Defect Passivation in Perovskite Solar Cells Using Polysuccinimide-Based Green Polymer Additives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Polymer Synthesis
2.3. Device Fabrication
2.4. Characterization
3. Results
3.1. PSI Synthesis and Characterization
3.2. Morphology of Perovskite Films
3.3. FTIR Spectroscopy of Perovskite Films and Adducts
3.4. XRD
3.5. Optical Properties of Perovskite Films
3.6. Photovoltaic Performance of PSCs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, N.-G.; Grätzel, M.; Miyasaka, T.; Zhu, K.; Emery, K. Towards stable and commercially available perovskite solar cells. Nat. Energy 2016, 1, 16152. [Google Scholar] [CrossRef]
- Li, Y.; Xie, H.; Lim, E.L.; Hagfeldt, A.; Bi, D. Recent progress of critical interface engineering for highly efficient and stable perovskite solar cells. Adv. Energy Mater. 2022, 12, 2102730. [Google Scholar] [CrossRef]
- Nazir, G.; Lee, S.-Y.; Lee, J.-H.; Rehman, A.; Lee, J.-K.; Seok, S.I.; Park, S.-J. Stabilization of perovskite solar cells: Recent developments and future perspectives. Adv. Mater. 2022, 34, 2204380. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Park, N.-G. A Realistic Methodology for 30% Efficient Perovskite Solar Cells. Chem 2020, 6, 1254. [Google Scholar] [CrossRef]
- Kim, G.-H.; Kim, D.S. Development of perovskite solar cells with >25% conversion efficiency. Joule 2021, 5, 1033. [Google Scholar] [CrossRef]
- Liu, S.; Biju, V.P.; Qi, Y.; Chen, W.; Liu, Z. Recent progress in the development of high-efficiency inverted perovskite solar cells. NPG Asia Mater. 2023, 15, 27. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Siefer, G.; Hao, X. Solar cell efficiency tables (version 62). Prog. Photos. Res. Appl. 2023, 31, 651–663. [Google Scholar] [CrossRef]
- Liu, S.; Liu, S.; Li, J.; Li, J.; Xiao, W.; Xiao, W.; Chen, R.; Chen, R.; Sun, Z.; Sun, Z.; et al. Buried interface molecular hybrid for inverted perovskite solar cells. Nature 2024, 632, 536. [Google Scholar] [CrossRef]
- Byranvand, M.M.; Saliba, M. Defect Passivation of Perovskite Films for Highly Efficient and Stable Solar Cells. Sol. RRL 2021, 5, 2100295. [Google Scholar] [CrossRef]
- Aydin, E.; De Bastiani, M.; De Wolf, S. Defect and contact passivation for perovskite solar cells. Adv. Mater. 2019, 31, 1900428. [Google Scholar] [CrossRef]
- Wang, J.; Bi, L.; Fu, Q.; Jen, A.K.-Y. Methods for Passivating Defects of Perovskite for Inverted Perovskite Solar Cells and Modules. Adv. Energy Mater. 2024, 14, 2401414. [Google Scholar] [CrossRef]
- Peng, J.; Khan, J.I.; Liu, W.; Ugur, E.; Duong, T.; Wu, Y.; Shen, H.; Wang, K.; Dang, H.; Aydin, E.; et al. A Universal Double-Side Passivation for High Open-Circuit Voltage in Perovskite Solar Cells: Role of Carbonyl Groups in Poly(methyl methacrylate). Adv. Energy Mater. 2018, 8, 1801208. [Google Scholar] [CrossRef]
- Wang, L.; Liu, G.; Xi, X.; Yang, G.; Hu, L.; Zhu, B.; He, Y.; Liu, Y.; Qian, H.; Zhang, S.; et al. Annealing Engineering in the Growth of Perovskite Grains. Crystals 2022, 12, 894. [Google Scholar] [CrossRef]
- Zheng, D.; Raffin, F.; Volovitch, P.; Pauporté, T. Control of perovskite film crystallization and growth direction to target homogeneous monolithic structures. Nat. Commun. 2022, 13, 6655. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-K.; Park, N.-G. Additive engineering for highly efficient and stable perovskite solar cells. Appl. Phys. Rev. 2023, 10, 011308. [Google Scholar] [CrossRef]
- Mangrulkar, M.; Stevenson, K.J. The Progress of Additive Engineering for CH3NH3PbI3 Photo-Active Layer in the Context of Perovskite Solar Cells. Crystals 2021, 11, 814. [Google Scholar] [CrossRef]
- Lee, H.; Li, D. Surface Passivation to Improve the Performance of Perovskite Solar Cells. Energies 2024, 17, 5282. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Z.; Tang, Z.; Su, C.; Huang, W.; Li, Y.; Xing, G. Polymer strategies for high-efficiency and stable perovskite solar cells. Nano Energy 2021, 82, 105712. [Google Scholar] [CrossRef]
- Ma, Y.; Ge, J.; Jen, A.K.; You, J.; Liu, S. Polymer Boosts High Performance Perovskite Solar Cells: A Review. Adv. Opt. Mater. 2024, 12, 2301623. [Google Scholar] [CrossRef]
- Bi, D.Q.; Yi, C.Y.; Luo, J.S.; Decoppet, J.D.; Zhang, F.; Zakeeruddin, S.M.; Li, X.; Hagfeldt, A.; Gratzel, M. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 2016, 1, 16142. [Google Scholar] [CrossRef]
- Zhu, Z.; Mao, K.; Zhang, K.; Peng, W.; Zhang, J.; Meng, H.; Cheng, S.; Li, T.; Lin, H.; Chen, Q.; et al. Correlating the perovskite/polymer multimode reactions with deep-level traps in perovskite solar cells. Joule 2022, 6, 2849–2868. [Google Scholar] [CrossRef]
- Wu, S.; Lin, S.; Shi, Z.; Guo, D.; Huang, H.; Zhou, X.; Zhang, D.; Zhou, K.; Zhang, W.; Hu, Y.; et al. Improved Thermal Stability and Film Uniformity of Halide Perovskite by Confinement Effect brought by Polymer Chains of Polyvinyl Pyrrolidone. Small 2023, 19, 2207848. [Google Scholar] [CrossRef]
- Han, T.-H.; Lee, J.-W.; Choi, C.; Tan, S.; Lee, C.; Zhao, Y.; Dai, Z.; De Marco, N.; Lee, S.-J.; Bae, S.-H.; et al. Perovskite-polymer composite cross-linker approach for highly-stable and efficient perovskite solar cells. Nat. Comm. 2019, 10, 520. [Google Scholar] [CrossRef] [PubMed]
- Zuo, L.; Guo, H.; Dequilettes, D.W.; Jariwala, S.; De Marco, N.; Dong, S.; DeBlock, R.; Ginger, D.S.; Dunn, B.; Wang, M.; et al. Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Sci. Adv. 2017, 3, e1700106. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Han, J.; Lee, S.; Kim, S.; Choi, J.-M.; Nam, J.-S.; Kim, D.; Chung, I.; Kim, T.-D.; Manzhos, S.; et al. Liquid-State Dithiocarbonate-Based Polymeric Additives with Monodispersity Rendering Perovskite Solar Cells with Exceptionally High Certified Photocurrent and Fill Factor. Adv. Energy Mater. 2023, 13, 2203742. [Google Scholar] [CrossRef]
- Xu, Y.; Guo, X.; Lin, Z.; Wang, Q.; Su, J.; Zhang, J.; Hao, Y.; Yang, K.; Chang, J. Perovskite Films Regulation via Hydrogen-Bonded Polymer Network for Efficient and Stable Perovskite Solar Cells. Angew. Chem. Int. Ed. 2023, 62, e202306229. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Sheng, W.; Li, X.; Zhong, Y.; Su, Y.; Tan, L.; Chen, Y. Synergistic Toughening and Self-Healing Strategy for Highly Efficient and Stable Flexible Perovskite Solar Cells. Adv. Funct. Mater. 2023, 33, 2214984. [Google Scholar] [CrossRef]
- Hong, J.; Kim, H.; Hwang, I. Defect site engineering for charge recombination and stability via polymer surfactant incorporation with an ultra-small amount in perovskite solar cells. Org. Electron. 2019, 73, 87. [Google Scholar] [CrossRef]
- Yang, J.; Xiong, S.; Qu, T.; Zhang, Y.; He, X.; Guo, X.; Zhao, Q.; Braun, S.; Chen, J.; Xu, J.; et al. Extremely Low-Cost and Green Cellulose Passivating Perovskites for Stable and High-Performance Solar Cells. ACS Appl. Mater. Interfaces 2019, 11, 13491. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.-C.; Cai, C.-E.; Liu, B.-T.; Yang, H.; Lee, R.-H. Cellulose Nanocrystal-Incorporated MAPbI3 for Inverted Perovskite Solar Cells with Enhanced Efficiency and Stability. ACS Appl. Energy Mater. 2024, 7, 12092. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, Y.; Yin, C.; Zhang, J.; You, J.; Wang, J.; Wang, J.; Zhang, J. Manipulating Crystal Growth and Secondary Phase PbI2 to Enable Efficient and Stable Perovskite Solar Cells with Natural Additives. Nano-Micro Lett. 2024, 16, 183. [Google Scholar] [CrossRef] [PubMed]
- Jalalvandi, E.; Shavandi, A. Polysuccinimide and its derivatives: Degradable and water soluble polymers (review). Eur. Polym. J. 2018, 109, 43. [Google Scholar] [CrossRef]
- Thombre, S.M.; Sarwade, B.D. Synthesis and Biodegradability of Polyaspartic Acid: A Critical Review. J. Macromol. Sci. Part A 2005, 42, 1299–1315. [Google Scholar] [CrossRef]
- Sharma, S.; Dua, A.; Malik, A. Polyaspartic acid based superabsorbent polymers. Eur. Polym. J. 2014, 59, 363. [Google Scholar] [CrossRef]
- Guo, M.; Chen, Y.; Chen, S.; Zuo, C.; Li, Y.; Chang, Y.J.; Li, J.; Wei, M. Synchronous effect of coordination and hydrogen bonds boosting the photovoltaic performance of perovskite solar cells. Electrochim. Acta 2024, 492, 144335. [Google Scholar] [CrossRef]
- Goldberg, V.M.; Lomakin, S.M.; Todinova, A.V.; Shchegolikhin, A.N.; Varfolomeev, S.D. Kinetic analysis of solid-phase polycondensation of aspartic acid. Dokl. Phys. Chem. 2008, 423, 327. [Google Scholar] [CrossRef]
- Goldberg, V.M.; Lomakin, S.M.; Todinova, A.V.; Shchegolikhin, A.N.; Varfolomeev, S.D. Regulation of solid-phase polycondensation of L-aspartic acid. Dokl. Phys. Chem. 2009, 429, 252. [Google Scholar] [CrossRef]
- Zhang, W.; Xiong, J.; Li, J.; Daoud, W.A. Impact of Temperature-Dependent Hydration Water on Perovskite Solar Cells. Sol. RRL 2020, 4, 1900370. [Google Scholar] [CrossRef]
- Shchegolikhin, A.N.; Lazareva, O.L. The Application of a Drift Accessory for Routine Analysis of Liquids and Solids. Internet J. Vib. Spectrosc. 1997, 1, 95. Available online: https://www.researchgate.net/publication/254861429_The_Application_of_a_Drift_Accessory_for_Routine_Analysis_of_Liquids_and_Solids (accessed on 25 January 2025).
- Olkhov, A.; Alexeeva, O.; Konstantinova, M.; Podmasterev, V.; Tyubaeva, P.; Borunova, A.; Siracusa, V.; Iordanskii, A.L. Effect of Glycero-(9,10-trioxolane)-trialeate on the Physicochemical Properties of Non-Woven Polylactic Acid Fiber Materials. Polymers 2021, 13, 2517. [Google Scholar] [CrossRef]
- Abdel-Raouf, E.; El-Keshawy, M.H.; Hasan, A.M.A. Green Polymers and Their Uses in Petroleum Industry, Current State and Future Perspectives. In Crude Oil—New Technologies and Recent Approaches; IntechOpen: Rijeka, Croatia, 2021; Chapter 2. [Google Scholar] [CrossRef]
- Adelnia, H.; Tran, H.D.N.; Little, P.J.; Blakey, I.; Ta, H.T. Poly(aspartic acid) in Biomedical Applications: From Polymerization, Modification, Properties, Degradation, and Biocompatibility to Applications. ACS Biomater. Sci. Eng. 2021, 7, 2083. [Google Scholar] [CrossRef] [PubMed]
- Gol’dberg, V.M.; Lomakin, S.M.; Todinova, A.V.; Shchegolikhin, A.N.; Varfolomeev, S.D. Solid-phase polycondensation of aspartic acid 1. Kinetics of the process as evidenced by TGA and DSC data. Russ. Chem. Bull. 2010, 59, 806. [Google Scholar] [CrossRef]
- Matsubara, K.; Nakato, T.; Tomida, M. 1H and 13C NMR Characterization of Poly(succinimide) Prepared by Thermal Polycondensation of l-Aspartic Acid. Macromolecules 1997, 30, 2305. [Google Scholar] [CrossRef]
- Piątkowski, M.; Bogdał, D.; Raclavský, K. 1H and 13C NMR Analysis of Poly(succinimide) Prepared by Microwave-Enhanced Polycondensation of L-Aspartic Acid. Intl. J. Polymer Anal. Character 2015, 20, 714. [Google Scholar] [CrossRef]
- Gong, C.; Lu, C.; Li, B.; Shan, M.; Wu, G. Dopamine-modified poly(amino acid): An efficient near-infrared photothermal therapeutic agent for cancer therapy. J. Mater. Sci. 2017, 52, 955. [Google Scholar] [CrossRef]
- Zhang, C.; Wu, S.; Wu, J.; Wu, D.; Qin, X. Preparation and characterization of microporous sodium poly(aspartic acid) nanofibrous hydrogel. J. Porous Mater. 2017, 24, 75. [Google Scholar] [CrossRef]
- Idígoras, J.; Todinova, A.; Sánchez-Valencia, J.R.; Barranco, A.; Borrás, A.; Anta, J.A. The interaction between hybrid organic–inorganic halide perovskite and selective contacts in perovskite solar cells: An infrared spectroscopy study. Phys. Chem. Chem. Phys. 2016, 18, 13583. [Google Scholar] [CrossRef] [PubMed]
- Glaser, T.; Müller, C.; Sendner, M.; Krekeler, C.; Semonin, O.E.; Hull, T.D.; Yaffe, O.; Owen, J.S.; Kowalsky, W.; Pucci, A.; et al. Infrared Spectroscopic Study of Vibrational Modes in Methylammonium Lead Halide Perovskites. J. Phys. Chem. Lett. 2015, 6, 2913. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Osorio, M.A.; Milot, R.L.; Filip, M.R.; Patel, J.B.; Herz, L.M.; Johnston, M.B.; Giustino, F. Vibrational Properties of the Organic–Inorganic Halide Perovskite CH3NH3PbI3 from Theory and Experiment: Factor Group Analysis, First-Principles Calculations, and Low-Temperature Infrared Spectra. J. Phys. Chem. C 2015, 119, 25703. [Google Scholar] [CrossRef]
- Zhou, X.-L.; Liu, Z.-M.; Kiss, J.; Sloan, D.W.; White, J.M. Surface Chemistry of Chloroiodomethane, Coadsorbed with H and O, on Pt(111). J. Am. Chem. Soc. 1995, 117, 3565. [Google Scholar] [CrossRef]
- Oram, B.K.; Bandyopadhyay, M.B. An IR spectroscopic investigation of blue shifting C–H⋯Cl hydrogen bonds in room temperature solution: Homomeric and mixed dimers of CHCl3 and CH2Cl2. J. Mol. Struct. 2024, 1295, 136749. [Google Scholar] [CrossRef]
- Kelly, J.T.; McNamara, L.E.; Gilbraith, W.E.; Goetzman, C.M.; Hoover, M.E.; Lascola, R.J. Disentangling Acid-Base Chemistry through Blue Shifting Hydrogen Bond Contributions. ChemPhysChem 2024, 25, e202400029. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.Q.; Zhang, T.Y.; Chen, L.; Guo, N.; Wang, Y.; Liu, G.K.; Wang, J.R.; Zhou, J.Z.; Yan, J.W.; Zhao, Y.X.; et al. Organic–inorganic interactions of single crystalline organolead halide perovskites studied by Raman spectroscopy. Phys. Chem. Chem. Phys. 2016, 18, 18112. [Google Scholar] [CrossRef]
- Pistor, P.; Ruiz, A.; Cabot, A.; Izquierdo-Roca, V. Advanced Raman Spectroscopy of Methylammonium Lead Iodide: Development of a Non-destructive Characterisation Methodology. Sci. Rep. 2016, 6, 35973. [Google Scholar] [CrossRef] [PubMed]
- Du, T.; Xu, W.; Xu, S.; Ratnasingham, S.R.; Lin, C.-T.; Kim, J.; Briscoe, J.; McLachlan, M.A.; Durrant, J.R. Light-intensity and thickness dependent efficiency of planar perovskite solar cells: Charge recombination versus extraction. J. Mater. Chem. C 2020, 8, 12648. [Google Scholar] [CrossRef]
- Kirchartz, T.; Márquez, J.A.; Stolterfoht, M.; Unold, T. Photoluminescence-Based Characterization of Halide Perovskites for Photovoltaics. Adv. Energy Mater. 2020, 10, 1904134. [Google Scholar] [CrossRef]
- Yang, T.; Gao, L.; Lu, J.; Ma, C.; Du, Y.; Wang, P.; Ding, Z.; Wang, S.; Xu, P.; Liu, D.; et al. One-stone-for-two-birds strategy to attain beyond 25% perovskite solar cells. Nat. Commun. 2023, 14, 839. [Google Scholar] [CrossRef] [PubMed]
Ref | PSI | PASP | |
---|---|---|---|
A1 | 414,995 | 542,168 | 311,550 |
A2 | 256,565 | 772,937 | 249,959 |
A3 | 339,670 | 506,740 | 116,449 |
A4 | 8746 | 61,970 | 12,386 |
τ1, ns | 4.0 | 3.9 | 3.2 |
τ2, ns | 16.6 | 34.6 | 28.6 |
τ3, ns | 61.6 | 96.7 | 87.3 |
τ4, ns | 210.2 | 244.6 | 217.8 |
Sample | JSC, (mA/cm2) | VOC, (V) | FF | PCE, (%) |
---|---|---|---|---|
Reference PSC | 22.43 ± 0.48 a (22.45) | 1.050 ± 0.01 a (1.045) | 0.765 ± 0.014 a (0.78) | 17.9 ± 0.4 a (18.3) |
PSC with PSI (0.1 mg/mL) | 22.55 ± 0.37 a (23.1) | 1.077 ± 0.005 b (1.085) | 0.791 ± 0.012 b (0.803) | 19.10 ± 0.25 b (20.1) |
PSC with PASP (0.1 mg/mL) | 22.16 ± 0.39 a (22.82) | 1.076 ± 0.009 b (1.078) | 0.779 ± 0.017 b (0.785) | 18.5 ± 0.4 c (19.4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozlov, S.S.; Alexeeva, O.V.; Nikolskaia, A.B.; Petrova, V.I.; Karyagina, O.K.; Iordanskii, A.L.; Larina, L.L.; Shevaleevskiy, O.I. Defect Passivation in Perovskite Solar Cells Using Polysuccinimide-Based Green Polymer Additives. Polymers 2025, 17, 653. https://doi.org/10.3390/polym17050653
Kozlov SS, Alexeeva OV, Nikolskaia AB, Petrova VI, Karyagina OK, Iordanskii AL, Larina LL, Shevaleevskiy OI. Defect Passivation in Perovskite Solar Cells Using Polysuccinimide-Based Green Polymer Additives. Polymers. 2025; 17(5):653. https://doi.org/10.3390/polym17050653
Chicago/Turabian StyleKozlov, Sergey S., Olga V. Alexeeva, Anna B. Nikolskaia, Vasilisa I. Petrova, Olga K. Karyagina, Alexey L. Iordanskii, Liudmila L. Larina, and Oleg I. Shevaleevskiy. 2025. "Defect Passivation in Perovskite Solar Cells Using Polysuccinimide-Based Green Polymer Additives" Polymers 17, no. 5: 653. https://doi.org/10.3390/polym17050653
APA StyleKozlov, S. S., Alexeeva, O. V., Nikolskaia, A. B., Petrova, V. I., Karyagina, O. K., Iordanskii, A. L., Larina, L. L., & Shevaleevskiy, O. I. (2025). Defect Passivation in Perovskite Solar Cells Using Polysuccinimide-Based Green Polymer Additives. Polymers, 17(5), 653. https://doi.org/10.3390/polym17050653