Development and Characterization of Hydrogen Peroxide Gels with Organic Gelling Agents for Use with Microencapsulated Fuels
Abstract
1. Introduction
1.1. Hydrogen Peroxide and Hydrogen Peroxide Gels in Space Propulsion
1.2. Utilization of Gelled Hydrogen Peroxide with Microencapsulated Hydrocarbon Fuels
2. Results and Discussion
2.1. Screening of Gelling Agents
2.2. Gelling Agent Compatibility with Hydrogen Peroxide
2.3. Centrifuge Dispersion Stability Tests
2.4. Long-Term Dispersion Stability Tests
2.5. Rheological Characterization
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CP | Carbopol |
| DETA | Diethylenetriamine |
| GHTP | Gelled high-test peroxide |
| HTP | High-test peroxide |
| ROF | Ratio of oxidizer to fuel |
| TCL | Terephthaloyl chloride |
References
- Sarritzu, A.; Pasini, A. Performance comparison of green propulsion systems for future Orbital Transfer Vehicles. Acta Astronaut. 2024, 217, 100–115. [Google Scholar] [CrossRef]
- Sackheim, R.L.; Masse, R.K. Green Propulsion Advancement: Challenging the Maturity of Monopropellant Hydrazine. J. Propul. Power 2014, 30, 265–276. [Google Scholar] [CrossRef]
- Ricker, S.C.; Brüggemann, D.; Freudenmann, D.; Ricker, R.; Schlechtriem, S. Protic thiocyanate ionic liquids as fuels for hypergolic bipropellants with hydrogen peroxide. Fuel 2022, 328, 125290. [Google Scholar] [CrossRef]
- Okninski, A.; Surmacz, P.; Bartkowiak, B.; Mayer, T.; Sobczak, K.; Pakosz, M.; Kaniewski, D.; Matyszewski, J.; Rarata, G.; Wolanski, P. Development of Green Storable Hybrid Rocket Propulsion Technology Using 98% Hydrogen Peroxide as Oxidizer. Aerospace 2021, 8, 234. [Google Scholar] [CrossRef]
- Clark, J.D. Ignition! An Informal History of Liquid Rocket Propellants; Rutgers University Press: New Brunswick, NJ, USA, 1972. [Google Scholar]
- Dadieu, A.; Damm, R.; Schmidt, E.W. Raketentreibstoffe; Springer: Berlin/Heidelberg, Germany, 1968; ISBN 9783709171332. [Google Scholar]
- Sarritzu, A.; Pasini, A.; Merz, F.; Werling, L.; Lauck, F. Experimental investigation of combustion performance of a green hypergolic bipropellant based on hydrogen peroxide. Acta Astronaut. 2024, 219, 278–290. [Google Scholar] [CrossRef]
- Negri, M.; Ciezki, H.K. Combustion of Gelled Propellants Containing Microsized and Nanosized Aluminum Particles. J. Propul. Power 2015, 31, 400–407. [Google Scholar] [CrossRef]
- Palaszewski, B.; Powell, R. Launch vehicle performance using metallized propellants. J. Propul. Power 1994, 10, 828–833. [Google Scholar] [CrossRef]
- Padwal, M.B.; Natan, B.; Mishra, D.P. Gel propellants. Prog. Energy Combust. Sci. 2021, 83, 100885. [Google Scholar] [CrossRef]
- Palaszewski, B.; Zakandy, J. Metallized gelled propellants-Oxygen/RP-1/aluminum rocket heat transfer and combustion measurements. In Proceedings of the 32nd Joint Propulsion Conference and Exhibit, Lake Buena Vista, FL, USA, 1–3 July 1996. [Google Scholar]
- Negri, M.; Ciezki, H.K. Atomization of Viscoelastic Fluids with An Impinging Jet Injector: Morphology And Physical Mechanism of Thread Formation. At. Sprays 2017, 27, 319–336. [Google Scholar] [CrossRef]
- Solomon, Y.; Natan, B. Experimental Investigation of The Combustion of Organic-Gellant-Based Gel Fuel Droplets. Combust. Sci. Technol. 2006, 178, 1185–1199. [Google Scholar] [CrossRef]
- Kirchberger, C.; Stiefel, A.; Kurilov, M.; Ciezki, H. An Overview on Current Gelled Propellants Activities at DLR Lampoldshausen. In Proceedings of the Space Propulsion Conference, Seville, Spain, 14–18 May 2018. [Google Scholar]
- Munjal, N.L.; Gupta, B.L.; Varma, M. Preparative and mechanistic studies on unsymmetrical Dimethyl Hydrazine-Red Fuming Nitric Acid Liquid Propellant Gels. Propellants Explos. Pyrotech. 1985, 10, 111–117. [Google Scholar] [CrossRef]
- Wickman, J.; James, E. Gelled liquid oxygen/metal powder monopropellants. In Proceedings of the 28th Joint Propulsion Conference and Exhibit, Reston, VA, USA, 6–8 July 1992. [Google Scholar]
- Sharma, J.; Nandagopalan, P.; John, J.; Miglani, A. The characterization of disruptive combustion of organic gellant-laden ethanol fuel droplets. Combust. Flame 2023, 257, 113018. [Google Scholar] [CrossRef]
- Gimeno, P.; Bousquet, C.; Lassu, N.; Maggio, A.-F.; Civade, C.; Brenier, C.; Lempereur, L. High-performance liquid chromatography method for the determination of hydrogen peroxide present or released in teeth bleaching kits and hair cosmetic products. J. Pharm. Biomed. Anal. 2015, 107, 386–393. [Google Scholar] [CrossRef]
- Kirchberger, C.; Kurilov, M.; Stiefel, A.; Freudenmann, D.; Ciezki, H. Investigations on Rheology, Spray and Combustion Processes of Gelled Propellants at DLR Lampoldshausen. In Proceedings of the 8th European Conference for Aeronautics and Space Sciences, Madrid, Spain, 1–4 July 2019. [Google Scholar]
- Jyoti, B.; Baek, S.W. Rheological Characterization of Hydrogen Peroxide Gel Propellant. Int. J. Aeronaut. Space Sci. 2014, 15, 199–204. [Google Scholar] [CrossRef]
- Rahimi, S.; Hasan, D.; Peretz, A. Development of laboratory-scale gel propulsion technology. J. Propul. Power 2004, 20, 93–100. [Google Scholar] [CrossRef]
- Dias, G.S.; Da Silva Mota, F.A.; Fei, L.; Tang, C.; de Souza Costa, F. Gelled hydrogen peroxide: Hypergolic reaction with low toxicity fuel by drop and impinging jets tests. Acta Astronaut. 2024, 222, 471–480. [Google Scholar] [CrossRef]
- Dias, G.S.; Da Silva Mota, F.A.; Fei, L.; Wu, Y.; Liu, M.; Tang, C.; de Souza Costa, F. Hypergolic fuel impacting a gelled oxidizer wall: Droplet dynamics, heat release, ignition, and flame analysis. Exp. Therm. Fluid Sci. 2025, 160, 111322. [Google Scholar] [CrossRef]
- He, Z.; Yang, J.; Nie, Z.; Zhou, X.; Wu, J. Preparation, characterization, and thermal decomposition kinetics of high test peroxide gel. Acta Astronaut. 2023, 211, 510–517. [Google Scholar] [CrossRef]
- Huh, J.; Jyoti, B.V.S.; Yun, Y.; Shoaib, M.N.; Kwon, S. Preliminary Assessment of Hydrogen Peroxide Gel as an Oxidizer in a Catalyst Ignited Hybrid Thruster. Int. J. Aerosp. Eng. 2018, 2018, 5630587. [Google Scholar] [CrossRef]
- Florczuk, W.; Rarata, G.P. Performance evaluation of the hypergolic green propellants based on the HTP for a future next generation spacecrafts. In Proceedings of the 53rd AIAA/SAE/ASEE Joint Propulsion Conference, Antlanta, Georgia, 10–12 July 2017. [Google Scholar]
- Scholl, R.; Freudenmann, D.; Schlechtriem, S. Microencapsulation of hydrocarbon fuels for monopropellant creation with hydrogen peroxide. Fuel 2024, 356, 129520. [Google Scholar] [CrossRef]
- Schreck, A.; Knorr, A.; Wehrstedt, K.D.; Wandrey, P.A.; Gmeinwieser, T.; Steinbach, J. Investigation of the explosive hazard of mixtures containing hydrogen peroxide and different alcohols. J. Hazard. Mater. 2004, 108, 1–7. [Google Scholar] [CrossRef]
- Davis, D.D.; Dee, L.A.; Greene, B.; Hornung, S.D.; McClure, M.B.; Rathgeber, K.A. Fire, Explosion, Compatibility and Safety Hazards of Hydrogen Peroxide; NASA: Las Cruces, NM, USA, 2005. [Google Scholar]
- Scholl, R.; Freudenmann, D.; Schlechtriem, S. Microencapsulation of non-miscible Liquid Bipropellant Systems. In Proceedings of the 2nd International Conference on Flight Vehicles, Aerothermodynamics and Re-entry Missions Engineering (FAR), Heilbronn, Germany, 19–23 June 2022. [Google Scholar]
- Scholl, R.; Partsch, S.; Bühler, L.; Freudenmann, D.; Schlechtriem, S. Implementation of Microencapsulated Fuels in Combination with Hydrogen Peroxide for Creation of New Monopropellants. In Proceedings of the Aerospace Europe Conference, Lausanne, Switzerland, 9–13 July 2023. [Google Scholar]
- Perignon, C.; Ongmayeb, G.; Neufeld, R.; Frere, Y.; Poncelet, D. Microencapsulation by interfacial polymerisation: Membrane formation and structure. J. Microencapsul. 2015, 32, 1–15. [Google Scholar] [CrossRef]
- Scholl, R.; Freudenmann, D. Ionic Liquid-Filled Polyamide Microcapsules Obtained by Interfacial Polymerization. Adv. Mater. Interfaces 2025, 12, 2400393. [Google Scholar] [CrossRef]
- Lide, D.R. Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Chanamai, R.; McClements, D.J. Creaming Stability of Flocculated Monodisperse Oil-in-Water Emulsions. J. Colloid Interface Sci. 2000, 225, 214–218. [Google Scholar] [CrossRef]
- Rahimi, S.; Weihs, D. Gelled Fuel Simulant Droplet Impact onto a Solid Surface. Propellants Explos. Pyrotech. 2011, 36, 273–281. [Google Scholar] [CrossRef]
- Rahimi, S.; Peretz, A.; Natan, B. Rheological Matching of Gel Propellants. J. Propul. Power 2010, 26, 376–379. [Google Scholar] [CrossRef]
- Chojnacki, K.; Feikema, D. Atomization studies of gelled bipropellant simulants using planar laser induced fluorescence. In Proceedings of the 31st Joint Propulsion Conference and Exhibit, Reston, VA, USA, 10–12 July 1995. [Google Scholar]
- Yarin, A.L.; Zussman, E.; Theron, A.; Rahimi, S.; Sobe, Z.; Hasan, D. Elongational behavior of gelled propellant simulants. J. Rheol. 2004, 48, 101–116. [Google Scholar] [CrossRef]
- Fu, Q.; Yang, L.; Cui, K.; Zhuang, F. Effects of Orifice Geometry on Gelled Propellants Sprayed from Impinging-Jet Injectors. J. Propul. Power 2014, 30, 1113–1117. [Google Scholar] [CrossRef]
- Fu, Q.; Duan, R.; Cui, K.; Yang, L. Spray of gelled propellants from an impinging-jet injector under different temperatures. Aerosp. Sci. Technol. 2014, 39, 552–558. [Google Scholar] [CrossRef]
- Janiak, C.; Meyer, H.-J.; Gudat, D.; Alsfasser, R. Moderne Anorganische Chemie, 4th ed.; De Gruyter: Berlin, Germany, 2012; ISBN 9783110249019. [Google Scholar]
- Trautmann, E.; Attin, T.; Mohn, D.; Zehnder, M. Hydrogen Peroxide Versus Sodium Hypochlorite: All a Matter of pH? J. Endod. 2021, 47, 297–302. [Google Scholar] [CrossRef] [PubMed]
- SpaceX. Falcon Payload User’s Guide. Available online: https://www.spacex.com/assets/media/falcon-users-guide-2025-05-09.pdf (accessed on 3 November 2025).
- Xue, J.; Herbolzheimer, E.; Rutgers, M.A.; Russel, W.B.; Chaikin, P.M. Diffusion, dispersion, and settling of hard spheres. Phys. Rev. Lett. 1992, 69, 1715–1718. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, H.; Peng, D.; Dou, J. Modelling the Hindered Settling Velocity of a Falling Particle in a Particle-Fluid Mixture by the Tsallis Entropy Theory. Entropy 2019, 21, 55. [Google Scholar] [CrossRef]
- Kuentz, M.; Rothlisberger, D. Sedimentation analysis of aqueous microsuspensions based on near infrared transmission measurements during centrifugation Determination of a suitable amount of gelling agent to minimise settling in the gravitational field. STP Pharma Sci. 2002, 12, 391–396. [Google Scholar]
- Negri, M.; Ciezki, H.K. Effect of Elasticity of Boger Fluids on the Atomization Behavior of an Impinging Jet Injector. At. Sprays 2015, 25, 695–714. [Google Scholar] [CrossRef]
- Negri, M.; Wilhelm, M.; Hendrich, C.; Wingborg, N.; Gediminas, L.; Adelöw, L.; Maleix, C.; Chabernaud, P.; Brahmi, R.; Beauchet, R.; et al. New technologies for ammonium dinitramide based monopropellant thrusters—The project RHEFORM. Acta Astronaut. 2018, 143, 105–117. [Google Scholar] [CrossRef]
- R. Varges, P.; M. Costa, C.; S. Fonseca, B.; F. Naccache, M.; de Souza Mendes, P.R. Rheological Characterization of Carbopol® Dispersions in Water and in Water/Glycerol Solutions. Fluids 2019, 4, 3. [Google Scholar] [CrossRef]
- Dakhil, H.; Auhl, D.; Wierschem, A. Infinite-shear viscosity plateau of salt-free aqueous xanthan solutions. J. Rheol. 2019, 63, 63–69. [Google Scholar] [CrossRef]
- Di Giuseppe, E.; Corbi, F.; Funiciello, F.; Massmeyer, A.; Santimano, T.N.; Rosenau, M.; Davaille, A. Characterization of Carbopol® hydrogel rheology for experimental tectonics and geodynamics. Tectonophysics 2015, 642, 29–45. [Google Scholar] [CrossRef]










| Sample | Hydrogen Peroxide Concentration After 4 Weeks |
|---|---|
| Reference (ungelled H2O2) | 91.4% |
| 0.3% CP 934 | 94.2% |
| 0.2% CP 980 | 93.3% |
| 0.3% CP ETD 2691 | 92.9% |
| 0.3% Konjac gum | 93.8% |
| 1.0% Xanthan gum | 93.8% |
| 1.25% Guar gum | 93.4% |
| 1.75% Tara gum | 93.9% |
| Gelling Agent | Minimal Gelling Agent Concentration (150 µm Capsules, in %) | Minimal Gelling Agent Concentration (25 µm Capsules, in %) |
|---|---|---|
| CP 980 (with NaOH) | 0.1 | 0.2 |
| CP ETD 2691 (with NaOH) | 0.3 | 0.2 |
| CP 934 (with NaOH) | 0.3 | 0.2 |
| Konjac gum | 0.3 | 0.1 |
| Xanthan gum | 1.0 | 0.75 |
| Guar gum | >2.0 [a] | 1.25 |
| Tara gum | >2.0 [a] | 1.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scholl, R.; Steinmann, E.; Freudenmann, D.; Schlechtriem, S. Development and Characterization of Hydrogen Peroxide Gels with Organic Gelling Agents for Use with Microencapsulated Fuels. Aerospace 2025, 12, 1002. https://doi.org/10.3390/aerospace12111002
Scholl R, Steinmann E, Freudenmann D, Schlechtriem S. Development and Characterization of Hydrogen Peroxide Gels with Organic Gelling Agents for Use with Microencapsulated Fuels. Aerospace. 2025; 12(11):1002. https://doi.org/10.3390/aerospace12111002
Chicago/Turabian StyleScholl, Robin, Eva Steinmann, Dominic Freudenmann, and Stefan Schlechtriem. 2025. "Development and Characterization of Hydrogen Peroxide Gels with Organic Gelling Agents for Use with Microencapsulated Fuels" Aerospace 12, no. 11: 1002. https://doi.org/10.3390/aerospace12111002
APA StyleScholl, R., Steinmann, E., Freudenmann, D., & Schlechtriem, S. (2025). Development and Characterization of Hydrogen Peroxide Gels with Organic Gelling Agents for Use with Microencapsulated Fuels. Aerospace, 12(11), 1002. https://doi.org/10.3390/aerospace12111002

