficient Nitrate Reduction to Ammonia. Adv. Sci. 2024, 11, 2404194. [Google Scholar] [CrossRef]
- Toader, G.; Diacon, A.; Rusen, E.; Mangalagiu, I.I.; Alexandru, M.; Zorilă, F.L.; Mocanu, A.; Boldeiu, A.; Gavrilă, A.M.; Trică, B.; et al. Peelable Alginate Films Reinforced by Carbon Nanofibers Decorated with Antimicrobial Nanoparticles for Immediate Biological Decontamination of Surfaces. Nanomaterials 2023, 13, 2775. [Google Scholar] [CrossRef] [PubMed]
- Djurek, D.; Prester, M.; Drobac, D.; Ivanda, M.; Vojta, D. Magnetic properties of nanoscaled paramelaconite Cu4O3−x (x = 0.0 and 0.5). J. Magn. Magn. Mater. 2015, 373, 183–187. [Google Scholar] [CrossRef]
- Dolai, S.; Dey, R.; Das, S.; Hussain, S.; Bhar, R.; Pal, A.K. Cupric oxide (CuO) thin films prepared by reactive d.c. magnetron sputtering technique for photovoltaic application. J. Alloys Compd. 2017, 724, 456–464. [Google Scholar] [CrossRef]
- Nitta, R.; Kubota, Y.; Kishi, T.; Matsushita, N. Fabrication of nanostructured CuO thin films with controllable optical band gaps using a mist spin spray technique at 90 °C. Thin Solid Film. 2022, 762, 139555. [Google Scholar] [CrossRef]
Sample Code | Method Description |
---|---|
Im | Method A: immersing copper samples for 30 min in a 10% NaOH solution, heated at different temperatures, respectively, 20, 40, 60, and 80 °C. Solutions were magnetically stirred at 500 rpm. |
ImVap | Method B: immersing the sample for 1 min in a 10% NaOH solution, which was stirred at 500 rpm and heated to 80 °C, followed by exposure to the vapour of the same solution at different times of exposition: 3, 5, 10 and 20 min. |
Vap | Method C: by contact with a strongly basic solution (pH 14), involved treating the sample by exposure only to vapours of 10% NaOH solution, magnetically stirred at 500 rpm and heated to 80 °C. Exposure time to the vapour was conducted for 5, 10 and 20 min. |
Method | Sample Code | L* | a* | b* |
---|---|---|---|---|
A: Im | 20 °C | 48.1 | 22.1 | 25.1 |
40 °C | 50.2 | 16.0 | 20.0 | |
60 °C | 49.5 | 10.9 | 18.5 | |
80 °C | 38.8 | 10.1 | 4.9 | |
B: ImVap | 3 min | 45.7 | 6.3 | 1.3 |
5 min | 38.4 | 4.5 | −0.2 | |
10 min | 35.4 | 3.2 | −1.4 | |
20 min | 22.5 | 0.9 | −2.7 | |
C: Vap | Vap | 52.3 | 21.2 | 28.3 |
Name | Peak BE (eV) | FWHM (eV) | Area (P) CPS.eV | Atomic % | Assignment | Auger Parameter α′ (eV) |
---|---|---|---|---|---|---|
C1s-1 | 285.0 | 1.69 | 17,108.94 | 61.8 | C–C | |
C1s-2 | 286.4 | 1.69 | 1448.38 | 5.2 | C–O, C = O | |
C1s-3 | 288.4 | 1.69 | 1397.89 | 5.1 | -COOH(R) | |
Cu2p3-1 | 932.5 | 1.68 | 15,757.20 | 4.4 | Cu(I) | 1849.1 |
Cu2p3-2 | 935.2 | 2.39 | 8147.80 | 2.3 | Cu(OH)2 | |
O1s-1 | 531.9 | 1.88 | 8969.87 | 11.8 | hydroxides | |
O1s-2 | 530.5 | 1.88 | 5539.83 | 7.3 | Oxides | |
O1s-3 | 533.5 | 1.88 | 1610.63 | 2.1 | H2O |
Name | Peak BE (eV) | FWHM (eV) | Area (P) CPS.eV | Atomic % | Assignment | Auger Parameter α′ (eV) |
---|---|---|---|---|---|---|
C1s-1 | 285.0 | 1.57 | 20,268.04 | 33.4 | C–C | |
C1s-2 | 289.1 | 1.57 | 6638.69 | 10.9 | Carbonates | |
Cu2p3 | 932.2 | 1.56 | 11,748.05 | 1.5 | Cu(I) | 1849.2 |
Na1s | 1071.6 | 1.84 | 64,061.97 | 18.0 | Carbonates | |
O1s | 531.3 | 1.86 | 47,907.67 | 28.8 | Carbonates |
Name | Peak BE (eV) | FWHM (eV) | Area (P) CPS.eV | Atomic % | Assignment | Auger Parameter α′ (eV) |
---|---|---|---|---|---|---|
C1s-1 | 284.8 | 1.53 | 15,548.59 | 39.4 | C–C | |
C1s-2 | 286.5 | 1.53 | 2145.08 | 5.4 | C–O, C = O | |
C1s-3 | 288.4 | 1.53 | 1419.61 | 3.6 | -COOH(R) | |
Cu2p3-1 | 932.3 | 1.51 | 52,744.65 | 10.3 | Cu(I) | 1849.6 |
Cu2p3-3 | 935.6 | 2.72 | 9783.49 | 1.9 | Cu(OH)2 | |
Cu2p3-2 | 934.2 | 2.06 | 23,691.50 | 4.6 | CuO | |
Na1s | 1071.5 | 1.77 | 4462.76 | 1.9 | Carbonates | |
O1s-1 | 530.0 | 1.56 | 19,970.00 | 18.4 | Oxides | |
O1s-2 | 531.5 | 1.56 | 11,611.16 | 10.7 | Hydroxides | |
O1s-3 | 533.1 | 1.56 | 3936.54 | 3.6 | H2O |
Samples | Maximum Peel Value | Standard Deviation |
---|---|---|
1 | 0.0523 | 0 |
2 | 0.0436 | 9.43 × 10−0.5 |
3 | 0.0457 | 2.36 × 10−0.5 |
4 | 0.0578 | 2.36 × 10−0.5 |
5 | 0.0449 | 4.71 × 10−0.5 |
6 | 0.0493 | 2.36 × 10−0.5 |
7 | 0.0513 | 0 |
8 | 0.0445 | 4.71 × 10−0.5 |
9 | 0.0519 | 2.36 × 10−0.5 |
10 | 0.0439 | 2.36 × 10−0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barbaccia, F.I.; de Caro, T.; Federici, F.; Mezzi, A.; Sansone, L.; Giordano, M.; Macchia, A. Preparation of Copper Oxide Film at Low Temperature in Basic Conditions on a Copper Substrate. Materials 2025, 18, 1487. https://doi.org/10.3390/ma18071487
Barbaccia FI, de Caro T, Federici F, Mezzi A, Sansone L, Giordano M, Macchia A. Preparation of Copper Oxide Film at Low Temperature in Basic Conditions on a Copper Substrate. Materials. 2025; 18(7):1487. https://doi.org/10.3390/ma18071487
Chicago/Turabian StyleBarbaccia, Francesca Irene, Tilde de Caro, Fulvio Federici, Alessio Mezzi, Lucia Sansone, Michele Giordano, and Andrea Macchia. 2025. "Preparation of Copper Oxide Film at Low Temperature in Basic Conditions on a Copper Substrate" Materials 18, no. 7: 1487. https://doi.org/10.3390/ma18071487
APA StyleBarbaccia, F. I., de Caro, T., Federici, F., Mezzi, A., Sansone, L., Giordano, M., & Macchia, A. (2025). Preparation of Copper Oxide Film at Low Temperature in Basic Conditions on a Copper Substrate. Materials, 18(7), 1487. https://doi.org/10.3390/ma18071487