Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (51)

Search Parameters:
Keywords = green manure legume

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2937 KB  
Article
Green Manure Enables Reduced Water and Nitrogen Inputs with Sustained Yield in Maize
by Feng Wang, Yanzi Yu, Xiaoneng Pang, Yali Sun, Zhilong Fan, Wen Yin, Falong Hu, Wei He, Yunyou Nan and Aizhong Yu
Agronomy 2026, 16(1), 120; https://doi.org/10.3390/agronomy16010120 - 2 Jan 2026
Viewed by 275
Abstract
Legume green manure incorporation offers a potential pathway for sustainable cropping in arid irrigated areas. This study aimed to determine whether water and nitrogen inputs could be concurrently reduced without compromising maize productivity under this practice. A two-year field experiment (2024–2025) was conducted [...] Read more.
Legume green manure incorporation offers a potential pathway for sustainable cropping in arid irrigated areas. This study aimed to determine whether water and nitrogen inputs could be concurrently reduced without compromising maize productivity under this practice. A two-year field experiment (2024–2025) was conducted using a split-plot design with three irrigation levels (I1: 4045, I2: 3240, I3: 2430 m3·ha−1) and three nitrogen rates (N1: 360, N2: 288, N3: 216 kg·ha−1). Compared with conventional management (I1N1), 20% co-reduction in water and nitrogen (I2N2) maintained stable leaf area index (LAI), net photosynthetic rate (Pn), transpiration rate (Tr), DM, and GY, while significantly increasing water use efficiency (WUE) by 7.6% and nitrogen use efficiency for grain yield (NUtEg) by 11.7%. Excessive water reduction (I3) or nitrogen reduction (N3) significantly inhibited growth and reduced yield (p < 0.05). Soil water content under I2N2 did not differ significantly from I1N1 in the 0–110 cm profile, and soil total nitrogen remained higher at silking.) Structural equation model (SEM) revealed SWC and STN indirectly affected Pn and Tr via regulating LAI and SPAD (path coefficients: 0.48–0.62), which drove DM accumulation and determined GY (R2 = 0.81). These short-term results suggest that moderate water-nitrogen reduction with green manure can sustain yield while improving resource efficiency, offering a promising practice for arid irrigated maize systems, though longer-term validation is needed. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

20 pages, 1615 KB  
Article
Metagenomic Insights into Microbial Community Response to Melilotus officinalis Green Manuring in Degraded Steppe Soils
by Irina Rukavitsina, Almagul Kushugulova, Nadezhda Filippova, Samat Kozhakhmetov, Natalya Zuyeva and Lyudmila Zhloba
Agriculture 2026, 16(1), 36; https://doi.org/10.3390/agriculture16010036 - 23 Dec 2025
Viewed by 439
Abstract
Single-season legume green manuring is widely promoted for soil fertility restoration in degraded agricultural lands, yet its effectiveness in alkaline semi-arid soils remains poorly understood. This study investigated the impact of first-year sweet clover (Melilotus officinalis (L.)) green manuring on soil microbiome [...] Read more.
Single-season legume green manuring is widely promoted for soil fertility restoration in degraded agricultural lands, yet its effectiveness in alkaline semi-arid soils remains poorly understood. This study investigated the impact of first-year sweet clover (Melilotus officinalis (L.)) green manuring on soil microbiome structure and agrochemical properties in southern carbonate chernozem soils of Northern Kazakhstan. Using shotgun metagenomics, we analyzed microbial communities from sweet clover-amended soils, clean fallow, and virgin steppe reference sites. Contrary to expectations, sweet clover green manuring did not enhance soil nitrogen availability, with nitrate-N content (9.1 mg/kg) remaining lower than clean fallow (10.5 mg/kg), likely due to temporary immobilization during initial decomposition. While sweet clover significantly increased archaeal diversity (p = 0.01) and enriched nitrogen-cycling taxa, including Nitrospirae and Thaumarchaeota, overall microbial richness remained unchanged (ACE index, p > 0.05). Surprisingly, functional analysis revealed only five significant metabolic differences between sweet clover and fallow systems, indicating functional convergence of agricultural microbiomes regardless of management practice. Correlation analysis identified phosphorus as the master regulator of microbial metabolism (r = 1.0, p < 0.0001), while elevated pH (9.0), K2O (>1000 mg/kg), and NO3 showed strong negative correlations with essential metabolic pathways, revealing previously unrecognized nutrient toxicity thresholds. Virgin steppe maintained 69 unique metabolic pathways lost in agricultural systems, highlighting the ecological cost of cultivation. These findings demonstrate that sweet clover green manuring in alkaline steppe soils induces selective rather than comprehensive microbiome restructuring, with limited immediate benefits for soil fertility. This study provides critical insights for developing sustainable agricultural practices in the world’s extensive semi-arid regions facing similar edaphic constraints. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

17 pages, 978 KB  
Article
Selection of Promising Rhizobia for the Inoculation of Canavalia ensiformis (L.) DC. (Fabaceae) in Chromic Eutric Cambisol Soils
by Yusdel Ferrás-Negrín, Carlos Alberto Bustamante-González, Javiera Cid-Maldonado, María José Villarroel-Contreras, Ionel Hernández-Forte and Hector Herrera
Horticulturae 2025, 11(12), 1534; https://doi.org/10.3390/horticulturae11121534 - 18 Dec 2025
Viewed by 444
Abstract
Canavalia ensiformis (L.) DC. (Fabaceae) is used in Cuba in soils dedicated to coffee cultivation, contributing to soil nutrition and crop productivity. However, no rhizobial isolates are currently available for inoculating this legume in Chromic Eutric Cambisol soils. The aim of this study [...] Read more.
Canavalia ensiformis (L.) DC. (Fabaceae) is used in Cuba in soils dedicated to coffee cultivation, contributing to soil nutrition and crop productivity. However, no rhizobial isolates are currently available for inoculating this legume in Chromic Eutric Cambisol soils. The aim of this study was to select rhizobial strains that promote the growth of C. ensiformis in Chromic Eutric Cambisol soils. Nodules were collected from C. ensiformis plants, surface-sterilized, and macerated to isolate potential rhizobia. The isolates were characterized based on cultural, morphological, and biochemical traits, and their symbiotic effectiveness was evaluated through in vitro inoculation assays in Macroptilium atropurpureum (siratro) plants. Inoculation trials were conducted under semi-controlled conditions and in the field between coffee rows. The number and dry weight of effective nodules, number of trifoliate leaves, and shoot dry biomass were measured. Nine bacterial isolates were obtained, grouped into four morphotypes, and assigned as possible members of the families Phyllobacteriaceae, Methylobacteriaceae, or Nitrobacteraceae. Under semi-controlled conditions, inoculation with three isolates increased the number of nodules (by 56–80%), the number of trifoliate leaves (by 20–45%), and shoot biomass (by 10–40%) compared to the non-inoculated treatment. Additionally, one of the isolates increased nodule dry weight by 27%. In the field between coffee row, increases were also observed in the number of trifoliate leaves (by 18–26%) and shoot biomass (by 15–24%). This study supports the selection of efficient rhizobia adapted to the edaphoclimatic conditions of Cuban coffee agroecosystems. Full article
Show Figures

Figure 1

18 pages, 2357 KB  
Article
Evaluation of Biochar and Humus Amendments and Early-Season Insect Netting on Soil Properties, Crop Yield, and Pest Management in Organic Vegetable Production in Maine
by Robert P. Larkin
Agronomy 2025, 15(11), 2567; https://doi.org/10.3390/agronomy15112567 - 7 Nov 2025
Viewed by 539
Abstract
Effective implementation and optimization of organic amendments and other management practices is essential for sustainable organic vegetable production, yet needed information is lacking on the effects and benefits of different organic matter amendments and pest management approaches under Northeastern USA production conditions. The [...] Read more.
Effective implementation and optimization of organic amendments and other management practices is essential for sustainable organic vegetable production, yet needed information is lacking on the effects and benefits of different organic matter amendments and pest management approaches under Northeastern USA production conditions. The impacts of soil amendments of biochar or humus (soluble humate complex) in conjunction with compost, as well as the presence or absence of an early-season insect netting row cover (mesotunnels), were evaluated on soil chemical and biological properties, crop development and yield, and disease and pest issues in organic vegetable production, as represented by legume (green snap bean), cucurbit (green zucchini squash), and amaranth (garden beet) vegetable crops, in a three-year field trial in Maine. Composted cow manure and a commercial organic fertilizer alone were included as controls. All plots were either covered or not covered with a permeable insect netting row cover from the time of planting until flowering. All compost-based amendments increased soil pH; organic matter; microbial activity; crop yields; and K, Mg, and Ca content relative to a fertilizer-only treatment. Biochar amendments further increased soil pH, CEC, and Ca content above those of compost alone and also resulted in the overall highest yields of bean and zucchini but were not significantly greater than with compost amendment alone. Humus amendments did not improve soil characteristics, with some indications of potential reductions in emergence and yield. Insect netting substantially improved yield of zucchini (by 59%) and somewhat improved bean yield (by 11%), in addition to improving plant emergence and reducing insect leaf damage, but it did not reduce powdery mildew on zucchini or provide any significant benefits for beets. These results help define specific management practices to improve organic vegetable production and provide useful information and options for growers. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

17 pages, 2278 KB  
Article
Biomass and Nickel Tolerance: Canavalia ensiformis (L.) DC. as a Candidate Plant for Phytoremediation Applications
by Jailson Vieira Aguilar, Thalita Fischer Santini Mendes, Nayane Cristina Pires Bomfim, Matheus Ribeiro Brambilla, Patrícia Borges Alves, Julia Araujo Petreca, Aline Renee Coscione and Liliane Santos Camargos
Agriculture 2025, 15(21), 2200; https://doi.org/10.3390/agriculture15212200 - 23 Oct 2025
Viewed by 637
Abstract
The use of high biomass production plants in studies of metal phytoremediation is an established practice. This strategy aims to identify plants that tolerate unusual amounts of metals such as nickel (Ni). When comparing the biomass production capacity of a Ni hyperaccumulator, such [...] Read more.
The use of high biomass production plants in studies of metal phytoremediation is an established practice. This strategy aims to identify plants that tolerate unusual amounts of metals such as nickel (Ni). When comparing the biomass production capacity of a Ni hyperaccumulator, such as plants from the Alyssum genus, a production ranging from 0.5 to 4 t ha−1 per crop cycle is observed ; on the other hand, species with a high biomass production capacity, for example Canavalia ensiformis, can produce 20 t ha−1 to 25 t ha−1 of green phytomass, 5 t ha−1 to 8 t ha−1 of dry phytomass and 1000 kg ha−1 to 1800 kg ha−1 of seeds. In this context, we planned an experiment to verify the tolerance and Ni accumulation capacity in Canavalia ensiformis. Our hypothesis was that increasing Ni concentration in the soil would not hinder the plant’s biomass production. We conducted a completely randomized experiment with five concentrations of Ni added to the soil and five replicates in a greenhouse during the vegetative stage. We evaluated the plant’s development, biomass production, and Ni accumulation in its organs. Our results demonstrated high tolerance to the metal, maintaining a biomass accumulation capacity of 68% of the dry mass in the soil with 277.8 mg kg−1 of Ni at the highest concentration tested, compared to plants in the control soil. Considering that under these conditions the plants obtained a biomass of 10 g of leaves and 15 g of roots, and a nickel accumulation capacity of 75.05 mg kg−1 in leaves and 102 mg kg−1 in roots, the total Ni accumulation in the plants reached 2.37 mg Ni/plant in the soil with 277.8 mg kg−1 of Ni. This soil Ni concentration would be lethal for most plants, and the metal concentration in the tissue exceeds the established limits for non-tolerant crops. With these results, this study aims to provide a foundation for improving the use of Canavalia ensiformis in phytoremediation. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

22 pages, 6844 KB  
Article
Legume Green Manure Further Improves the Effects of Fertilization on the Long-Term Yield and Water and Nitrogen Utilization of Winter Wheat in Rainfed Agriculture
by Xiushuang Li, Juan Chen, Jianglan Shi and Xiaohong Tian
Plants 2025, 14(16), 2476; https://doi.org/10.3390/plants14162476 - 9 Aug 2025
Cited by 1 | Viewed by 938
Abstract
Context: To revive the practice of planting legume green manure (GM) in the fallow period in rainfed agricultural areas, it is essential to demonstrate the benefits of this practice on the yields and water use efficiency (WUE) of subsequent crops, especially when integrating [...] Read more.
Context: To revive the practice of planting legume green manure (GM) in the fallow period in rainfed agricultural areas, it is essential to demonstrate the benefits of this practice on the yields and water use efficiency (WUE) of subsequent crops, especially when integrating with optimized water and fertilizer management. Objectives: We conducted a field experiment to determine the positive effects of planting legume GM in the summer fallow on the yield, WUE, and nitrogen uptake efficiency (NupE) of subsequent winter wheat, which was grown with plastic film mulching and integrated fertilization in the Loess Plateau of China. Methods: A split-plot-designed experiment was arranged with two main treatments, namely (1) wheat planting followed by GM planting in the summer fallow (GM) and (2) conventional wheat monoculture followed by bare land summer fallow (BL), and three sub-treatments: (1) control treatment without any chemical fertilizer (Ct), (2) application of chemical N, P, and K as basal fertilizer (B), and (3) application of basal fertilizer plus wheat straw return (BS). Results: In the initial two years, even in a dry year, GM did not decrease the soil water content and storage (0–200 cm layer) during the subsequent winter wheat season, relative to BL. But in the third and fourth years, GM increased the grain yield of winter wheat by 3.2% and 3.8%, respectively. B and BS increased the grain yield of winter wheat by 14.4% and 22.2%, respectively, during the third experimental year, and by 12.7% and 19.4% during the fourth experimental year, primarily through increasing the population density of winter wheat. The increase in the grain yield contributed to a higher WUE of winter wheat. In the third year, GM increased the water consumption (WC) and WUE of wheat by 2.4% and 1.7%, respectively, though they were far lower than B (8.3% and 5.6%) and BS (10.4% and 10.7%). B and BS resulted in a higher yield and N nutrition than GM alone, but GM combined with B and BS resulted in the highest yield and N nutrition, thus greatly decreasing the NupE and increasing N productivity. Conclusions: Planting legume GM in the fallow can further increase the long-term yield, WUE, and N utilization of winter wheat when integrated with chemical fertilization and wheat straw return in rainfed agriculture. Implications: Our study yields new insights into the agronomic benefits of legume GM application in semi-arid or analogous rainfed agroecosystems and underscores the critical role of water conservation in ensuring dryland agricultural production, particularly in regions undergoing optimization of fertilization. Full article
Show Figures

Figure 1

20 pages, 4565 KB  
Article
Legume–Cereal Cover Crops Improve Soil Properties but Fall Short on Weed Suppression in Chickpea Systems
by Zelalem Mersha, Michael A. Ibarra-Bautista, Girma Birru, Julia Bucciarelli, Leonard Githinji, Andualem S. Shiferaw, Shuxin Ren and Laban Rutto
Agronomy 2025, 15(8), 1893; https://doi.org/10.3390/agronomy15081893 - 6 Aug 2025
Viewed by 1260
Abstract
Chickpea is a highly weed-prone crop with limited herbicide options and high labor demands, raising the following question: Can fall-planted legume–cereal cover crops (CCs) improve soil properties while reducing herbicide use and manual weeding pressure? To explore this, we evaluated the effect of [...] Read more.
Chickpea is a highly weed-prone crop with limited herbicide options and high labor demands, raising the following question: Can fall-planted legume–cereal cover crops (CCs) improve soil properties while reducing herbicide use and manual weeding pressure? To explore this, we evaluated the effect of fall-planted winter rye (WR) alone in 2021 and mixed with hairy vetch (HV) in 2022 and 2023 at Randolph farm in Petersburg, Virginia. The objectives were two-fold: (a) to examine the effect of CCs on soil properties using monthly growth dynamics and biomass harvested from fifteen 0.25 m2-quadrants and (b) to evaluate the efficiency of five termination methods: (1) green manure (GM); (2) GM plus pre-emergence herbicide (GMH); (3) burn (BOH); (4) crimp mulch (CRM); and (5) mow-mulch (MW) in suppressing weeds in chickpea fields. Weed distribution, particularly nutsedge, was patchy and dominant on the eastern side. Growth dynamics followed an exponential growth rate in fall 2022 (R2 ≥ 0.994, p < 0.0002) and a three-parameter sigmoidal curve in 2023 (R2 ≥ 0.972, p < 0.0047). Biomass averaged 55.8 and 96.9 t/ha for 2022 and 2023, respectively. GMH consistently outperformed GM in weed suppression, though GM was not significantly different from no-till systems by the season’s end. Kabuli-type chickpeas under GMH had significantly higher yields than desi types. Pooled data fitted well to a three-parametric logistic curve, predicting half-time to 50% weed coverage at 35 (MM), 38 (CRM), 40 (BOH), 46 (GM), and 53 (GMH) days. Relapses of CCs were consistent in no-till systems, especially BOH and MW. Although soil properties improved, CCs alone did not significantly suppress weed. Full article
(This article belongs to the Section Weed Science and Weed Management)
Show Figures

Figure 1

18 pages, 1046 KB  
Article
Screening and Validation of Rhizobial Strains for Improved Lentil Growth
by Tianda Chang, Tao Yang, Meng Ren, Xinghui Li, Xuerui Fang, Bingjie Niu, Hongbin Yang, Lixiang Wang and Ximing Chen
Microorganisms 2025, 13(6), 1242; https://doi.org/10.3390/microorganisms13061242 - 28 May 2025
Cited by 1 | Viewed by 1061
Abstract
Lentil is a nutritionally valuable legume crop, rich in protein, carbohydrates, amino acids, and vitamins, and is also used as green manure. Symbiotic nitrogen fixation (SNF) plays a crucial role in lentil growth and development, yet there is limited research on isolating and [...] Read more.
Lentil is a nutritionally valuable legume crop, rich in protein, carbohydrates, amino acids, and vitamins, and is also used as green manure. Symbiotic nitrogen fixation (SNF) plays a crucial role in lentil growth and development, yet there is limited research on isolating and identifying lentil rhizobia related to nodulation and nitrogen fixation. This study employed tissue block isolation, line purification, and molecular biology to isolate, purify, and identify rhizobial strains from lentils, analyzing their physiological characteristics, including bromothymol blue (BTB) acid and alkali production capacity, antibiotic resistance, salt tolerance, acid and alkali tolerance, growth temperature range, and drought tolerance simulated by PEG6000. Additionally, the nodulation capacity of these rhizobia was assessed through inoculation experiments using the identified candidate strains. The results showed that all isolated rhizobial strains were resistant to Congo red, and nifH gene amplification confirmed their potential as nitrogen fixers. Most strains were positive for H2O2 and BTB acid and base production, with a preference for alkaline environments. In terms of salt tolerance, the strains grew normally at 0.5–2% NaCl, and six strains were identified as salt stress resistant at 4% NaCl. The temperature range for growth was between 4 °C and 49 °C. Antibiotic assays revealed resistance to ampicillin and low concentrations of streptomycin, while kanamycin significantly inhibited growth. Two drought-tolerant strains, TG25 and TG55, were identified using PEG6000-simulated drought conditions. Inoculation with candidate rhizobial strains significantly increased lentil biomass, highlighting their potential for enhancing crop productivity. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

19 pages, 10425 KB  
Article
Uncovering Key Genes Associated with the Short-Winged Trait in Faba Bean (Vicia faba L.) Through Re-Sequencing and Genome-Wide Association Studies (GWASs)
by Haitian Yu, Chaoqin Hu, Xin Yang, Qiong Li, Yubao Wang, Zhengming Dai, Jie Cun, Aiqing Zheng, Yanhua Jiang, Qinfang Wang, Meiyuan Lv, Feng Yang and Yuhua He
Int. J. Mol. Sci. 2025, 26(6), 2733; https://doi.org/10.3390/ijms26062733 - 18 Mar 2025
Viewed by 1120
Abstract
Faba bean (Vicia faba L.) is a globally significant legume valued for its applications in food, vegetables, and green manure, yet its high outcrossing rate (30–80%) poses challenges for production development. A rare short-winged trait identified in Yunnan, China, offers promise for [...] Read more.
Faba bean (Vicia faba L.) is a globally significant legume valued for its applications in food, vegetables, and green manure, yet its high outcrossing rate (30–80%) poses challenges for production development. A rare short-winged trait identified in Yunnan, China, offers promise for developing low-outcrossing varieties, reducing outcrossing rates to below 5%. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses revealed that the epidermal cells of normal wing petals are conical, while those of short-wing petals are tubular. This study examined 200 F2 lines from crosses between ‘K0692’ (short-winged) and ‘Yundou 1183’, as well as ‘Yundoulvxin 1’ (short-winged) and ‘Yundou 1183’. The GWASs identified 10 SNP loci across chromosomes 2, 3, 4, and 5, with SNP_chr4::1013887633 explaining 22.20% of the wing trait variation. Key candidate genes were identified, such as VFH_III145120, which influences floral identity; and VFH_III149200, associated with epidermal differentiation. GO enrichment analysis demonstrated significant gene involvement in RNA localization, ribosome biogenesis, and preribosome metabolism, while KEGG analysis linked these genes to pathways in amino acid, nucleotide, and purine metabolism; ubiquitin-mediated proteolysis; and protein processing in the endoplasmic reticulum. These findings lay a foundation for breeding low-outcrossing faba bean varieties and enhancing sustainable faba bean cultivation. Full article
Show Figures

Figure 1

12 pages, 2479 KB  
Article
VsMATE1-Mediated Citrate Efflux Is Involved in Al Resistance in Common Vetch (Vicia sativa L.)
by Wenhui Yan, Jia Shi, Ling He, Zigang Hou, Zhenfei Guo and Haifeng Zhu
Plants 2025, 14(2), 290; https://doi.org/10.3390/plants14020290 - 20 Jan 2025
Viewed by 1125
Abstract
Planting aluminum-tolerant legume green manure is a cost-effective and sustainable method to increase soil fertility as well as decrease Al toxicity in acidic soils. By analyzing the relative root elongation of seven legume green manure species, common vetch (Vicia sativa L.) was [...] Read more.
Planting aluminum-tolerant legume green manure is a cost-effective and sustainable method to increase soil fertility as well as decrease Al toxicity in acidic soils. By analyzing the relative root elongation of seven legume green manure species, common vetch (Vicia sativa L.) was identified as an Al-resistant species. Furthermore, cultivars 418 (cv. Sujian No.3) and 426 (cv. Lanjian No.3) were identified as Al-resistant and -sensitive cultivars, respectively, among 12 common vetch germplasms. The root growth of 418 was less inhibited by Al toxicity in both the germination stage and seedling stage than that of 426. Under Al toxicity, 418 accumulated less Al in both roots and shoots. Citrate is more abundant in the roots of common vetch compared to oxalate or malate. The internal citrate contents showed no significant difference between 418 and 426 under either control or Al treatment. However, the citrate efflux increased in response to Al in 418 but not in 426 and was higher in 418 under Al stress than in 426. Consistently, VsMATE1 expression increased faster and to a greater extent in 418 than 426 in response to Al stress. These results indicated that a VsMATE1-mediated citrate efflux might play an important role in Al resistance in common vetch. It is suggested that VsMATE1 is a valuable candidate gene for aluminum resistance breeding. Full article
Show Figures

Figure 1

25 pages, 3661 KB  
Article
The Effect of Eco-Friendly/Sustainable Agricultural Practices (Legume Green Manure and Compost Soil Amendment) on a Tobacco Crop Grown Under Deficit Irrigation
by Maria Isabella Sifola, Linda Carrino, Eugenio Cozzolino, Mario Palladino, Mariarosaria Sicignano, Daniele Todisco and Luisa del Piano
Sustainability 2025, 17(2), 769; https://doi.org/10.3390/su17020769 - 19 Jan 2025
Cited by 2 | Viewed by 1947
Abstract
A field experiment was conducted in 2018 at Marciano della Chiana (Arezzo, AR, Central Italy) with the main aim of investigating the effect of soil amendment with organic fraction municipal solid waste (OFMSW) compost and legume green manuring (Vicia villosa Roth, cv. [...] Read more.
A field experiment was conducted in 2018 at Marciano della Chiana (Arezzo, AR, Central Italy) with the main aim of investigating the effect of soil amendment with organic fraction municipal solid waste (OFMSW) compost and legume green manuring (Vicia villosa Roth, cv. villana) on a tobacco crop (dark fire-cured Kentucky type, cv. Foiano) grown under both full (100% of ETc) and deficit (70% of crop evapotranspiration, ETc) irrigation. The treatments are hereafter reported as GM (vetch green manuring) and NGM (no vetch green manuring), FI (full irrigation) and DI (deficit irrigation), and C (compost soil amendment) and NC (no compost soil amendment). The following parameters were calculated: (i) yield of the cured product (CLY, Mg ha−1) at a standard moisture content of 19%; (ii) irrigation water use efficiency (IWUE, kg of cured product m−3 seasonal irrigation volume), nitrogen (N) agronomic efficiency (NAE, kg of cured product kg−1 mineral N by synthetic fertilizers). Dry biomass accumulated in the stem and leaves (Mg ha−1) was also measured at 25, 57, 74, and 92 days after transplanting (DAT). The N recovery from the different plant parts (kg ha−1) was determined at 57 and 74 DAT. The C/N ratio, NO3-N (kg ha−1), the soil organic matter (SOM, %), and the soil contents of P2O5 and K2O (mg kg−1) were also analytically determined at 43, 74, and 116 DAT. Water retention measurements were carried out on soil samples at 116 DAT at 0–0.3 and 0.3–0.6 soil depths. Overall, there was a negative effect of both compost amendment and green manuring on yield. Green manuring and compost soil amendment improved soil chemical characteristics (i.e., SOM and C/N), as well as the plant N recovery, the IWUE, and the NAE. They increased the water retention capacity of the soil when the tobacco crop was deficit-irrigated and appeared to be promising practices to support the deficit irrigation strategy, contributing to reaching good agronomic results, although under the conditions of water shortage, and showing synergistic action in those conditions. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

17 pages, 2016 KB  
Article
Different Species and Cultivars of Broad Beans, Lupins, and Clovers Demonstrated Varying Environmental Adaptability and Nitrogen Fixation Potential When Cultivated as Green Manures in Northeastern Portugal
by Peltier Aguiar, Margarida Arrobas, Ezar Alfredo Nharreluga and Manuel Ângelo Rodrigues
Sustainability 2024, 16(23), 10725; https://doi.org/10.3390/su162310725 - 6 Dec 2024
Cited by 5 | Viewed by 1712
Abstract
The success of growing legumes as green manure depends on their spatial and temporal integration within agroecosystems, which minimizes competition with cash crops, and on their nitrogen (N) fixation potential. This study evaluated seven legume species for biomass production, N fixation, and suitability [...] Read more.
The success of growing legumes as green manure depends on their spatial and temporal integration within agroecosystems, which minimizes competition with cash crops, and on their nitrogen (N) fixation potential. This study evaluated seven legume species for biomass production, N fixation, and suitability for use in cropping systems in northern Portugal. Oats (Avena sativa L.) were grown to estimate the N fixation using the difference method, as a non-legume reference crop is required for this purpose, and oats are widely grown in the region. The study was conducted over four cropping cycles (2021–2024) in two climate zones across four land plots. The results indicated that the biomass production and N fixation varied by the species/cultivar and cropping cycle, which was significantly influenced by spring precipitation. Broad beans (Vicia faba L.) failed to develop in one cycle on highly acidic soil (pH 4.9), showing negative N fixation values when calculated by the difference method. Conversely, the lupins maintained a relatively high level of N fixation across all the conditions, demonstrating strong environmental adaptability. Thus, the N fixation values across the four cycles ranged from −5.4 to 419.4 kg ha−1 for broad bean (cv. Favel), while yellow lupin (Lupinus luteus L.) exhibited average values between 204.0 and 274.0 kg ha−1. The percentage of N derived from the atmosphere (%Ndfa) ranged from −13.3 to 91.6, −39.4 to 85.8, 83.8 to 94.7, 74.9 to 94.3, 72.8 to 92.2, 23.1 to 75.8, and 11.7 to 21.7 for these species/cultivars. Due to their environmental adaptability, biomass production, and N fixation capacity, these legumes could be used as green manure in inter-rows of woody crops or in summer annual crops like tomatoes and maize, grown in winter as an alternative to fallow land. The lupins showed strong promise due to their environmental resilience. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

13 pages, 3259 KB  
Article
The Role of Red Clover and Manure Fertilization in the Formation of Crop Yield of Selected Cereals
by Irena Suwara, Katarzyna Pawlak-Zaręba, Dariusz Gozdowski and Renata Leszczyńska
Agriculture 2024, 14(11), 2064; https://doi.org/10.3390/agriculture14112064 - 16 Nov 2024
Cited by 2 | Viewed by 1461
Abstract
The use of legumes in rotation is beneficial and is of great importance in sustainable agricultural production in line with the assumptions of the European Green Deal. The aim of the presented research was to evaluate the cultivation of red clover as an [...] Read more.
The use of legumes in rotation is beneficial and is of great importance in sustainable agricultural production in line with the assumptions of the European Green Deal. The aim of the presented research was to evaluate the cultivation of red clover as an undersown crop for spring barley and as a forecrop for winter wheat on the yield and quality of spring barley and winter wheat. To achieve this goal, two long-term static experiments set up in 1955 were used, in which diversified mineral and organic fertilization were used in two rotations: rotation without red clover (sugar beet–spring barley–winter rapeseed–winter wheat) and rotation with red clover (sugar beet–spring barley with undersown red clover–red clover–winter wheat). The obtained results indicate that the Norfolk rotation with red clover, as well as varied fertilization and years of research, influence the yield of plants. The highest grain yields of spring barley (5.7 t ha−1) were ensured by mineral fertilization (NPK) and mineral fertilization in combination with manure (½NPK + ½FM). However, the highest yields of winter wheat grain (6.4 t ha−1) were recorded in the treatments with exclusive mineral fertilization (NPK), significantly lower yields in the treatments where mineral fertilizers were used in combination with manure (5.7 t ha−1) (½NPK + ½FM) and only manure (5.1 t ha−1) (FM). The lowest yields of both cereals were found on soil that had not been fertilized since 1955 (0). The grain yield of spring barley was not significantly differentiated by the sowing method and was similar for spring barley grown with and without undersown red clover. Including legumes in the rotation had a positive effect on the yield of winter wheat. Fertilization had the greatest impact on the protein content in cereal grains. The use of mineral fertilization (NPK) and mineral fertilization in combination with manure (½NPK + ½FM) ensured the highest protein content in the grain of spring barley and winter wheat. Mineral fertilization (NPK) increased the protein content in spring barley grain by 2.9 percentage points compared to the unfertilized treatment (0) and by 2.1 percentage points compared to exclusive manure fertilization (FM), and in winter wheat grain by 2.3 and 1.4 percentage points, respectively. The cultivation of red clover in the rotation also had a positive effect on the protein content in spring barley and winter wheat grains. Full article
Show Figures

Figure 1

13 pages, 1332 KB  
Article
Green Manure Mediated Improvement in Saline Soils in China: A Meta-Analysis
by Yinjuan Li, Weiliang Zhao, Haojie Zhu and Xuxia Jia
Agronomy 2024, 14(9), 2068; https://doi.org/10.3390/agronomy14092068 - 10 Sep 2024
Cited by 9 | Viewed by 2344
Abstract
The application of green manure is a traditional and valuable practice to improve the fertility of saline soil. However, the impact of environmental factors, green manure types and returning methods on the changes in soil fertility and soil salinity remain poorly quantified at [...] Read more.
The application of green manure is a traditional and valuable practice to improve the fertility of saline soil. However, the impact of environmental factors, green manure types and returning methods on the changes in soil fertility and soil salinity remain poorly quantified at a large scale. In the present study, we conducted a meta-analysis to generate a comprehensive evaluation of the effects of green manure on soil organic carbon (SOC), soil salt content, and soil nutrients compared to bare soil in China. The results showed that compared with bare soil, green manure planting could significantly increase the SOC content of saline soil, reduce salt content, and improve the soil total nitrogen (N), soil available phosphorus (P) and soil available potassium (K) contents. On average, green manure significantly enhanced SOC by 34.82% (percentage change), soil total N by 32.23%, soil available P by 34.34% and soil available K by 17.43%, while reducing soil salt content by 47.75%, compared to bare soil. In areas with a mean annual temperature (MAT) of <10 °C or a mean annual precipitation (MAP) of 200–400 mm, green manure had the largest increase in SOC, soil total N, soil available P, and soil available K. The smallest increases were observed in areas with an MAT above 15 °C and MAP greater than 800 mm. Green manure types influenced the improvement effect of green manure on saline soil. Green manure mixtures were more conducive to increases in SOC, while the increases in soil total N resulting from mixed green manure were lower in comparison to those from both legumes and non-legumes. In addition, the initial salt content, experimental years, and returning method influenced the improvement effect of green manure on saline soil. Therefore, this meta-analysis identified green manure as a promising practice for significantly improved saline soil in China. Full article
Show Figures

Figure 1

12 pages, 484 KB  
Article
Role of Wilting Time on the Chemical Composition, Biological Profile, and Fermentative Quality of Cereal and Legume Intercropping Silage
by Cristiana Maduro Dias, Hélder Nunes, Mariana Aguiar, Arnaldo Pereira, João Madruga and Alfredo Borba
Fermentation 2024, 10(9), 448; https://doi.org/10.3390/fermentation10090448 - 28 Aug 2024
Viewed by 1848
Abstract
Agricultural production in the Azores primarily focuses on the livestock sector, notably, dairy production, where cows graze year-round in a rotational system. To maintain pasture productivity, farmers often rely on synthetic nitrogen fertilizers, which have adverse environmental impacts like ammonia emissions and nitrate [...] Read more.
Agricultural production in the Azores primarily focuses on the livestock sector, notably, dairy production, where cows graze year-round in a rotational system. To maintain pasture productivity, farmers often rely on synthetic nitrogen fertilizers, which have adverse environmental impacts like ammonia emissions and nitrate leaching. Alternatively, nitrogen-fixing crops like legumes are explored as green manures to enhance soil quality and reduce dependence on chemical fertilizers. The traditional practice of using mixed forages of legumes and grasses, known as “outonos” or intercrops, has been crucial but is declining over time. These mixtures include plants such as lupins, Vicia faba, oats, and vetch, noted for their adaptability and nitrogen-fixing ability. Due to the high perishability of these crops, effective conservation strategies like ensiling are essential to preserve forage nutritional quality through controlled fermentation. This study evaluates the productivity and quality of intercrop forages in the Azores, focusing on fresh samples and silage prepared with wilting times of 0, 24, 48, and 96 h, followed by comprehensive chemical analyses. Results showed significant changes in fiber components (neutral detergent fiber, acid detergent fiber, and acid detergent lignin) with increased wilting time, leading to reduced digestibility. However, wilting improved dry matter content. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

Back to TopTop