Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (103)

Search Parameters:
Keywords = green propulsion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2601 KB  
Article
Development and Characterization of Hydrogen Peroxide Gels with Organic Gelling Agents for Use with Microencapsulated Fuels
by Robin Scholl, Eva Steinmann, Dominic Freudenmann and Stefan Schlechtriem
Aerospace 2025, 12(11), 1002; https://doi.org/10.3390/aerospace12111002 - 10 Nov 2025
Viewed by 233
Abstract
Hydrogen peroxide is a promising oxidizer and monopropellant for space propulsion, offering a green alternative to conventional propellants. In combination with microencapsulated hydrocarbon fuels, a new type of monopropellant can be formed that unites the high specific impulse of a bipropellant with the [...] Read more.
Hydrogen peroxide is a promising oxidizer and monopropellant for space propulsion, offering a green alternative to conventional propellants. In combination with microencapsulated hydrocarbon fuels, a new type of monopropellant can be formed that unites the high specific impulse of a bipropellant with the efficient hardware of a monopropellant. However, the stabilization of these microcapsule/hydrogen peroxide mixtures is problematic as they tend to separate after a short period of time. This work uses organic gelling agents to stabilize these mixtures by creating hydrogen peroxide gels. For this, the compatibility of hydrogen peroxide with several gelling agents was investigated and found to be suitable. Next, the dispersion stability of microcapsule/gel dispersions was examined and showed no sign of destabilization over four weeks or at high accelerations at 50× g in the centrifuge, even with gelling agent concentrations as low as 0.1%. A formulation with a polyacrylic acid-based gelling agent at a concentration of 0.3% showed favorable characteristics and good processability. Together with a subsequent rheological characterization of the gels, these results are critical for the further development of the fuel-filled microcapsule/hydrogen peroxide monopropellant. The hydrogen peroxide gel formulations developed in this study could also have potential applications beyond the scope of this work. Full article
(This article belongs to the Special Issue Green Propellants for In-Space Propulsion)
Show Figures

Figure 1

25 pages, 1923 KB  
Review
Towards Green and Smart Ports: A Review of Digital Twin and Hydrogen Applications in Maritime Management
by Lucia Gazzaneo, Francesco Longo, Giovanni Mirabelli, Melania Pellegrino and Vittorio Solina
Appl. Syst. Innov. 2025, 8(6), 165; https://doi.org/10.3390/asi8060165 - 29 Oct 2025
Viewed by 959
Abstract
Modern ports are pivotal to global trade, facing increasing pressures from operational demands, resource optimization complexities, and urgent decarbonization needs. This study highlights the critical importance of digital model adoption within the maritime industry, particularly in the port sector, while integrating sustainability principles. [...] Read more.
Modern ports are pivotal to global trade, facing increasing pressures from operational demands, resource optimization complexities, and urgent decarbonization needs. This study highlights the critical importance of digital model adoption within the maritime industry, particularly in the port sector, while integrating sustainability principles. Despite a growing body of research on digital models, industrial simulation, and green transition, a specific gap persists regarding the intersection of port management, hydrogen energy integration, and Digital Twin (DT) applications. Specifically, a bibliometric analysis provides an overview of the current research landscape through a study of the most used keywords, while the document analysis highlights three primary areas of advancement: optimization of hydrogen storage and integrated energy systems, hydrogen use in propulsion and auxiliary engines, and DT for management and validation in maritime operations. The main outcome of this research work is that while significant individual advancements have been made across critical domains such as optimizing hydrogen systems, enhancing engine performance, and developing robust DT applications for smart ports, a major challenge persists due to the limited simultaneous and integrated exploration of them. This gap notably limits the realization of their full combined benefits for green ports. By mapping current research and proposing interdisciplinary directions, this work contributes to the scientific debate on future port development, underscoring the need for integrated approaches that simultaneously address technological, environmental, and operational dimensions. Full article
Show Figures

Figure 1

19 pages, 925 KB  
Review
Ignition Delay Times of Conventional and Green Hypergolic Propellants at Ambient Conditions: A Comparative Review
by Prakhar Jindal and Jyoti Botchu Vara Siva
Appl. Sci. 2025, 15(20), 11165; https://doi.org/10.3390/app152011165 - 17 Oct 2025
Viewed by 539
Abstract
Hypergolic propellants have long been central to spacecraft propulsion because of their storability, reliability and rapid ignition. Conventional systems such as hydrazine derivatives paired with oxidisers like nitrogen tetroxide deliver ignition delays in the order of a few milliseconds but pose serious risks [...] Read more.
Hypergolic propellants have long been central to spacecraft propulsion because of their storability, reliability and rapid ignition. Conventional systems such as hydrazine derivatives paired with oxidisers like nitrogen tetroxide deliver ignition delays in the order of a few milliseconds but pose serious risks due to extreme toxicity and handling hazards. The search for safer and environmentally friendlier alternatives has therefore become a priority in recent years. This review examines ignition delay times reported in the literature for both conventional and green propellants under ambient experimental conditions. Data were collected from published studies between 2000 and 2025 using major scientific databases, including Scopus, Web of Science, and Google Scholar, and are compared across three categories of propellants: traditional hydrazine-based systems, self-igniting ionic liquids and amines, and systems enhanced with catalytic or reactive promoters. The analysis shows that while conventional propellants remain benchmarks with ignition delays typically between 1 and 5 ms, some new formulations, particularly those containing reactive additives such as borohydrides or iodide salts, are achieving similar or improved performance in laboratory tests. The review also highlights that variability in reported ignition delays often stems from differences in test methods, droplet size, oxidiser concentration, and diagnostic approaches. Beyond performance considerations, attention is given to safety and environmental aspects since several green candidates reduce acute toxicity but introduce other challenges, such as instability or corrosive byproducts. By bringing together data in a comparative format and emphasising methodological limitations, this review aims to support the future design and evaluation of practical green hypergolic propellants. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

31 pages, 6157 KB  
Article
Development of Green Bipropellant Thrusters and Engines Using 98% Hydrogen Peroxide as Oxidizer
by Adam Okninski, Pawel Surmacz, Kamil Sobczak, Wojciech Florczuk, Dawid Cieslinski, Aleksander Gorgeri, Bartosz Bartkowiak, Dominik Kublik, Michal Ranachowski, Zbigniew Gut, Adrian Parzybut, Anna Kasztankiewicz, Jacek Mazurek, Ferran Valencia Bel, Armin Herbertz, Kate Underhill, Dirk Schneider and Andreas Flock
Aerospace 2025, 12(10), 879; https://doi.org/10.3390/aerospace12100879 - 29 Sep 2025
Viewed by 1595
Abstract
The need for non-toxic chemical propulsion systems is growing stronger in today’s space sector. One of the possible solutions for next-generation bipropellant systems is using hydrogen peroxide as the oxidizer. However, there is limited knowledge about using 98% High-Test Peroxide (HTP), which can [...] Read more.
The need for non-toxic chemical propulsion systems is growing stronger in today’s space sector. One of the possible solutions for next-generation bipropellant systems is using hydrogen peroxide as the oxidizer. However, there is limited knowledge about using 98% High-Test Peroxide (HTP), which can enable high mass and volumetric performance. Therefore, this paper presents an overview of the development of green bipropellant technology using 98% HTP. The goal is to cover nearly 15 years of experience with 98% HTP and over 10 years of the use of bipropellants containing 98% HTP. The development approach and methods, including component testing and hot-firing, are described. This paper provides test data for various types of bipropellant thrusters and engines producing between 20 and 7000 N of thrust in vacuum, which is the range typically utilized for in-space propulsion. Fuel ignition processes via utilization of a catalyst bed and via hypergolic ignition are analyzed. Successful demonstrations under different operating requirements (steady state, pulse-mode operations, throttleability, etc.) are discussed. The obtained results show that green bipropellants could compete with traditional storable bipropellant technologies. The challenges and opportunities associated with using HTP bipropellants in complete propulsion systems are listed. This paper concludes with recommendations for further research. Full article
(This article belongs to the Special Issue Green Propellants for In-Space Propulsion)
Show Figures

Figure 1

24 pages, 3089 KB  
Article
Optimal Sizing of a Wind-Powered Green Ammonia Plant for Maritime Fuel Supply—A Case in the Greater Bay Area
by Yimiao Gu and Weihao Lan
Energies 2025, 18(19), 5157; https://doi.org/10.3390/en18195157 - 28 Sep 2025
Viewed by 643
Abstract
Green ammonia has emerged as a promising alternative fuel for maritime decarbonization, owing to its carbon-free combustion, favorable volumetric energy density, and well-established logistics infrastructure compared to other alternatives. However, critical gaps persist in the development of an integrated fuel supply framework, which [...] Read more.
Green ammonia has emerged as a promising alternative fuel for maritime decarbonization, owing to its carbon-free combustion, favorable volumetric energy density, and well-established logistics infrastructure compared to other alternatives. However, critical gaps persist in the development of an integrated fuel supply framework, which hinders the large-scale adoption of ammonia-fueled vessels. Therefore, this paper proposes an onshore wind-powered green ammonia plant located along the Gaolan–Yangpu feeder route. The plant comprises PEM electrolysis, nitrogen separation, Haber–Bosch synthesis, and storage facilities. An optimal plant configuration is subsequently derived through hourly simulations based on wind power generation and a priority-based capacity expansion algorithm. Key findings indicate that a stable ammonia supply—synchronized with monsoon wind patterns and capable of fueling vessels with 10 MW propulsion systems consuming around 680 tons per fortnight—requires a 72 MW onshore wind farm, a 63 MW PEM electrolyzer, 3.6 MW of synthesis facility, and 3205 tons of storage. This configuration yields a levelized cost of ammonia (LCOA) of approximately USD 700/ton, with wind turbines and electrolyzers (including replacement costs) accounting for over 70% of the total cost. Sensitivity analysis further shows that wind turbine and electrolyzer prices are the primary factors affecting ammonia costs. Although variations in operational parameters may significantly alter final configuration, they cause only minor (±1%) fluctuations in the levelized cost without significantly altering its overall trend. Full article
Show Figures

Figure 1

32 pages, 6625 KB  
Article
A Comparative Analysis of Hydrogen Fuel Cells and Internal Combustion Engines Used for Service Operation Vessels Propulsion
by Monika Bortnowska and Arkadiusz Zmuda
Energies 2025, 18(19), 5104; https://doi.org/10.3390/en18195104 - 25 Sep 2025
Viewed by 1005
Abstract
In response to the IMO’s decarbonisation strategy, hydrogen—especially green hydrogen—becomes a promising alternative fuel in shipping. This article provides a comparative analysis of two hydrogen propulsion technologies suitable for a service vessel (SOV) operating in offshore wind farms: hydrogen fuel cells and hydrogen-powered [...] Read more.
In response to the IMO’s decarbonisation strategy, hydrogen—especially green hydrogen—becomes a promising alternative fuel in shipping. This article provides a comparative analysis of two hydrogen propulsion technologies suitable for a service vessel (SOV) operating in offshore wind farms: hydrogen fuel cells and hydrogen-powered internal combustion engines. This study focuses on the use of liquid hydrogen (LH2) stored in cryogenic tanks and fuel cells as an alternative to the previously considered solution based on compressed hydrogen (CH2) stored in high-pressure cylinders (700 bar) and internal combustion engines. The research aims to examine the feasibility of a fully hydrogen-powered SOV energy system. The analyses showed that the use of liquefied hydrogen in SOVs leads to the threefold reduction in tank volume (1001 m3 LH2 vs. 3198 m3 CH2) and the weight of the storage system (243 t vs. 647 t). Despite this, neither of the technologies provides the expected 2-week autonomy of SOVs. LH2 storage allows for a maximum of 10 days of operation, which is still an improvement over the CH2 gas variant (3 days). The main reason for this is that hydrogen tanks can only be located on the open deck. Although hydrogen fuel cells take up on average 13.7% more space than internal combustion engines, they are lower (by an average of 24.3%) and weigh less (by an average of 50.6%), and their modular design facilitates optimal arrangement in the engine room. In addition, the elimination of the exhaust system and lubrication simplifies the engine room layout, reducing its weight and space requirements. Most importantly, however, the use of fuel cells eliminates exhaust gas emissions into the atmosphere. Full article
Show Figures

Figure 1

26 pages, 4941 KB  
Article
Experimental Investigation of Hydrogen Peroxide and Nitrous Oxide in a 1-Newton Catalyst-Based Monopropellant Research Thruster
by Florian Merz, Till Hörger, Johan Steelant, Felix Lauck and Christoph Kirchberger
Aerospace 2025, 12(9), 835; https://doi.org/10.3390/aerospace12090835 - 17 Sep 2025
Cited by 1 | Viewed by 1017
Abstract
As part of the GreenRAIM activity of the European Space Agency (ESA), an extensive test campaign involving various monopropellants was undertaken. In this work, design and test results of an additively manufactured 1-Newton monopropellant thruster are shown. The detailed design of the thruster [...] Read more.
As part of the GreenRAIM activity of the European Space Agency (ESA), an extensive test campaign involving various monopropellants was undertaken. In this work, design and test results of an additively manufactured 1-Newton monopropellant thruster are shown. The detailed design of the thruster and the experimental setup are presented. The first part of the test campaign was conducted with 98 wt.% hydrogen peroxide as the propellant and a commercially available Pt/Al2O3 catalyst. The second part was carried out with the same thruster but using nitrous oxide as the propellant and an iridium-based catalyst. The test data acquired was used to validate a comprehensive, generic model for monopropellant thrusters within the simulation software EcosimPro/ESPSS v3.7, which was developed within the activity. Full article
Show Figures

Figure 1

20 pages, 860 KB  
Article
A Life Cycle Assessment Framework for Evaluating the Climate Impact of Hydrogen-Based Passenger Vehicle Technologies Toward Sustainable Mobility
by Péter Németh, Botond Mecséri and Barna Hanula
Hydrogen 2025, 6(3), 68; https://doi.org/10.3390/hydrogen6030068 - 10 Sep 2025
Viewed by 1390
Abstract
Hydrogen-based mobility solutions could offer viable technology for sustainable transportation. Current research often examines single pathways, leaving broader comparisons unexplored. This comparative life cycle assessment (LCA) evaluates which vehicle type achieves the best environmental performance when using hydrogen from grey, blue, and green [...] Read more.
Hydrogen-based mobility solutions could offer viable technology for sustainable transportation. Current research often examines single pathways, leaving broader comparisons unexplored. This comparative life cycle assessment (LCA) evaluates which vehicle type achieves the best environmental performance when using hydrogen from grey, blue, and green production pathways, the three dominant carbon-intensity variants currently deployed. This study examines seven distinct vehicle configurations that rely on hydrogen-derived energy sources across various propulsion systems: a hydrogen fuel cell electric vehicle (H2FCEV), hydrogen internal combustion engine vehicle (H2ICEV), methanol flexible fuel vehicle (MeOH FFV), ethanol flexible vehicle (EtOH FFV), Fischer-Tropsch (FT) diesel internal combustion vehicle (FTD ICEV) and renewable compressed natural gas vehicle (RNGV). Via both grey and blue hydrogen production, H2 FCEVs are the best options from the viewpoint of GWP, but surprisingly, in the green category, FT-fueled vehicles take over both first and second place, as they produce nearly half the lifetime carbon emissions of purely hydrogen-fueled vehicles. RNGV also emerges as a promising alternative, offering optimal engine properties in a system similar to H2ICEVs, enabling parallel development and technological upgrades. These findings not only highlight viable low-carbon pathways but also provide clear guidance for future targeted, detailed, applied research. Full article
Show Figures

Figure 1

48 pages, 3768 KB  
Review
Review of Energy-Efficient Pneumatic Propulsion Systems in Vehicle Applications
by Ryszard Dindorf and Jakub Takosoglu
Energies 2025, 18(17), 4688; https://doi.org/10.3390/en18174688 - 3 Sep 2025
Viewed by 1494
Abstract
This review comprehensively presents the development of energy-efficient pneumatic propulsion systems (PPSs) in road vehicle applications, which are classified as green vehicles. The advantages and disadvantages of PPSs were presented, and PPSs were compared with combustion propulsion systems (CPSs) and electric propulsion systems [...] Read more.
This review comprehensively presents the development of energy-efficient pneumatic propulsion systems (PPSs) in road vehicle applications, which are classified as green vehicles. The advantages and disadvantages of PPSs were presented, and PPSs were compared with combustion propulsion systems (CPSs) and electric propulsion systems (EPSs), as well as their power-to-weight ratios (PWRs), energy densities, and CO2 emissions. The review of compressed air vehicles (CAVs) focuses on their historical development and future prospects. This review discusses the use of PPSs with compressed air engines (CAEs) as an alternative propulsion system in green vehicles, providing a simple, energy-saving, and environmentally friendly solution. This review also discusses hybrid air propulsion, which, when combined with internal combustion engines (ICEs) or electric motors (EMs), offers innovative energy-efficient propulsion systems that are more economical than conventional hybrid propulsion systems. This review focuses on recent advances in lightweight air vehicles that improve vehicle handling, increase efficiency, and reduce propulsion energy consumption. Discussion of the study results concerns the use of PPSs in a three-wheeled rehabilitation tricycle (RTB). A comprehensive computation model of the RTB was presented, and the key performance parameters crucial to its operation were analyzed. The results of the RTB simulation were verified through field tests. Full article
(This article belongs to the Section K: State-of-the-Art Energy Related Technologies)
Show Figures

Figure 1

17 pages, 4255 KB  
Article
Research on the Impact of Local Hull Roughness on Resistance and Energy Consumption Based on CFD and Ship Operation Data
by Xiangming Zeng, Xiaofan Guo and Anpeng Yin
J. Mar. Sci. Eng. 2025, 13(9), 1675; https://doi.org/10.3390/jmse13091675 - 31 Aug 2025
Viewed by 718
Abstract
Regarding the impact of hull roughness on ship resistance and propulsive performance, most existing studies rely heavily on numerical hulls or simplified models, while systematic analysis focusing on the heterogeneous roughness of actual ships remains insufficient. Taking the 2433 TEU container ship SITC [...] Read more.
Regarding the impact of hull roughness on ship resistance and propulsive performance, most existing studies rely heavily on numerical hulls or simplified models, while systematic analysis focusing on the heterogeneous roughness of actual ships remains insufficient. Taking the 2433 TEU container ship SITC CAGAYAN as the research object, this study adopts a method that combines CFD numerical simulation with actual ship operation data. It employs a resistance prediction model based on the “roughness influence factor” to explore the mechanism by which local roughness affects ship resistance. Meanwhile, this study innovatively proposes the index of “fuel consumption increment per unit wetted surface area” and the concept of “fuel consumption factor,” thereby realizing the quantitative characterization of the impact of local rough areas on fuel consumption. The purpose of this study is to provide theoretical support and technical pathways for the optimization of ship energy efficiency and the development of green shipping. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 1260 KB  
Article
A Submersible Power Station: Part B Propulsion Systems
by Jon Serna, Stefania Romero, Eduardo Anselmi Palma, Dimitrios Fouflias and Pericles Pilidis
J. Mar. Sci. Eng. 2025, 13(9), 1666; https://doi.org/10.3390/jmse13091666 - 30 Aug 2025
Viewed by 677
Abstract
Nuclear power continues to be a great promise in the green revolution, as it is a cost-effective, low-emission, and safer alternative to fossil fuels that is capable of continuous operation. A preliminary design evaluation is presented for a submersible nuclear power station capable [...] Read more.
Nuclear power continues to be a great promise in the green revolution, as it is a cost-effective, low-emission, and safer alternative to fossil fuels that is capable of continuous operation. A preliminary design evaluation is presented for a submersible nuclear power station capable of operating under its own power during emergencies and routine maintenance. Because it is stationed at sea, it offers a resilient solution to natural disasters such as earthquakes and tsunamis, giving it the capability to disengage and sail to deeper waters in less than a half of an hour. In the present evaluation, the hull dimensions of a very large existing submarine and the turbomachinery layout of a Pebble Bed Modular Reactor cycle were used as baselines. The conceptual design of the submersible nuclear power station includes reactor and turbomachinery integration, preliminary sizing (4 pressure hull design; total length of 57.74 m), and propulsion system analysis, demonstrating the technical viability of the proposed submersible power station. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 2724 KB  
Article
Life Cycle Assessment Method for Ship Fuels Using a Ship Performance Prediction Model and Actual Operation Conditions—Case Study of Wind-Assisted Cargo Ship
by Mohammad Hossein Arabnejad, Fabian Thies, Hua-Dong Yao and Jonas W. Ringsberg
Energies 2025, 18(17), 4559; https://doi.org/10.3390/en18174559 - 28 Aug 2025
Viewed by 974
Abstract
Although wind-assisted ship propulsion (WASP) is an effective technique for reducing the emissions of merchant ships, the best fuel type for complementing WASP remains an open question. This study presents a new original life cycle assessment method for ship fuels that uses a [...] Read more.
Although wind-assisted ship propulsion (WASP) is an effective technique for reducing the emissions of merchant ships, the best fuel type for complementing WASP remains an open question. This study presents a new original life cycle assessment method for ship fuels that uses a validated ship performance prediction model and actual operation conditions for a WASP ship. As a case study, the method is used to evaluate the fuel consumption and environmental impact of different fuels for a WASP ship operating in the Baltic Sea. Using a novel in-house-developed platform for predicting ship performance under actual operation conditions using hindcast data, the engine and fuel tank were sized while accounting for fluctuating weather conditions over a year. The results showed significant variation in the required fuel tank capacity across fuel types, with liquid hydrogen requiring the largest volume, followed by LNG and ammonia. Additionally, a well-to-wake life cycle assessment revealed that dual-fuel engines using green ammonia and hydrogen exhibit the lowest global warming potential (GWP), while grey ammonia and blue hydrogen have substantially higher GWP levels. Notably, NOx, SOx, and particulate matter emissions were consistently lower for dual-fuel and liquid natural gas scenarios than for single-fuel marine diesel oil engines. These results underscore the importance of selecting both an appropriate fuel type and production method to optimize environmental performance. This study advocates for transitioning to greener fuel options derived from sustainable pathways for WASP ships to mitigate the environmental impact of maritime operations and support global climate change efforts. Full article
(This article belongs to the Section B3: Carbon Emission and Utilization)
Show Figures

Figure 1

29 pages, 2829 KB  
Review
Hydrogen-Powered Marine Vessels: A Rewarding yet Challenging Route to Decarbonization
by Rashed Kaiser and Ayesha Munira Chowdhury
Clean Technol. 2025, 7(3), 68; https://doi.org/10.3390/cleantechnol7030068 - 11 Aug 2025
Cited by 1 | Viewed by 2558
Abstract
The maritime industry, while indispensable to global trade, is a significant contributor to greenhouse gas (GHG) emissions, accounting for approximately 3% of global emissions. As international regulatory bodies, particularly the International Maritime Organization (IMO), push for ambitious decarbonization targets, hydrogen-based technologies have emerged [...] Read more.
The maritime industry, while indispensable to global trade, is a significant contributor to greenhouse gas (GHG) emissions, accounting for approximately 3% of global emissions. As international regulatory bodies, particularly the International Maritime Organization (IMO), push for ambitious decarbonization targets, hydrogen-based technologies have emerged as promising alternatives to conventional fossil fuels. This review critically examines the potential of hydrogen fuels—including hydrogen fuel cells (HFCs) and hydrogen internal combustion engines (H2ICEs)—for maritime applications. It provides a comprehensive analysis of hydrogen production methods, storage technologies, onboard propulsion systems, and the associated techno-economic and regulatory challenges. A detailed life cycle assessment (LCA) compares the environmental impacts of hydrogen-powered vessels with conventional diesel engines, revealing significant benefits particularly when green or blue hydrogen sources are utilized. Despite notable hurdles—such as high production and retrofitting costs, storage limitations, and infrastructure gaps—hydrogen holds considerable promise in aligning maritime operations with global sustainability goals. The study underscores the importance of coordinated government policies, technological innovation, and international collaboration to realize hydrogen’s potential in decarbonizing the marine sector. Full article
Show Figures

Figure 1

22 pages, 3440 KB  
Article
Probabilistic Damage Modeling and Thermal Shock Risk Assessment of UHTCMC Thruster Under Transient Green Propulsion Operation
by Prakhar Jindal, Tamim Doozandeh and Jyoti Botchu
Materials 2025, 18(15), 3600; https://doi.org/10.3390/ma18153600 - 31 Jul 2025
Cited by 1 | Viewed by 501
Abstract
This study presents a simulation-based damage modeling and fatigue risk assessment of a reusable ceramic matrix composite thruster designed for short-duration, green bipropellant propulsion systems. The thruster is constructed from a fiber-reinforced ultra-high temperature ceramic matrix composite composed of zirconium diboride, silicon carbide, [...] Read more.
This study presents a simulation-based damage modeling and fatigue risk assessment of a reusable ceramic matrix composite thruster designed for short-duration, green bipropellant propulsion systems. The thruster is constructed from a fiber-reinforced ultra-high temperature ceramic matrix composite composed of zirconium diboride, silicon carbide, and carbon fibers. Time-resolved thermal and structural simulations are conducted on a validated thruster geometry to characterize the severity of early-stage thermal shock, stress buildup, and potential degradation pathways. Unlike traditional fatigue studies that rely on empirical fatigue constants or Paris-law-based crack-growth models, this work introduces a simulation-derived stress-margin envelope methodology that incorporates ±20% variability in temperature-dependent material strength, offering a physically grounded yet conservative risk estimate. From this, a normalized risk index is derived to evaluate the likelihood of damage initiation in critical regions over the 0–10 s firing window. The results indicate that the convergent throat region experiences a peak thermal gradient rate of approximately 380 K/s, with the normalized thermal shock index exceeding 43. Stress margins in this region collapse by 2.3 s, while margin loss in the flange curvature appears near 8 s. These findings are mapped into green, yellow, and red risk bands to classify operational safety zones. All the results assume no active cooling, representing conservative operating limits. If regenerative or ablative cooling is implemented, these margins would improve significantly. The framework established here enables a transparent, reproducible methodology for evaluating lifetime safety in ceramic propulsion nozzles and serves as a foundational tool for fatigue-resilient component design in green space engines. Full article
Show Figures

Figure 1

37 pages, 1099 KB  
Review
Application Advances and Prospects of Ejector Technologies in the Field of Rail Transit Driven by Energy Conservation and Energy Transition
by Yiqiao Li, Hao Huang, Shengqiang Shen, Yali Guo, Yong Yang and Siyuan Liu
Energies 2025, 18(15), 3951; https://doi.org/10.3390/en18153951 - 24 Jul 2025
Viewed by 1146
Abstract
Rail transit as a high-energy consumption field urgently requires the adoption of clean energy innovations to reduce energy consumption and accelerate the transition to new energy applications. As an energy-saving fluid machinery, the ejector exhibits significant application potential and academic value within this [...] Read more.
Rail transit as a high-energy consumption field urgently requires the adoption of clean energy innovations to reduce energy consumption and accelerate the transition to new energy applications. As an energy-saving fluid machinery, the ejector exhibits significant application potential and academic value within this field. This paper reviewed the recent advances, technical challenges, research hotspots, and future development directions of ejector applications in rail transit, aiming to address gaps in existing reviews. (1) In waste heat recovery, exhaust heat is utilized for propulsion in vehicle ejector refrigeration air conditioning systems, resulting in energy consumption being reduced by 12~17%. (2) In vehicle pneumatic pressure reduction systems, the throttle valve is replaced with an ejector, leading to an output power increase of more than 13% and providing support for zero-emission new energy vehicle applications. (3) In hydrogen supply systems, hydrogen recirculation efficiency exceeding 68.5% is achieved in fuel cells using multi-nozzle ejector technology. (4) Ejector-based active flow control enables precise ± 20 N dynamic pantograph lift adjustment at 300 km/h. However, current research still faces challenges including the tendency toward subcritical mode in fixed geometry ejectors under variable operating conditions, scarcity of application data for global warming potential refrigerants, insufficient stability of hydrogen recycling under wide power output ranges, and thermodynamic irreversibility causing turbulence loss. To address these issues, future efforts should focus on developing dynamic intelligent control technology based on machine learning, designing adjustable nozzles and other structural innovations, optimizing multi-system efficiency through hybrid architectures, and investigating global warming potential refrigerants. These strategies will facilitate the evolution of ejector technology toward greater intelligence and efficiency, thereby supporting the green transformation and energy conservation objectives of rail transit. Full article
(This article belongs to the Special Issue Advanced Research on Heat Exchangers Networks and Heat Recovery)
Show Figures

Figure 1

Back to TopTop