Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,468)

Search Parameters:
Keywords = green extraction process

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6617 KiB  
Article
Natural Plant Oils as Anti—Algae Biocides for Sustainable Application in Cultural Heritage Protection
by Michał Komar, Nathnael Derese, Kamil Szymczak, Paulina Nowicka-Krawczyk and Beata Gutarowska
Sustainability 2025, 17(15), 6996; https://doi.org/10.3390/su17156996 (registering DOI) - 1 Aug 2025
Abstract
The prevention of biofilm formation and algal biodeterioration on building materials, particularly on cultural heritage sites, is a growing concern. Due to regulatory restrictions on conventional algicidal biocides in Europe, natural alternatives such as essential oils are gaining interest for their potential use [...] Read more.
The prevention of biofilm formation and algal biodeterioration on building materials, particularly on cultural heritage sites, is a growing concern. Due to regulatory restrictions on conventional algicidal biocides in Europe, natural alternatives such as essential oils are gaining interest for their potential use in heritage conservation. This study evaluates the anti-algal activity of Salvia officinalis and Equisetum arvense (essential oils, hydrolates, and extracts) against a mixed culture of five green algae species (Bracteacoccus minor, Stichococcus bacillaris, Klebsormidium nitens, Chloroidium saccharophilum, and Diplosphaera chodatii). The plant materials were processed using hydrodistillation and solvent extraction, followed by chemical characterization through gas chromatography–mass spectrometry (GC-MS). Biological efficacy was assessed by measuring algal growth inhibition, changes in biomass colour, chlorophyll a concentration, and fluorescence. S. officinalis yielded higher extract quantities (extraction yield: 23%) than E. arvense and contained bioactive compounds such as thujone, camphor, and cineole, which correlated with its strong anti-algal effects. The essential oil of S. officinalis demonstrated the highest efficacy, significantly inhibiting biofilm formation (zones of inhibition: 15–94 mm) and photosynthetic activity at 0.5% concentration (reduction in chlorophyll a concentration 90–100%), without causing visible discolouration of treated surfaces (∆E < 2). These findings highlight the potential of S. officinalis essential oil as a natural, effective, and material-safe algicidal biocide for the sustainable protection of cultural heritage sites. Full article
Show Figures

Figure 1

27 pages, 10150 KiB  
Article
Numerical Simulation and Experimental Study of the Thermal Wick-Debinding Used in Low-Pressure Powder Injection Molding
by Mohamed Amine Turki, Dorian Delbergue, Gabriel Marcil-St-Onge and Vincent Demers
Powders 2025, 4(3), 22; https://doi.org/10.3390/powders4030022 - 1 Aug 2025
Abstract
Thermal wick-debinding, commonly used in low-pressure injection molding, remains challenging due to complex interactions between binder transport, capillary forces, and thermal effects. This study presents a numerical simulation of binder removal kinetics by coupling Darcy’s law with the Phase Transport in Porous Media [...] Read more.
Thermal wick-debinding, commonly used in low-pressure injection molding, remains challenging due to complex interactions between binder transport, capillary forces, and thermal effects. This study presents a numerical simulation of binder removal kinetics by coupling Darcy’s law with the Phase Transport in Porous Media interface in COMSOL Multiphysics. The model was validated and subsequently used to study the influence of key debinding parameters. Contrary to the Level Set method, which predicts isolated binder clusters, the Multiphase Flow in Porous Media method proposed in this work more accurately reflects the physical behavior of the process, capturing a continuous binder extraction throughout the green part and a uniform binder distribution within the wicking medium. The model successfully predicted the experimentally observed decrease in binder saturation with increasing debinding temperature or time, with deviation limited 3–10 vol. % (attributed to a mandatory brushing operation, which may underestimate the residual binder mass). The model was then used to optimize the debinding process: for a temperature of 100 °C and an inter-part gap distance of 5 mm, the debinding time was minimized to 7 h. These findings highlight the model’s practical utility for process design, offering a valuable tool for determining optimal debinding parameters and improving productivity. Full article
Show Figures

Graphical abstract

34 pages, 1543 KiB  
Article
Smart Money, Greener Future: AI-Enhanced English Financial Text Processing for ESG Investment Decisions
by Junying Fan, Daojuan Wang and Yuhua Zheng
Sustainability 2025, 17(15), 6971; https://doi.org/10.3390/su17156971 (registering DOI) - 31 Jul 2025
Abstract
Emerging markets face growing pressures to integrate sustainable English business practices while maintaining economic growth, particularly in addressing environmental challenges and achieving carbon neutrality goals. English Financial information extraction becomes crucial for supporting green finance initiatives, Environmental, Social, and Governance (ESG) compliance, and [...] Read more.
Emerging markets face growing pressures to integrate sustainable English business practices while maintaining economic growth, particularly in addressing environmental challenges and achieving carbon neutrality goals. English Financial information extraction becomes crucial for supporting green finance initiatives, Environmental, Social, and Governance (ESG) compliance, and sustainable investment decisions in these markets. This paper presents FinATG, an AI-driven autoregressive framework for extracting sustainability-related English financial information from English texts, specifically designed to support emerging markets in their transition toward sustainable development. The framework addresses the complex challenges of processing ESG reports, green bond disclosures, carbon footprint assessments, and sustainable investment documentation prevalent in emerging economies. FinATG introduces a domain-adaptive span representation method fine-tuned on sustainability-focused English financial corpora, implements constrained decoding mechanisms based on green finance regulations, and integrates FinBERT with autoregressive generation for end-to-end extraction of environmental and governance information. While achieving competitive performance on standard benchmarks, FinATG’s primary contribution lies in its architecture, which prioritizes correctness and compliance for the high-stakes financial domain. Experimental validation demonstrates FinATG’s effectiveness with entity F1 scores of 88.5 and REL F1 scores of 80.2 on standard English datasets, while achieving superior performance (85.7–86.0 entity F1, 73.1–74.0 REL+ F1) on sustainability-focused financial datasets. The framework particularly excels in extracting carbon emission data, green investment relationships, and ESG compliance indicators, achieving average AUC and RGR scores of 0.93 and 0.89 respectively. By automating the extraction of sustainability metrics from complex English financial documents, FinATG supports emerging markets in meeting international ESG standards, facilitating green finance flows, and enhancing transparency in sustainable business practices, ultimately contributing to their sustainable development goals and climate action commitments. Full article
16 pages, 4530 KiB  
Article
A Novel Selective Oxygen Pressure Leaching for Zinc Extraction from Hemimorphite in Acid-Free Solutions
by Tong Wang, Yubo Zeng, Shuang Zhang, Chen Chen, Yang Li, Wenhui Ma and Hongwei Ni
Metals 2025, 15(8), 858; https://doi.org/10.3390/met15080858 (registering DOI) - 31 Jul 2025
Abstract
A novel acid-free oxygen pressure leaching for the extraction of zinc from hemimorphite was proposed in this study. Green vitriol (FeSO4·7H2O), as one of the important industrial by-products, was used as the leaching reagent to separate zinc from silicon [...] Read more.
A novel acid-free oxygen pressure leaching for the extraction of zinc from hemimorphite was proposed in this study. Green vitriol (FeSO4·7H2O), as one of the important industrial by-products, was used as the leaching reagent to separate zinc from silicon and iron. The effect of leaching conditions, including Fe/Zn molar ratio, leaching temperature, pressure, and reaction time, on the leaching efficiency of zinc, Fe, and Si was investigated systematically. The results showed that the molar ratio of Fe/Zn and leaching temperature play a pivotal role in determining the leaching efficiency rate of Zn. Under the optimized leaching conditions (Fe/Zn molar ratio = 6:1, 150 °C, 1.8 × 106 Pa, and leaching time of 2 h), the leaching efficiency of Zn reached 98.80% and the leaching efficiencies of Fe and Si were 0.76% and 16.80%, respectively. In addition, the shrinking core model was established to represent the relationship between the rate control step and the leaching conditions. The leaching process was controlled by chemical reaction and diffusion, and the activation energy of the leaching process is 97.14 kJ/mol. Full article
(This article belongs to the Special Issue Separation, Reduction, and Metal Recovery in Slag Metallurgy)
Show Figures

Figure 1

23 pages, 4117 KiB  
Review
Analytical Strategies for Tocopherols in Vegetable Oils: Advances in Extraction and Detection
by Yingfei Liu, Mengyuan Lv, Yuyang Wang, Jinchao Wei and Di Chen
Pharmaceuticals 2025, 18(8), 1137; https://doi.org/10.3390/ph18081137 - 30 Jul 2025
Abstract
Tocopherols, major lipid-soluble components of vitamin E, are essential natural products with significant nutritional and pharmacological value. Their structural diversity and uneven distribution across vegetable oils require accurate analytical strategies for compositional profiling, quality control, and authenticity verification, amid concerns over food fraud [...] Read more.
Tocopherols, major lipid-soluble components of vitamin E, are essential natural products with significant nutritional and pharmacological value. Their structural diversity and uneven distribution across vegetable oils require accurate analytical strategies for compositional profiling, quality control, and authenticity verification, amid concerns over food fraud and regulatory demands. Analytical challenges, such as matrix effects in complex oils and the cost trade-offs of green extraction methods, complicate these processes. This review examines recent advances in tocopherol analysis, focusing on extraction and detection techniques. Green methods like supercritical fluid extraction and deep eutectic solvents offer selectivity and sustainability, though they are costlier than traditional approaches. On the analytical side, hyphenated techniques such as supercritical fluid chromatography-mass spectrometry (SFC-MS) achieve detection limits as low as 0.05 ng/mL, improving sensitivity in complex matrices. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) provides robust analysis, while spectroscopic and electrochemical sensors offer rapid, cost-effective alternatives for high-throughput screening. The integration of chemometric tools and miniaturized systems supports scalable workflows. Looking ahead, the incorporation of Artificial Intelligence (AI) in oil authentication has the potential to enhance the accuracy and efficiency of future analyses. These innovations could improve our understanding of tocopherol compositions in vegetable oils, supporting more reliable assessments of nutritional value and product authenticity. Full article
Show Figures

Graphical abstract

40 pages, 1152 KiB  
Article
A Scale Development Study on Green Marketing Mix Practice Culture in Small and Medium Enterprises
by Candan Özgün-Ayar and Murat Selim Selvi
Sustainability 2025, 17(15), 6936; https://doi.org/10.3390/su17156936 - 30 Jul 2025
Abstract
Research concerning green marketing has predominantly focused on consumer behavior. However, aspects such as the extent to which Small and Medium Enterprises (SMEs) embrace green marketing values, their ability to implement the green marketing mix, and the integration of green marketing into their [...] Read more.
Research concerning green marketing has predominantly focused on consumer behavior. However, aspects such as the extent to which Small and Medium Enterprises (SMEs) embrace green marketing values, their ability to implement the green marketing mix, and the integration of green marketing into their business culture are critically important. This research aims to provide the 4P (product, price, place, and promotion)-focused green marketing literature with a measurement tool to assess how SMEs implement green marketing practices. The study employed a descriptive design and possesses an exploratory nature. Scale development involved two stages: First, analyses were conducted on a pre-test sample of 159 individuals, revealing the initial scale structure. Second, these analyses were repeated on a larger group of 387 participants. The scale was finalized by confirming the consistency of results across both analyses. Statistical Package for the Social Sciences (SPSS) version 24 and Analysis of Moment Structures (AMOS) version 24 were utilized for descriptive statistics and the scale development process. The final validated 12-item scale demonstrates a robust three-factor structure (“Environmental Promotion”, ”Green Packaging”, and ”Green Distribution”), explaining 62.6% of the total variance. The scale exhibits excellent psychometric properties, including high internal consistency (Cronbach’s α = 0.912), strong model fit from Confirmatory Factor Analysis (CFA), and both convergent and discriminant validity, as indicated by an Average Variance Extracted (AVE) value of 0.605. The scale is deemed applicable to larger populations. Full article
(This article belongs to the Special Issue Sustainable Marketing and Consumer Management)
25 pages, 1438 KiB  
Article
Optimized Ultrasound-Assisted Extraction for Enhanced Recovery of Valuable Phenolic Compounds from Olive By-Products
by Xavier Expósito-Almellón, Álvaro Munguía-Ubierna, Carmen Duque-Soto, Isabel Borrás-Linares, Rosa Quirantes-Piné and Jesús Lozano-Sánchez
Antioxidants 2025, 14(8), 938; https://doi.org/10.3390/antiox14080938 - 30 Jul 2025
Abstract
The olive oil industry generates by-products like olive leaves and pomace, which are rich in bioactive compounds, especially polyphenols. This study applied a circular economy approach to valorize these residues using green ultrasound-assisted extraction (UAE) with GRAS solvents. Key parameters (solvent composition, ultrasound [...] Read more.
The olive oil industry generates by-products like olive leaves and pomace, which are rich in bioactive compounds, especially polyphenols. This study applied a circular economy approach to valorize these residues using green ultrasound-assisted extraction (UAE) with GRAS solvents. Key parameters (solvent composition, ultrasound amplitude, and specific energy) were optimized via Response Surface Methodology (RSM) to enhance polyphenol recovery and yield. Ethanol concentration proved to be the most influential factor. Optimal conditions for olive pomace were 100% ethanol, 46 μm amplitude, and 25 J∙mL−1 specific energy, while olive leaves required 72% ethanol with similar ultrasound settings. Under these conditions, extracts were prepared and analyzed using HPLC-ESI-QTOF-MS and DPPH assays. The optimized UAE process achieved yields of 15–20% in less than 5 min and under mild conditions. Optimal extracts showed high oleuropein content (6 mg/g in leaves, 5 mg/g in pomace), lower hydroxytyrosol levels, and minimal oxidized derivatives, suggesting reduced degradation compared to conventional methods. These findings demonstrate UAE’s effectiveness in recovering valuable phenolics from olive by-products, supporting sustainable and efficient resource use. Full article
(This article belongs to the Special Issue Bioactive Antioxidants from Agri-Food Wastes)
Show Figures

Figure 1

25 pages, 14674 KiB  
Article
Eco-Friendly Silver Nanoparticles Synthesis Method Using Medicinal Plant Fungal Endophytes—Biological Activities and Molecular Docking Analyses
by Harish Chandra, Sagar Vishwakarma, Nilesh Makwana, Arun S. Kharat, Vijeta Chaudhry, Sumit Chand, Rajendra Prasad, Soban Prakash, Annapurna Katara, Archana Yadav, Manisha Nigam and Abhay Prakash Mishra
Biology 2025, 14(8), 950; https://doi.org/10.3390/biology14080950 - 28 Jul 2025
Viewed by 342
Abstract
The integration of nanotechnology and green synthesis strategies provides innovative solutions in biomedicine. This study focuses on the biofabrication of silver nanoparticles (AgNPs) using Corynespora smithii, an endophytic fungus isolated from Bergenia ciliata. The eco-friendly synthesis process employed fungal extracts as [...] Read more.
The integration of nanotechnology and green synthesis strategies provides innovative solutions in biomedicine. This study focuses on the biofabrication of silver nanoparticles (AgNPs) using Corynespora smithii, an endophytic fungus isolated from Bergenia ciliata. The eco-friendly synthesis process employed fungal extracts as reducing and stabilizing agents thereby minimizing the need for hazardous chemicals. The AgNPs demonstrated strong potent biological activities, showcasing significant antioxidant, antibacterial, and anticancer properties. The antibacterial efficacy was demonstrated against various Gram-positive and Gram-negative bacteria, while cytotoxicity on the A549 lung cancer cell line revealed an IC50 value of 10.46 µg/mL. A molecular docking analysis revealed interactions between the major bioactive compound, dimethylsulfoxonium formylmethylide, and the pathogenic proteins, Staphylococcus aureus and Salmonella typhi, displaying moderate binding affinities. Furthermore, the ADME analysis of dimethylsulfoxonium formylmethylide indicated favourable pharmacokinetic properties, including high gastrointestinal absorption, minimal lipophilicity, and low potential for drug–drug interactions, making it a promising candidate for oral drug formulations. These findings further support the compound’s suitability for biomedical applications. This research emphasizes the potential of C. smithii as a sustainable source for synthesizing bioactive nanoparticles, paving the way for their application in developing novel therapeutic agents. This study highlights the significance of harnessing endophytic fungi from medicinal plants for sustainable nanotechnology advancements. Full article
Show Figures

Graphical abstract

84 pages, 3742 KiB  
Review
A Comprehensive Review on the Valorization of Bioactives from Marine Animal By-Products for Health-Promoting, Biofunctional Cosmetics
by Sofia Neonilli A. Papadopoulou, Theodora Adamantidi, Dimitrios Kranas, Paschalis Cholidis, Chryssa Anastasiadou and Alexandros Tsoupras
Mar. Drugs 2025, 23(8), 299; https://doi.org/10.3390/md23080299 - 26 Jul 2025
Viewed by 223
Abstract
In recent decades, there has been a marked surge in the development of marine-by-product-derived ingredients for cosmetic applications, driven by the increasing demand for natural, sustainable, and high-performance formulations. Marine animal by-products, particularly those from fish, crustaceans, and mollusks, represent an abundant yet [...] Read more.
In recent decades, there has been a marked surge in the development of marine-by-product-derived ingredients for cosmetic applications, driven by the increasing demand for natural, sustainable, and high-performance formulations. Marine animal by-products, particularly those from fish, crustaceans, and mollusks, represent an abundant yet underutilized source of bioactive compounds with notable potential in cosmeceutical innovation. Generated as waste from the fishery and seafood-processing industries, these materials are rich in valuable bioactives, such as chitosan, collagen, peptides, amino acids, fatty acids, polar lipids, lipid-soluble vitamins, carotenoids, pigments, phenolics, and mineral-based substrates like hydroxyapatite. Marine by-product bioactives can be isolated via several extraction methods, and most importantly, green ones. These compounds exhibit a broad spectrum of skin-health-promoting effects, including antioxidant, anti-aging, anti-inflammatory, antitumor, anti-wrinkle, anti-hyperpigmentation, and wound-healing properties. Moreover, applications extend beyond skincare to include hair, nail, and oral care. The present review provides a comprehensive analysis of bioactives obtained from marine mollusks, crustaceans, and fish by-products, emphasizing modern extraction technologies with a focus on green and sustainable approaches. It further explores their mechanisms of action and documented efficacy in cosmetic formulations. Finally, the review outlines current limitations and offers future perspectives for the industrial valorization of marine by-products in functional and environmentally-conscious cosmetic development. Full article
18 pages, 6300 KiB  
Article
Clove as a Versatile Resource: CuO Nanoparticles and Their Catalytic Role in Eugenol-Based Triazole Synthesis
by Sarra Zouaoui, Brahim Djemoui, Miloud Mohamed Mazari, Margherita Miele, Vittorio Pace, Haroun Houicha, Sérine Madji, Choukry Kamel Bendeddouche, Mehdi Adjdir and Seif El Islam Lebouachera
Processes 2025, 13(8), 2378; https://doi.org/10.3390/pr13082378 - 26 Jul 2025
Viewed by 314
Abstract
As eco-friendly processes become central to modern organic synthesis, plant-based materials are emerging as attractive alternatives for both nanoparticle fabrication and catalysis. In this study, we explore the use of clove extract, a natural and renewable resource, for the green synthesis of copper [...] Read more.
As eco-friendly processes become central to modern organic synthesis, plant-based materials are emerging as attractive alternatives for both nanoparticle fabrication and catalysis. In this study, we explore the use of clove extract, a natural and renewable resource, for the green synthesis of copper oxide (CuO) nanoparticles and their subsequent application in organic transformations. Clove extract was employed to reduce copper chloride via a simple co-precipitation method under mild conditions, yielding CuO nanoparticles characterized by XRD, FTIR, and SEM-EDX techniques. These nanoparticles were then used as catalysts in the copper-catalyzed azide–alkyne cycloaddition (CuAAC) to afford eugenol-based 1,2,3-triazoles in excellent yields. This dual use of clove extract exemplifies a sustainable approach that merges natural product valorization with efficient catalysis for triazole synthesis. Full article
Show Figures

Figure 1

28 pages, 1775 KiB  
Review
Forensic Narcotics Drug Analysis: State-of-the-Art Developments and Future Trends
by Petar Ristivojević, Božidar Otašević, Petar Todorović and Nataša Radosavljević-Stevanović
Processes 2025, 13(8), 2371; https://doi.org/10.3390/pr13082371 - 25 Jul 2025
Viewed by 370
Abstract
Narcotics trafficking is a fundamental part of organized crime, posing significant and evolving challenges for forensic investigations. Addressing these challenges requires rapid, precise, and scientifically validated analytical methods for reliable identification of illicit substances. Over the past five years, forensic drug testing has [...] Read more.
Narcotics trafficking is a fundamental part of organized crime, posing significant and evolving challenges for forensic investigations. Addressing these challenges requires rapid, precise, and scientifically validated analytical methods for reliable identification of illicit substances. Over the past five years, forensic drug testing has advanced considerably, improving detection of traditional drugs—such as tetrahydrocannabinol, cocaine, heroin, amphetamine-type stimulants, and lysergic acid diethylamide—as well as emerging new psychoactive substances (NPS), including synthetic cannabinoids (e.g., 5F-MDMB-PICA), cathinones (e.g., α-PVP), potent opioids (e.g., carfentanil), designer psychedelics (e.g., 25I-NBOMe), benzodiazepines (e.g., flualprazolam), and dissociatives (e.g., 3-HO-PCP). Current technologies include colorimetric assays, ambient ionization mass spectrometry, and chromatographic methods coupled with various detectors, all enhancing accuracy and precision. Vibrational spectroscopy techniques, like Raman and Fourier transform infrared spectroscopy, have become essential for non-destructive identification. Additionally, new sensors with disposable electrodes and miniaturized transducers allow ultrasensitive on-site detection of drugs and metabolites. Advanced chemometric algorithms extract maximum information from complex data, enabling faster and more reliable identifications. An important emerging trend is the adoption of green analytical methods—including direct analysis, solvent-free extraction, miniaturized instruments, and eco-friendly chromatographic processes—that reduce environmental impact without sacrificing performance. This review provides a comprehensive overview of innovations over the last five years in forensic drug analysis based on the ScienceDirect database and highlights technological trends shaping the future of forensic toxicology. Full article
(This article belongs to the Special Issue Feature Review Papers in Section “Pharmaceutical Processes”)
Show Figures

Figure 1

14 pages, 4700 KiB  
Article
Pilot-Scale Phycocyanin Extraction by the Green Two-Step Ultrasound-Based UltraBlu Process
by Rosaria Lauceri, Melissa Pignataro, Antonio Giorgi, Antonio Idà and Lyudmila Kamburska
Separations 2025, 12(8), 194; https://doi.org/10.3390/separations12080194 - 25 Jul 2025
Viewed by 110
Abstract
Phycocyanin is a natural, non-toxic, blue pigment-protein with many commercial applications. Its exploitation in various biotechnological sectors strongly depends on its purity grade (P). Phycocyanin is largely used in food industry where a low purity grade is required, while its widespread use in [...] Read more.
Phycocyanin is a natural, non-toxic, blue pigment-protein with many commercial applications. Its exploitation in various biotechnological sectors strongly depends on its purity grade (P). Phycocyanin is largely used in food industry where a low purity grade is required, while its widespread use in sectors requiring a higher purity is hampered by the cost of large-scale industrial production. Industry, in fact, needs simple, easily scalable and cost-effective procedures to ensure sustainable production of high-quality pigment. In this work we applied the innovative two-step ultrasound-based process UltraBlu to the pilot-scale production of phycocyanin. A total of 50 L of biomass suspension of commercial Spirulina were processed in batch mode. The pigment extract was obtained in one day, including the biomass harvesting. Food/cosmetic grade (P = 1.41–1.76) and a good yield (Y = 59.2–76.1%) were achieved. The initial results obtained suggest that UltraBlu can be an effective scalable process suitable to produce phycocyanin also on an industrial scale. Full article
(This article belongs to the Special Issue Application of Sustainable Separation Techniques in Food Processing)
Show Figures

Graphical abstract

23 pages, 839 KiB  
Review
Catechins and Human Health: Breakthroughs from Clinical Trials
by Elena Ferrari and Valeria Naponelli
Molecules 2025, 30(15), 3128; https://doi.org/10.3390/molecules30153128 - 25 Jul 2025
Viewed by 135
Abstract
Green tea, derived from the unoxidized leaves of Camellia sinensis (L.) Kuntze, is one of the least processed types of tea and is rich in antioxidants and polyphenols. Among these, catechins—particularly epigallocatechin gallate (EGCG)—play a key role in regulating cell signaling pathways associated [...] Read more.
Green tea, derived from the unoxidized leaves of Camellia sinensis (L.) Kuntze, is one of the least processed types of tea and is rich in antioxidants and polyphenols. Among these, catechins—particularly epigallocatechin gallate (EGCG)—play a key role in regulating cell signaling pathways associated with various chronic conditions, including cardiovascular diseases, neurodegenerative disorders, metabolic diseases, and cancer. This review presents a comprehensive analysis of recent clinical studies focused on the therapeutic benefits and potential risks of interventions involving green tea extracts or EGCG. A systematic literature survey identified 17 relevant studies, classified into five key areas related to catechin interventions: toxicity and detoxification, drug pharmacokinetics, cognitive functions, anti-inflammatory and antioxidant properties, and obesity and metabolism. Findings from these clinical studies suggest that the health benefits of green tea catechins outweigh the potential risks. The review highlights the importance of subject genotyping for enzymes involved in catechin metabolism to aid in interpreting liver injury biomarkers, the necessity of assessing drug–catechin interactions in clinical contexts, and the promising effects of topical EGCG in reducing inflammation. This analysis underscores the need for further research to refine therapeutic applications while ensuring the safe and effective use of green tea catechins. Full article
(This article belongs to the Special Issue Phytochemistry, Human Health and Molecular Mechanisms)
Show Figures

Figure 1

17 pages, 661 KiB  
Article
An Ultrasonication-Assisted Green Process for Simultaneous Production of a Bioactive Compound-Rich Extract and a Multifunctional Fibrous Ingredient from Spent Coffee Grounds
by Jaquellyne B. M. D. Silva, Mayara T. P. Paiva, Henrique F. Fuzinato, Nathalia Silvestre, Marta T. Benassi and Suzana Mali
Molecules 2025, 30(15), 3117; https://doi.org/10.3390/molecules30153117 - 25 Jul 2025
Viewed by 259
Abstract
Spent coffee grounds (SCGs) are lignocellulosic residues generated from producing espresso or soluble coffee and have no commercial value. This study aimed to develop a new single-step process for extracting bioactive compounds from SCGs based on ultrasonication in an aqueous medium and simultaneously [...] Read more.
Spent coffee grounds (SCGs) are lignocellulosic residues generated from producing espresso or soluble coffee and have no commercial value. This study aimed to develop a new single-step process for extracting bioactive compounds from SCGs based on ultrasonication in an aqueous medium and simultaneously recovering the residual solid fraction, resulting in the integral utilization of the residue. This process resulted in a liquid aqueous extract (LAE) rich in bioactive compounds (caffeine: 400.1 mg/100 g; polyphenols: 800.4 mg GAE/100 g; melanoidins: 2100.2 mg/100 g) and, simultaneously, a solid multifunctional ingredient from modified spent coffee grounds (MSCGs) rich in bioactive compounds and dietary fibers (73.0 g/100 g). The liquid extract can be used as a natural ingredient for drinks or to isolate caffeine, while the solid matrix can be used to produce functional foods. This technique proved to be a promising eco-friendly alternative for the simultaneous production of two different materials from SCGs, maximizing resource efficiency, with some advantages, including short time, simplicity, and cost-effectiveness; using water as a solvent; and requiring no further purification processing. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Graphical abstract

23 pages, 36719 KiB  
Article
The Impact of Hybrid Bionanomaterials Based on Gold Nanoparticles on Liver Injury in an Experimental Model of Thioacetamide-Induced Hepatopathy
by Mara Filip, Simona Valeria Clichici, Mara Muntean, Luminița David, Bianca Moldovan, Vlad Alexandru Toma, Cezar Login and Şoimița Mihaela Suciu
Biomolecules 2025, 15(8), 1068; https://doi.org/10.3390/biom15081068 - 24 Jul 2025
Viewed by 187
Abstract
The present study aimed to evaluate the therapeutic benefits of a hybrid material based on gold nanoparticles and natural extracts on an experimental model of thioacetamide-induced (TAA) liver injury in rats. The nanomaterials were synthesized using a green method, with Cornus sanguinea L. [...] Read more.
The present study aimed to evaluate the therapeutic benefits of a hybrid material based on gold nanoparticles and natural extracts on an experimental model of thioacetamide-induced (TAA) liver injury in rats. The nanomaterials were synthesized using a green method, with Cornus sanguinea L. extract as a reducing and capping agent (NPCS), and were then mixed with Vaccinium myrtillus L. (VL) extract in order to achieve a final mixture with enhanced properties (NPCS-VL). NPCSs were characterized using UV–vis spectrophotometry and transmission electron microscopy (TEM), which demonstrated the formation of spherical, stable gold nanoparticles with an average diameter of 20 nm. NPCS-VL’s hepatoprotective effects were evaluated through an analysis of oxidative stress, inflammation, hepatic cytolysis, histology assays, and TEM in comparison to silymarin on an animal model of thioacetamide (TAA)-induced toxic hepatitis. TAA administration determined hepatotoxicity, as it triggered redox imbalance, increased proinflammatory cytokine levels and alanine aminotransferase (ALAT) activity, and induced morphological and ultrastructural changes characteristic of liver fibrosis. In rats treated with NPCS-VL, all these pathological processes were attenuated, suggesting a potential antifibrotic effect of this hybrid bionanomaterial. Full article
Show Figures

Figure 1

Back to TopTop