Hydrogen-Powered Marine Vessels: A Rewarding yet Challenging Route to Decarbonization
Abstract
1. Introduction
2. Maritime GHG Emissions and Their Impact
3. Hydrogen Sources, Technologies and Fuels in Shipping
3.1. Hydrogen Sources and Production Processes
3.1.1. Conventional Hydrogen Production
3.1.2. Water Electrolysis (Green Hydrogen)
3.1.3. Renewable Hydrogen Production Pathways
3.1.4. Emerging and Alternative Sources
3.2. Hydrogen Fuel Cell (HFC)
3.3. Hydrogen Internal Combustion Engine (H2ICE)
3.4. Hydrogen Storage Technology
3.4.1. Compressed Hydrogen Storage
3.4.2. Cryogenic Liquid Hydrogen Storage (LH2)
3.4.3. Solid-State Hydrogen Storage
4. Challenges of Hydrogen Integration in Shipping
4.1. Ensure Zero Emission During Production of H2 for Shipping
4.2. On-Board End-Use Limitations of HFC and H2ICE
4.3. Safety Issues for Using HFC in Shipping
4.4. H2 Storage in Ship
4.5. Refueling of H2
4.6. Development of Reactor
5. Cost Analysis of Hydrogen Power Vessels
5.1. Well to Tank Cost
5.2. Retrofitting Costs of Hydrogen-Powered Vessels
5.2.1. Cost Components of Hydrogen Retrofitting
5.2.2. Influence of Design and Modular Flexibility
5.2.3. Degradation-Driven Replacement Costs
5.2.4. Utilization-Adjusted Infrastructure Amortization
6. Life Cycle Analysis of Hydrogen Powered Vessels
7. The Role of Governments in Supporting Hydrogen Adoption
7.1. Funding Research, Development and Demonstration (RD&D)
7.2. Regulations and Standards
7.3. Economic Incentives and Carbon Pricing
7.4. Infrastructure and Industrial Strategy
7.5. International Collaboration and Agreements
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Karl, M.; Jonson, J.E.; Uppstu, A.; Aulinger, A.; Prank, M.; Sofiev, M.; Jalkanen, J.-P.; Johansson, L.; Quante, M.; Matthias, V. Effects of ship emissions on air quality in the Baltic Sea region simulated with three different chemistry transport models. Atmos. Chem. Phys. 2019, 19, 7019–7053. [Google Scholar] [CrossRef]
- Lee, C.-Y.; Song, D.-P. Ocean container transport in global supply chains: Overview and research opportunities. Transp. Res. Part B Methodol. 2017, 95, 442–474. [Google Scholar] [CrossRef]
- Fuglestvedt, J.; Berntsen, T.; Eyring, V.; Isaksen, I.; Lee, D.S.; Sausen, R. Shipping Emissions: From Cooling to Warming of Climate—And Reducing Impacts on Health. Environ. Sci. Technol. 2009, 43, 9057–9062. [Google Scholar] [CrossRef] [PubMed]
- Aakko-Saksa, P.T.; Lehtoranta, K.; Kuittinen, N.; Järvinen, A.; Jalkanen, J.-P.; Johnson, K.; Jung, H.; Ntziachristos, L.; Gagné, S.; Takahashi, C. Reduction in greenhouse gas and other emissions from ship engines: Current trends and future options. Prog. Energy Combust. Sci. 2023, 94, 101055. [Google Scholar] [CrossRef]
- ABS. Setting the Course to Low-Carbon Shipping: Pathways to Sustainable Shipping; American Bureau of Shipping: Houston, TX, USA, 2019. [Google Scholar]
- Ampah, J.D.; Yusuf, A.A.; Afrane, S.; Jin, C.; Liu, H. Reviewing two decades of cleaner alternative marine fuels: Towards IMO’s decarbonization of the maritime transport sector. J. Clean. Prod. 2021, 320, 128871. [Google Scholar] [CrossRef]
- Endresen, Ø.; Sørgård, E.; Sundet, J.K.; Dalsøren, S.B.; Isaksen, I.S.; Berglen, T.F.; Gravir, G. Emission from international sea transportation and environmental impact. J. Geophys. Res. Atmos. 2003, 108, 4560. [Google Scholar] [CrossRef]
- Eyring, V.; Köhler, H.; Lauer, A.; Lemper, B. Emissions from international shipping: 2. Impact of future technologies on scenarios until 2050. J. Geophys. Res. Atmos. 2005, 110, D17306. [Google Scholar] [CrossRef]
- Psaraftis, H.N. (Ed.) Green Maritime Transportation: Market Based Measures, in Green Transportation Logistics: The Quest for Win-Win Solutions; Springer International Publishing: Cham, Switzerland, 2016; pp. 267–297. [Google Scholar]
- ITF. Decarbonising Maritime Transport: Pathways to Zero-Carbon Shipping by 2035; International Transport Forum: Paris, France, 2018. [Google Scholar]
- Joung, T.-H.; Kang, S.-G.; Lee, J.-K.; Ahn, J. The IMO initial strategy for reducing Greenhouse Gas (GHG) emissions, and its follow-up actions towards 2050. J. Int. Marit. Saf. Environ. Aff. Shipp. 2020, 4, 1–7. [Google Scholar] [CrossRef]
- Serra, P.; Fancello, G. Towards the IMO’s GHG goals: A critical overview of the perspectives and challenges of the main options for decarbonizing international shipping. Sustainability 2020, 12, 3220. [Google Scholar] [CrossRef]
- Bullock, S.; Mason, J.; Larkin, A. The urgent case for stronger climate targets for international shipping. Clim. Policy 2022, 22, 301–309. [Google Scholar] [CrossRef]
- Ezinna, P.C.; Nwanmuoh, E.; Ozumba, B.U.I. Decarbonization and sustainable development goal 13: A reflection of the maritime sector. J. Int. Marit. Saf. Environ. Aff. Shipp. 2021, 5, 98–105. [Google Scholar] [CrossRef]
- Inal, O.B.; Zincir, B.; Deniz, C. Investigation on the decarbonization of shipping: An approach to hydrogen and ammonia. Int. J. Hydrogen Energy 2022, 47, 19888–19900. [Google Scholar] [CrossRef]
- IMO. Resolution MEPC.304(72): Initial IMO Strategy on Reduction of GHG Emissions From Ships; IMO: London, UK, 2018; Volume 304, pp. 1–12. [Google Scholar]
- Kim, H.; Koo, K.Y.; Joung, T.-H. A study on the necessity of integrated evaluation of alternative marine fuels. J. Int. Marit. Saf. Environ. Aff. Shipp. 2020, 4, 26–31. [Google Scholar] [CrossRef]
- Brynolf, S.; Taljegard, M.; Grahn, M.; Hansson, J. Electrofuels for the transport sector: A review of production costs. Renew. Sustain. Energy Rev. 2018, 81, 1887–1905. [Google Scholar] [CrossRef]
- Deniz, C.; Zincir, B. Environmental and economical assessment of alternative marine fuels. J. Clean. Prod. 2016, 113, 438–449. [Google Scholar] [CrossRef]
- Solakivi, T.; Paimander, A.; Ojala, L. Cost competitiveness of alternative maritime fuels in the new regulatory framework. Transp. Res. Part D Transp. Environ. 2022, 113, 103500. [Google Scholar] [CrossRef]
- Harahap, F.; Nurdiawati, A.; Conti, D.; Leduc, S.; Urban, F. Renewable marine fuel production for decarbonised maritime shipping: Pathways, policy measures and transition dynamics. J. Clean. Prod. 2023, 415, 137906. [Google Scholar] [CrossRef]
- Karvounis, P.; Tsoumpris, C.; Boulougouris, E.; Theotokatos, G. Recent advances in sustainable and safe marine engine operation with alternative fuels. Front. Mech. Eng. 2022, 8, 994942. [Google Scholar] [CrossRef]
- Durbin, D.; Malardier-Jugroot, C. Review of hydrogen storage techniques for on board vehicle applications. Int. J. Hydrogen Energy 2013, 38, 14595–14617. [Google Scholar] [CrossRef]
- Inal, O.B.; Zincir, B.; Dere, C. Hydrogen as maritime transportation fuel: A pathway for decarbonization. In Greener and Scalable E-Fuels for Decarbonization of Transport; Springer: Singapore, 2022; pp. 67–110. [Google Scholar]
- Kaiser, R.; Ahn, C.-Y.; Kim, Y.-H.; Park, J.-C. Performance and mass transfer evaluation of PEM fuel cells with straight and wavy parallel flow channels of various wavelengths using CFD simulation. Int. J. Hydrogen Energy 2023, 51, 1326–1344. [Google Scholar] [CrossRef]
- Mekonnin, A.S.; Wacławiak, K.; Humayun, M.; Zhang, S.; Ullah, H. Hydrogen Storage Technology, and Its Challenges: A Review. Catalysts 2025, 15, 260. [Google Scholar] [CrossRef]
- Singh, S.; Jain, S.; Venkateswaran, P.; Tiwari, A.K.; Nouni, M.R.; Pandey, J.K.; Goel, S. Hydrogen: A sustainable fuel for future of the transport sector. Renew. Sustain. Energy Rev. 2015, 51, 623–633. [Google Scholar] [CrossRef]
- Ball, M.; Wietschel, M. The future of hydrogen–opportunities and challenges. Int. J. Hydrogen Energy 2009, 34, 615–627. [Google Scholar] [CrossRef]
- French, S. The Role of Zero and Low Carbon Hydrogen in Enabling the Energy Transition and the Path to Net Zero Greenhouse Gas Emissions: With global policies and demonstration projects hydrogen can play a role in a net zero future. Johns. Matthey Technol. Rev. 2020, 64, 357–370. [Google Scholar] [CrossRef]
- Loschan, C.; Schwabeneder, D.; Maldet, M.; Lettner, G.; Auer, H. Hydrogen as Short-Term Flexibility and Seasonal Storage in a Sector-Coupled Electricity Market. Energies 2023, 16, 5333. [Google Scholar] [CrossRef]
- Yang, X.; Nielsen, C.P.; Song, S.; McElroy, M.B. Breaking the hard-to-abate bottleneck in China’s path to carbon neutrality with clean hydrogen. Nat. Energy 2022, 7, 955–965. [Google Scholar] [CrossRef]
- Gray, N.; McDonagh, S.; O’Shea, R.; Smyth, B.; Murphy, J.D. Decarbonising ships, planes and trucks: An analysis of suitable low-carbon fuels for the maritime, aviation and haulage sectors. Adv. Appl. Energy 2021, 1, 100008. [Google Scholar] [CrossRef]
- Otto, M.; Chagoya, K.L.; Blair, R.G.; Hick, S.M.; Kapat, J.S. Optimal hydrogen carrier: Holistic evaluation of hydrogen storage and transportation concepts for power generation, aviation, and transportation. J. Energy Storage 2022, 55, 105714. [Google Scholar] [CrossRef]
- Faye, O.; Szpunar, J.; Eduok, U. A critical review on the current technologies for the generation, storage, and transportation of hydrogen. Int. J. Hydrogen Energy 2022, 47, 13771–13802. [Google Scholar] [CrossRef]
- International Maritime Organization. Fourth IMO GHG Study 2020; IMO: Chiba, Japan, 2021; p. 524. [Google Scholar]
- Haugan, P.M.; Drange, H. Effects of CO2 on the ocean environment. Energy Convers. Manag. 1996, 37, 1019–1022. [Google Scholar] [CrossRef]
- Sharma, S.; Chatani, S.; Mahtta, R.; Goel, A.; Kumar, A. Sensitivity analysis of ground level ozone in India using WRF-CMAQ models. Atmos. Environ. 2016, 131, 29–40. [Google Scholar] [CrossRef]
- Lee, D.S.; Fahey, D.W.; Forster, P.M.; Newton, P.J.; Wit, R.C.; Lim, L.L.; Owen, B.; Sausen, R. Aviation and global climate change in the 21st century. Atmos. Environ. 2009, 43, 3520–3537. [Google Scholar] [CrossRef]
- Prather, M.; Sausen, R.; Grossman, A.; Haywood, J.; Rind, D.; Subbaraya, B. Potential climate change from aviation. In Aviation and the Global Atmosphere. A Special Report of IPCC 185; Cambridge University Press: Cambridge, UK, 1999. [Google Scholar]
- Ramanathan, V.; Callis, L.; Cess, R.; Hansen, J.; Isaksen, I.; Kuhn, W.; Lacis, A.; Luther, F.; Mahlman, J.; Reck, R.; et al. Climate-chemical interactions and effects of changing atmospheric trace gases. Rev. Geophys. 1987, 25, 1441–1482. [Google Scholar] [CrossRef]
- Wuebbles, D.; Gupta, M.; Ko, M. Evaluating the impacts of aviation on climate change. Eos Trans. Am. Geophys. Union 2007, 88, 157–160. [Google Scholar] [CrossRef]
- Buhaug, Ø.; Corbett, J.; Endresen, Ø.; Eyring, V.; Faber, J.; Hanayama, S.; Lee, D.S.; Lee, D.; Lindstad, H.; Markowska, A.Z. Second IMO GHG Study 2009; International Maritime Organization: London, UK, 2009. [Google Scholar]
- Sharma, S.; Ghoshal, S.K. Hydrogen the future transportation fuel: From production to applications. Renew. Sustain. Energy Rev. 2015, 43, 1151–1158. [Google Scholar] [CrossRef]
- Xing, H.; Stuart, C.; Spence, S.; Chen, H. Alternative fuel options for low carbon maritime transportation: Pathways to 2050. J. Clean. Prod. 2021, 297, 126651. [Google Scholar] [CrossRef]
- ITFDM Transport. Pathways to Zero-Carbon Shipping by 2035; International Transport Forum: Paris, France, 2018. [Google Scholar]
- Bicer, Y.; Dincer, I. Clean fuel options with hydrogen for sea transportation: A life cycle approach. Int. J. Hydrogen Energy 2018, 43, 1179–1193. [Google Scholar] [CrossRef]
- Kim, K.; Roh, G.; Kim, W.; Chun, K. A preliminary study on an alternative ship propulsion system fueled by ammonia: Environmental and economic assessments. J. Mar. Sci. Eng. 2020, 8, 183. [Google Scholar] [CrossRef]
- Van Hoecke, L.; Laffineur, L.; Campe, R.; Perreault, P.; Verbruggen, S.W.; Lenaerts, S. Challenges in the use of hydrogen for maritime applications. Energy Environ. Sci. 2021, 14, 815–843. [Google Scholar] [CrossRef]
- Felseghi, R.-A.; Carcadea, E.; Raboaca, M.S.; Trufin, C.N.; Filote, C. Hydrogen fuel cell technology for the sustainable future of stationary applications. Energies 2019, 12, 4593. [Google Scholar] [CrossRef]
- Dincer, I. Hydrogen and fuel cell technologies for sustainable future. Jordan J. Mech. Ind. Eng. 2008, 2, 1–14. [Google Scholar]
- Mallouppas, G.; Yfantis, E.A. Decarbonization in shipping industry: A review of research, technology development, and innovation proposals. J. Mar. Sci. Eng. 2021, 9, 415. [Google Scholar] [CrossRef]
- Agency, I.E. Towards Hydrogen Definitions Based on Their Emissions Intensity; OECD: Paris, France, 2023. [Google Scholar]
- Moradi, R.; Groth, K.M. Hydrogen storage and delivery: Review of the state of the art technologies and risk and reliability analysis. Int. J. Hydrogen Energy 2019, 44, 12254–12269. [Google Scholar] [CrossRef]
- Singla, M.K.; Nijhawan, P.; Oberoi, A.S. Hydrogen fuel and fuel cell technology for cleaner future: A review. Environ. Sci. Pollut. Res. 2021, 28, 15607–15626. [Google Scholar] [CrossRef]
- Kusadome, Y.; Ikeda, K.; Nakamori, Y.; Orimo, S.; Horita, Z. Hydrogen storage capability of MgNi2 processed by high pressure torsion. Scr. Mater. 2007, 57, 751–753. [Google Scholar] [CrossRef]
- Hamedani, E.A.; Alenabi, S.A.; Talebi, S. Hydrogen as an energy source: A review of production technologies and challenges of fuel cell vehicles. Energy Rep. 2024, 12, 3778–3794. [Google Scholar] [CrossRef]
- Dawood, F.; Anda, M.; Shafiullah, G. Hydrogen production for energy: An overview. Int. J. Hydrogen Energy 2020, 45, 3847–3869. [Google Scholar] [CrossRef]
- Ma, N.; Zhao, W.; Wang, W.; Li, X.; Zhou, H. Large scale of green hydrogen storage: Opportunities and challenges. Int. J. Hydrogen Energy 2024, 50, 379–396. [Google Scholar] [CrossRef]
- Seddiek, I.S.; Elgohary, M.M.; Ammar, N.R. The hydrogen-fuelled internal combustion engines for marine applications with a case study. Brodogr. Teor. I Praksa Brodogr. I Pomor. Teh. 2015, 66, 23–38. [Google Scholar]
- Yip, H.L.; Srna, A.; Yuen, A.C.Y.; Kook, S.; Taylor, R.A.; Yeoh, G.H.; Medwell, P.R.; Chan, Q.N. A review of hydrogen direct injection for internal combustion engines: Towards carbon-free combustion. Appl. Sci. 2019, 9, 4842. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, Z.; Liu, W.; Mao, L. Diagnosing Improper Membrane Water Content in Proton Exchange Membrane Fuel Cell Using Two-Dimensional Convolutional Neural Network. Energies 2022, 15, 4247. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, J.; Han, M. Industrial Development Status and Prospects of the Marine Fuel Cell: A Review. J. Mar. Sci. Eng. 2023, 11, 238. [Google Scholar] [CrossRef]
- van Biert, L.; Godjevac, M.; Visser, K.; Aravind, P. A review of fuel cell systems for maritime applications. J. Power Sources 2016, 327, 345–364. [Google Scholar] [CrossRef]
- Çögenli, M.; Mukerjee, S.; Yurtcan, A.B. Membrane electrode assembly with ultra low platinum loading for cathode electrode of PEM fuel cell by using sputter deposition. Fuel Cells 2015, 15, 288–297. [Google Scholar] [CrossRef]
- Dai, W.; Wang, H.; Yuan, X.-Z.; Martin, J.J.; Yang, D.; Qiao, J.; Ma, J. A review on water balance in the membrane electrode assembly of proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2009, 34, 9461–9478. [Google Scholar] [CrossRef]
- Huijsmans, J.; Kraaij, G.; Makkus, R.; Rietveld, G.; Sitters, E.; Reijers, H.T.J. An analysis of endurance issues for MCFC. J. Power Sources 2000, 86, 117–121. [Google Scholar] [CrossRef]
- Pellegrino, S.; Lanzini, A.; Leone, P. Techno-economic and policy requirements for the market-entry of the fuel cell micro-CHP system in the residential sector. Appl. Energy 2015, 143, 370–382. [Google Scholar] [CrossRef]
- Stambouli, A.B.; Traversa, E. Fuel cells, an alternative to standard sources of energy. Renew. Sustain. Energy Rev. 2002, 6, 295–304. [Google Scholar] [CrossRef]
- Williams, M.C.; Strakey, J.P.; Singhal, S.C. US distributed generation fuel cell program. J. Power Sources 2004, 131, 79–85. [Google Scholar] [CrossRef]
- Borroni-Bird, C.E. Fuel cell commercialization issues for light-duty vehicle applications. J. Power Sources 1996, 61, 33–48. [Google Scholar] [CrossRef]
- Korberg, A.D.; Brynolf, S.; Grahn, M.; Skov, I.R. Techno-economic assessment of advanced fuels and propulsion systems in future fossil-free ships. Renew. Sustain. Energy Rev. 2021, 142, 110861. [Google Scholar] [CrossRef]
- Sjölin, K.; Holmgren, E. A Proton Exchange Membrane & Solid Oxide Fuel Cell Comparison. Bachelor Thesis, Chalmers University of Technology, Gothenburg, Sweden, 2019. [Google Scholar]
- Sürer, M.G.; Arat, H.T. Advancements and current technologies on hydrogen fuel cell applications for marine vehicles. Int. J. Hydrogen Energy 2022, 47, 19865–19875. [Google Scholar] [CrossRef]
- Yuan, J.; Sun, J.; Sun, P.; Nakazawa, T.; Sunde’n, B. Marine applications of fuel cell technology. In Proceedings of the International Conference on Fuel Cell Science, Engineering and Technology, Rochester, NY, USA, 14–16 June 2004. [Google Scholar]
- Phogat, P.; Chand, B.; Jha, R.; Singh, S. Hydrogen and methanol fuel cells: A comprehensive analysis of challenges, advances, and future prospects in clean energy. Int. J. Hydrogen Energy 2025, 109, 465–485. [Google Scholar] [CrossRef]
- Östling, E. Model on Degradation of PEM Fuel Cells in Marine Applications. Master’s Thesis, KTH Royal Institute of Technology, Stockholm, Switzerland, 2021. [Google Scholar]
- Hong, S.T. Decarbonizing the Global Shipping Industry: Evaluating Pathways for Alternative Fuels. Master’s Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2022. [Google Scholar]
- Pyrc, M.; Gruca, M.; Tutak, W.; Jamrozik, A. Assessment of the co-combustion process of ammonia with hydrogen in a research VCR piston engine. Int. J. Hydrogen Energy 2023, 48, 2821–2834. [Google Scholar] [CrossRef]
- Mounaïm-Rousselle, C.; Bréquigny, P.; Medina, A.V.; Boulet, E.; Emberson, D.; Løvås, T. Ammonia as fuel for transportation to mitigate zero carbon impact. In Engines and Fuels for Future Transport; Springer: Berlin/Heidelberg, Germany, 2021; pp. 257–279. [Google Scholar]
- Karan, A.; Dayma, G.; Chauveau, C.; Halter, F. High-pressure and temperature ammonia flame speeds. In Proceedings of the 13th Asia-Pacific Conference on Combustion (ASPACC), ADNEC, Abu Dhabi, UAE, 4–9 December 2021. [Google Scholar]
- Teoh, Y.H.; How, H.G.; Le, T.D.; Nguyen, H.T.; Loo, D.L.; Rashid, T.; Sher, F. A review on production and implementation of hydrogen as a green fuel in internal combustion engines. Fuel 2023, 333, 126525. [Google Scholar] [CrossRef]
- Rosati, M.; Aleiferis, P. Hydrogen SI and HCCI combustion in a direct-injection optical engine. SAE Int. J. Engines 2009, 2, 1710–1736. [Google Scholar] [CrossRef]
- Verhelst, S.; Wallner, T. Hydrogen-fueled internal combustion engines. Prog. Energy Combust. Sci. 2009, 35, 490–527. [Google Scholar] [CrossRef]
- Mohammadi, A.; Shioji, M.; Nakai, Y.; Ishikura, W.; Tabo, E. Performance and combustion characteristics of a direct injection SI hydrogen engine. Int. J. Hydrogen Energy 2007, 32, 296–304. [Google Scholar] [CrossRef]
- Wittek, K.; Cogo, V.; Prante, G. Development of a pneumatic actuated low-pressure direct injection gas injector for hydrogen-fueled internal combustion engines. Int. J. Hydrogen Energy 2023, 48, 10215–10234. [Google Scholar] [CrossRef]
- Goldmann, A.; Sauter, W.; Oettinger, M.; Kluge, T.; Schröder, U.; Seume, J.R.; Friedrichs, J.; Dinkelacker, F. A study on electrofuels in aviation. Energies 2018, 11, 392. [Google Scholar] [CrossRef]
- Gillingham, K. Hydrogen Internal Combustion Engine Vehicles: A prudent Intermediate Step or a Step in the Wrong Direction; Department of Management Science & Engineering Global Climate and Energy Project Precourt Institute for Energy Efficiency of Stanford University: Stanford, CA, USA, 2007. [Google Scholar]
- Li, J.-C.; Xu, H.; Zhou, K.; Li, J.-Q. A review on the research progress and application of compressed hydrogen in the marine hydrogen fuel cell power system. Heliyon 2024, 10, e25304. [Google Scholar] [CrossRef]
- Alavi-Borazjani, S.A.; Adeel, S.; Chkoniya, V. Hydrogen as a Sustainable Fuel: Transforming Maritime Logistics. Energies 2025, 18, 1231. [Google Scholar] [CrossRef]
- Magliano, A.; Perez Carrera, C.; Pappalardo, C.M.; Guida, D.; Berardi, V.P. A comprehensive literature review on hydrogen tanks: Storage, safety, and structural integrity. Appl. Sci. 2024, 14, 9348. [Google Scholar] [CrossRef]
- Morales-Ospino, R.; Celzard, A.; Fierro, V. Strategies to recover and minimize boil-off losses during liquid hydrogen storage. Renew. Sustain. Energy Rev. 2023, 182, 113360. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, X.; Li, Y.; Zhao, Y.; Shu, X.; Zhang, G.; Yang, T.; Liu, Y.; Wu, P.; Ding, Z. Rare-Earth Metal-Based Materials for Hydrogen Storage: Progress, Challenges, and Future Perspectives. Nanomaterials 2024, 14, 1671. [Google Scholar] [CrossRef]
- Ratoi, A.; Munteanu, C.; Eliezer, D. Maximizing Onboard Hydrogen Storage Capacity by Exploring High-Strength Novel Materials Using a Mathematical Approach. Materials 2024, 17, 4288. [Google Scholar] [CrossRef]
- The U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy. DOE Technical Targets for Onboard Hydrogen Storage for Light-Duty Vehicles. 2015. Available online: https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storagelightduty-vehicles (accessed on 25 January 2024).
- Zhou, Z.; Tao, J. Hydrogen-powered vessels in green maritime decarbonization: Policy drivers, technological frontiers and challenges. Front. Mar. Sci. 2025, 12, 1601617.4. [Google Scholar] [CrossRef]
- AFCEnergy. AFC Energy PLC Product HydroX-Cell(L). 2021. Available online: https://www.afcenergy.com/products/hydrox-cell_l/ (accessed on 28 January 2021).
- Xing, H.; Stuart, C.; Spence, S.; Chen, H. Fuel cell power systems for maritime applications: Progress and perspectives. Sustainability 2021, 13, 1213. [Google Scholar] [CrossRef]
- McConnell, V.P. Now, voyager? The increasing marine use of fuel cells. Fuel Cells Bull. 2010, 2010, 12–17. [Google Scholar] [CrossRef]
- Tronstad, T.; Åstrand, H.H.; Haugom, G.-P.; Langfeldt, L. Study on the Use of Fuel Cells in Shipping; European Maritime Safety Agency: Lisbon, Portugal, 2017. [Google Scholar]
- Markowski, J.; Pielecha, I. The potential of fuel cells as a drive source of maritime transport. IOP Conf. Ser. Earth Environ. Sci. 2019, 214, 012019. [Google Scholar]
- Dvorak, D.; Sigfusson, T.I.; Gunnarsson, B. International Graduate Education in Fuel Cells and Hydrogen Energy in Iceland. ECS Trans. 2011, 30, 281. [Google Scholar] [CrossRef]
- Suda, R. Japan’s Tsuneishi, CMB to Build Hydrogen-Powered Tug. 2021. Available online: https://www.argusmedia.com/pt/news-and-insights/latest-market-news/2207781-japan-s-tsuneishi-cmb-to-build-hydrogen-powered-tug (accessed on 22 April 2022).
- Kommula, N.D.S. Analysis of Performance and Features of Hydrogen as an Energy Carrier. Master’s Thesis, Universita Politechnica delle Marche, Ancona, Italy, 2022. [Google Scholar]
- Atilhan, S.; Park, S.; El-Halwagi, M.M.; Atilhan, M.; Moore, M.; Nielsen, R.B. Green hydrogen as an alternative fuel for the shipping industry. Curr. Opin. Chem. Eng. 2021, 31, 100668. [Google Scholar] [CrossRef]
- McKinlay, C.J.; Turnock, S.; Hudson, D. A Comparison of Hydrogen and Ammonia for Future Long Distance Shipping Fuels. In Proceedings of the International Conference on LNG/LPG and Alternative Fuel Ships 2020, London, UK, 29–30 January 2020. [Google Scholar]
- Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358. [Google Scholar] [CrossRef]
- Mazloomi, K.; Gomes, C. Hydrogen as an energy carrier: Prospects and challenges. Renew. Sustain. Energy Rev. 2012, 16, 3024–3033. [Google Scholar] [CrossRef]
- Shakeri, N.; Zadeh, M.; Nielsen, J.B. Hydrogen fuel cells for ship electric propulsion: Moving toward greener ships. IEEE Electrif. Mag. 2020, 8, 27–43. [Google Scholar] [CrossRef]
- Elberry, A.M.; Thakur, J.; Santasalo-Aarnio, A.; Larmi, M. Large-scale compressed hydrogen storage as part of renewable electricity storage systems. Int. J. Hydrogen Energy 2021, 46, 15671–15690. [Google Scholar] [CrossRef]
- Pratt, J.W. Feasibility of the SF-BREEZE: A Zero-Emission Hydrogen Fuel Cell High-Speed Passenger Ferry; Sandia National Lab. (SNL-CA): Livermore, CA, USA, 2017. [Google Scholar]
- Rusman, N.; Dahari, M. A review on the current progress of metal hydrides material for solid-state hydrogen storage applications. Int. J. Hydrogen Energy 2016, 41, 12108–12126. [Google Scholar] [CrossRef]
- Genovese, M.; Cigolotti, V.; Jannelli, E.; Fragiacomo, P. Hydrogen refueling process: Theory, modeling, and in-force applications. Energies 2023, 16, 2890. [Google Scholar] [CrossRef]
- Sadi, M.; Deymi-Dashtebayaz, M. Hydrogen refueling process from the buffer and the cascade storage banks to HV cylinder. Int. J. Hydrogen Energy 2019, 44, 18496–18504. [Google Scholar] [CrossRef]
- Oschwald*, M.; Smith, J.; Branam, R.; Hussong, J.; Schik, A.; Chehroudi, B.; Talley, D. Injection of fluids into supercritical environments. Combust. Sci. Technol. 2006, 178, 49–100. [Google Scholar] [CrossRef]
- Bonacina, C.N.; Gaskare, N.B.; Valenti, G. Assessment of offshore liquid hydrogen production from wind power for ship refueling. Int. J. Hydrogen Energy 2022, 47, 1279–1291. [Google Scholar] [CrossRef]
- Aardahl, C.L.; Rassat, S.D. Overview of systems considerations for on-board chemical hydrogen storage. Int. J. Hydrogen Energy 2009, 34, 6676–6683. [Google Scholar] [CrossRef]
- Plazas-Niño, F.A.; Ortiz-Pimiento, N.R.; Quirós-Tortós, J. Supporting energy system modelling in developing countries: Techno-economic energy dataset for open modelling of decarbonization pathways in Colombia. Data Brief 2023, 48, 109268. [Google Scholar] [CrossRef]
- Howells, M.; Rogner, H.; Strachan, N.; Heaps, C.; Huntington, H.; Kypreos, S.; Hughes, A.; Silveira, S.; DeCarolis, J.; Bazillian, M. OSeMOSYS: The open source energy modeling system: An introduction to its ethos, structure and development. Energy Policy 2011, 39, 5850–5870. [Google Scholar] [CrossRef]
- Lagemann, B.; Lindstad, E.; Fagerholt, K.; Rialland, A.; Erikstad, S.O. Optimal ship lifetime fuel and power system selection. Transp. Res. Part D Transp. Environ. 2022, 102, 103145. [Google Scholar] [CrossRef]
- Mestemaker, B.; van den Heuvel, H.; Castro, B.G. Designing the zero emission vessels of the future: Technologic, economic and environmental aspects. Int. Shipbuild. Prog. 2020, 67, 5–31. [Google Scholar] [CrossRef]
- Mylonopoulos, F.; Durgaprasad, S.; Coraddu, A.; Polinder, H. Lifetime design, operation, and cost analysis for the energy system of a retrofitted cargo vessel with fuel cells and batteries. Int. J. Hydrogen Energy 2024, 91, 1262–1273. [Google Scholar] [CrossRef]
- Semchukova, V.; Polemis, K.; Abdin, Z.; Solanki, B.; Cary, S. Hydrogen Infrastructure Analysis for the Port Applications; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2024. [Google Scholar]
- Fernández-Ríos, A.; Santos, G.; Pinedo, J.; Santos, E.; Ruiz-Salmón, I.; Laso, J.; Lyne, A.; Ortiz, A.; Ortiz, I.; Irabien, Á. Environmental sustainability of alternative marine propulsion technologies powered by hydrogen-a life cycle assessment approach. Sci. Total Environ. 2022, 820, 153189. [Google Scholar] [CrossRef]
- Wang, J.; Lobo, J.; Shutters, S.T.; Strumsky, D. Fueling a net-zero future: The influence of government-funded research on climate change mitigation inventions. Environ. Innov. Soc. Transit. 2024, 51, 100836. [Google Scholar] [CrossRef]
- Pisacane, G.; Sannino, G.; Carillo, A.; Struglia, M.V.; Bastianoni, S. Marine energy exploitation in the mediterranean region: Steps forward and challenges. Front. Energy Res. 2018, 6, 109. [Google Scholar] [CrossRef]
- Van Sickle, E.; Ralli, P.; Pratt, J.; Klebanoff, L. MV Sea Change: The first commercial 100% hydrogen fuel cell passenger ferry in the world. Int. J. Hydrogen Energy 2025, 105, 389–404. [Google Scholar] [CrossRef]
- Peeters, P.; Papp, B. Envisioning Tourism in 2030 and Beyond. The Changing Shape of Tourism in a Decarbonising World. 2023. Available online: https://pure.buas.nl/ws/portalfiles/portal/27136592/Peeters_Papp_EnvisionTourism_report.pdf (accessed on 17 February 2025).
- Lee, H.; Lee, J.; Roh, G.; Lee, S.; Choung, C.; Kang, H. Comparative life cycle assessments and economic analyses of alternative marine fuels: Insights for practical strategies. Sustainability 2024, 16, 2114. [Google Scholar] [CrossRef]
- Bade, S.O.; Tomomewo, O.S. Economic, social, and regulatory challenges of green hydrogen production and utilization in the US: A review. Int. J. Hydrogen Energy 2024, 49, 314–335. [Google Scholar] [CrossRef]
- Penttinen, S.L. Navigating the hydrogen landscape: An analysis of hydrogen support mechanisms in the US and the EU. Rev. Eur. Comp. Int. Environ. Law 2024, 33, 397–411. [Google Scholar] [CrossRef]
- Talalasova, E.; Boyland, J.; Garvin, B.; Fahnestock, J. Annual Progress Report on Green Shipping Corridors 2022. Global Maritime Forum. Available online: https://www.globalmaritimeforum.org/content/2022/11/The-2022-AnnualProgress-Report-on-Green-Shipping-Corridors.pdf (accessed on 17 November 2022).
- Corbeau, A.-S.; Kaswiyanto, R.P. National Hydrogen Strategies and Roadmap Tracker; Center on Global Energy Policy at Columbia University, School of International and Public Affairs. Available online: https://www.energypolicy.columbia.edu/publications/national-hydrogen-strategies-and-roadmap-tracker/ (accessed on 15 May 2024).
GHG Emissions | Top-Down International Marine Bunker Total | Top-Down Domestic Navigation Total | Top-Down Fishing Total | Total |
---|---|---|---|---|
CO2 | 6.937 × 108 | 1.555 × 108 | 18.8 × 107 | 8.676 × 108 |
CH4 | 1.239 × 104 | 3.352 × 103 | 8.418 × 103 | 1.659 × 104 |
N2O | 3.905 × 104 | 8.770 × 103 | 1.059 × 103 | 4.888 × 104 |
NOx | 1.620 × 107 | 3.106 × 106 | 3.460 × 105 | 1.965 × 107 |
CO | 6.254 × 105 | 1.315 × 105 | 1.548 × 104 | 7.725 × 105 |
NMVOC | 6.754 × 105 | 1.299 × 105 | 1.454 × 104 | 8.199 × 105 |
SOx | 9.252 × 106 | 8.278 × 105 | 3.327 × 104 | 1.011 × 107 |
PM2.5 | 1.287 × 106 | 1.341 × 105 | 7.930 × 103 | 1.429 × 106 |
PM | 1.399 × 106 | 1.456 × 105 | 8.620 × 103 | 1.553 × 106 |
BC | 6.217 × 104 | 1.650 × 104 | 2.120 × 103 | 8.080 × 104 |
LSHFO * | MDO * | Methanol | Ammonia | LNG | Hydrogen | |
---|---|---|---|---|---|---|
Chemical formula | C8–C25 | C10–C15 | CH3OH | NH3 | CH4 | H2 |
Density at 15 °C (Kg/m3) | 975–1010 | 796–841 | 792 | 0.73 | 0.78 | 0.09 |
Cetane no. | >20 | >35 | <5 | 120 | 130 ** | >130 |
Boiling point °C | >180 | >180 | 65 | −33 | −162 | −253 |
Auto ignition Temp. °C | 230 | 210 | 464 | 651 | 540 | 585 |
Flammability limits in the air (vol%) | 0.6–7.5 | 0.6–7.5 | 6.7–36 | 6.7–36 | 5.0–15.0 | 6.7–36 |
Toxicity | N/A | N/A | LAT | HT | NT | NT |
CO2 *** | High | High | Medium | Low | Medium | Low |
SOx *** | Medium | Low | Low | Low | Low | Low |
NOx *** | High | High | Medium | High | Medium | High |
PM *** | Medium | Low | Low | Low | Low | Low |
Possible CO2 emissions reduction | N/A | N/A | 25–100% | 27–34.7% | 5–30% | 1–43% |
Type of Fuel Cell | Operating Temp. (°C) | Fuel Type | Capacity (Max.) | Internal Reforming | Efficiency (%) | Drawbacks |
---|---|---|---|---|---|---|
AFC | 60–200 | H2 | 500 kW | No | 50–55 | CO2 poisoning |
LT-PEMFC | 65–85 | H2 | 120 kW | No | 40–50 | CO + S poisoning |
HT- PEMFC | 140–220 | H2 | 500 kW | No | 35–45 | CO + S poisoning |
PAFC | 140–200 | H2, LNG, Methanol | 400 kW | No | 40–45 | CO + S poisoning |
MCFC | 650–700 | H2, CO | 10 MW | Yes | 50–55 | S poisoning |
SOFC | 500–1000 | H2, CO | 10 MW | Yes | 50–65 | S poisoning |
Property | H2 | Ammonia | CNG | Gasoline | Diesel |
---|---|---|---|---|---|
Lower heating value (MJ/Kg) | 119.7 | 18.8 | 45.8 | 44.8 | 42.5 |
Volumetric energy content (MJ/m3) | 10.7 | 13.72 | 33.0 | 33 × 103 | 35 × 103 |
Quenching distance (mm) | 0.64 | 7 | 2.1 | ~2 | N/A |
Laminar flame speed in air (m/s) | 1.85 | 0.015 | 0.38 | 0.37–0.43 | 0.37–0.43 |
Flammability limits in air (vol%) | 4–76 | 15–28 | 5.3–1.5 | 1–7.6 | 0.6–5.5 |
Adiabatic flame temperature (K) | 2480 | 2073 | 2214 | 2580 | ~2300 |
Storage Type | Technology Readiness | Volumetric Density | Gravimetric Density | Advantages | Limitations |
---|---|---|---|---|---|
Compressed Gas | High | Low | Moderate | Mature, rapid refueling, moderate cost | High pressure, heavy tanks, safety risk |
Liquid Hydrogen | Medium | High | Moderate | High density, suitable for long-range transport | Boil-off loss, high liquefaction energy cost |
Metal Hydrides | Medium | High | Low | High safety, high storage capacity per volume | Heavy weight, slow kinetics, thermal management needed |
Chemical Hydrides | Low | Medium | High | High H2 content by weight, flexible applications | Irreversible or costly regeneration |
Adsorbent Materials | Low | Low | Low | Low pressure and temperature operation | Low storage capacity, experimental |
Fuel Cell Types | Vessel/Project | Type | Fuel | Capacity | Starting Year |
---|---|---|---|---|---|
AFC | Hydra | Cargo/Containership | Metal hydride | 6.9 kW | 2007 |
Hydrocell Oy | Hydrogen storage unit | Metal hydride | 30 kW | 2023 | |
HydroX-cell(S)TM | 40 ft ISO Container | Metal hydride | 160 kW | 2022 | |
LT PEMFC | Elding/SMART H-II | Whale watch vessel | H2 | 10 kW | 2008 |
ZemShip Alsterwasser | Passenger ship | H2 | 96 kW | 2008 | |
Nemo | Passenger ship | H2 | 60 kW | 2009 | |
Hornblower Hybrid | Ferry boat | H2 | 32 kW | 2008 | |
Hydrogenesis | Ferry boat | H2 | 12 kW | 2013 | |
SF-BREEZE | Passenger ship | H2 | 120 kW | 2015 | |
Cobalt 233 Zet | Runabouts | H2 | 50 kW | 2007 | |
US SSFC | Electrical power needs of naval platforms and systems | H2 | 500 kW | 2000 | |
HT PEMFC | Pa-X-ell MS Mariella | Passenger ship | Methanol | 2 × 30 kW | 2016 |
RiverCell | Hybrid power supply for river cruise vessels | Methanol | 250 kW | 2015 | |
MS INNOGY | Passenger ship | Methanol | 35 kW | 2017 | |
AIDAnova | Cruise ship | Methanol | 2021 | ||
MF Vågen | Passenger ship | H2 | 12 kW | 2010 | |
RiverCell ELEKTRA | Hybrid power supply for a towboat | H2 | 3 × 100 kW | 2015 | |
MCFC | MC WAP | Auxiliary power generation cruise ship | Diesel | 625 kW | 2005 |
FellowSHIP Viking Lady | Offshore supply vessel | LNG | 320 kW | 2003 | |
US SSFC | Electrical power needs of naval platforms and systems | Diesel | 625 kW | 2000 | |
SOFC | METHAPU Undine | Onboard car carrier | Methanol | 20 kW | 2006 |
SchIBZMS Forester | Auxiliary power supply onboard the general cargo ship | Diesel | 100 kW | 2017 | |
FELICITAS subproject 2 | Mobile hybrid marine version of the Rolls-Royce Fuel Cell system | LNG | 250 kW | 2005 | |
Engine type | Vessel/Project | Type | Fuel | Capacity | Starting Year |
Dual H2-Diesel direct injection | Hydrocat 48 | Crew transfer | H2-Diesel | N/A | 2021 |
HydroBingo | Passenger ship | H2-Diesel | N/A | 2021 | |
HydroPhoenix | Tugboat | N/A | 160 kW | Ongoing |
Factor | Typical Cost (10-Year NPV) | Notes |
---|---|---|
Base retrofit to hydrogen | $9.4 M–$22.6 M | Depends on starting configuration |
Payload-related opportunity cost | $2.7 M | For a Supramax vessel |
Fuel cell/battery replacements | $1.9 M–$3.8 M | Driven by degradation rate |
Total retrofit cost (hydrogen) | $13.2 M–$25 M | High-degradation scenarios |
Port infrastructure (amortized) | $42 K–$340 K | Varies by fleet throughput |
Impact Category | Diesel ICE | H2 FC | H2 ICE |
---|---|---|---|
HTP (kg DCB eq.) | 3.09 × 10−2 | 9.36 × 10−2 | 1.69 × 10−2 |
TETP (kg DCB eq.) | 1.05 × 10−3 | 2.00 × 10−3 | 2.41 × 10−4 |
POCP (kg Ethene eq.) | 6.20 × 10−4 | 4.03 × 10−5 | 1.03 × 10−5 |
GWP 100 years (kg CO2 eq.) | 5.80 × 10−1 | 6.23 × 10−1 | 1.62 × 10−1 |
AP (kg SO2 eq.) | 1.21 × 10−2 | 2.59 × 10−4 | 6.62 × 10−5 |
ADP (kg Sb eq.) | 3.60 × 10−8 | 6.20 × 10−8 | 1.39 × 10−8 |
ODP (kg R11 eq.) | 5.74 × 10−16 | 2.07 × 10−9 | 6.00 × 10−16 |
FAETP (kg DCB eq.) | 2.20 × 10−3 | 9.96 × 10−4 | 1.48 × 10−4 |
EP (kg Phosphate eq.) | 1.27 × 10−3 | 1.30 × 10−3 | 9.15 × 10−6 |
ADP fossil (MJ) | 5.73 | 11.02 | 2.87 |
MAETP (kg DCB eq.) | 4.83 | 1.90 | 0.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaiser, R.; Chowdhury, A.M. Hydrogen-Powered Marine Vessels: A Rewarding yet Challenging Route to Decarbonization. Clean Technol. 2025, 7, 68. https://doi.org/10.3390/cleantechnol7030068
Kaiser R, Chowdhury AM. Hydrogen-Powered Marine Vessels: A Rewarding yet Challenging Route to Decarbonization. Clean Technologies. 2025; 7(3):68. https://doi.org/10.3390/cleantechnol7030068
Chicago/Turabian StyleKaiser, Rashed, and Ayesha Munira Chowdhury. 2025. "Hydrogen-Powered Marine Vessels: A Rewarding yet Challenging Route to Decarbonization" Clean Technologies 7, no. 3: 68. https://doi.org/10.3390/cleantechnol7030068
APA StyleKaiser, R., & Chowdhury, A. M. (2025). Hydrogen-Powered Marine Vessels: A Rewarding yet Challenging Route to Decarbonization. Clean Technologies, 7(3), 68. https://doi.org/10.3390/cleantechnol7030068