Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,796)

Search Parameters:
Keywords = green development space

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 19905 KiB  
Article
Assessing Urban Park Accessibility via Population Projections: Planning for Green Equity in Shanghai
by Leiting Cen and Yang Xiao
Land 2025, 14(8), 1580; https://doi.org/10.3390/land14081580 (registering DOI) - 2 Aug 2025
Abstract
Rapid urbanization and demographic shifts present significant challenges to spatial justice in green space provision. Traditional static assessments have become increasingly inadequate for guiding park planning, which now requires a dynamic, future-oriented analytical approach. To address this gap, this study incorporates population dynamics [...] Read more.
Rapid urbanization and demographic shifts present significant challenges to spatial justice in green space provision. Traditional static assessments have become increasingly inadequate for guiding park planning, which now requires a dynamic, future-oriented analytical approach. To address this gap, this study incorporates population dynamics into urban park planning by developing a dynamic evaluation framework for park accessibility. Building on the Gaussian-based two-step floating catchment area (Ga2SFCA) method, we propose the human-population-projection-Ga2SFCA (HPP-Ga2SFCA) model, which integrates population forecasts to assess park service efficiency under future demographic pressures. Using neighborhood-committee-level census data from 2000 to 2020 and detailed park spatial data, we identified five types of population change and forecast demographic distributions for both short- and long-term scenarios. Our findings indicate population decline in the urban core and outer suburbs, with growth concentrated in the transitional inner-suburban zones. Long-term projections suggest that 66% of communities will experience population growth, whereas short-term forecasts indicate a decline in 52%. Static models overestimate park accessibility by approximately 40%. In contrast, our dynamic model reveals that accessibility is overestimated in 71% and underestimated in 7% of the city, highlighting a potential mismatch between future population demand and current park supply. This study offers a forward-looking planning framework that enhances the responsiveness of park systems to demographic change and supports the development of more equitable, adaptive green space strategies. Full article
(This article belongs to the Special Issue Spatial Justice in Urban Planning (Second Edition))
Show Figures

Figure 1

42 pages, 28030 KiB  
Article
Can AI and Urban Design Optimization Mitigate Cardiovascular Risks Amid Rapid Urbanization? Unveiling the Impact of Environmental Stressors on Health Resilience
by Mehdi Makvandi, Zeinab Khodabakhshi, Yige Liu, Wenjing Li and Philip F. Yuan
Sustainability 2025, 17(15), 6973; https://doi.org/10.3390/su17156973 (registering DOI) - 31 Jul 2025
Abstract
In rapidly urbanizing environments, environmental stressors—such as air pollution, noise, heat, and green space depletion—substantially exacerbate public health burdens, contributing to the global rise of non-communicable diseases, particularly hypertension, cardiovascular disorders, and mental health conditions. Despite expanding research on green spaces and health [...] Read more.
In rapidly urbanizing environments, environmental stressors—such as air pollution, noise, heat, and green space depletion—substantially exacerbate public health burdens, contributing to the global rise of non-communicable diseases, particularly hypertension, cardiovascular disorders, and mental health conditions. Despite expanding research on green spaces and health (+76.9%, 2019–2025) and optimization and algorithmic approaches (+63.7%), the compounded and synergistic impacts of these stressors remain inadequately explored or addressed within current urban planning frameworks. This study presents a Mixed Methods Systematic Review (MMSR) to investigate the potential of AI-driven urban design optimizations in mitigating these multi-scalar environmental health risks. Specifically, it explores the complex interactions between urbanization, traffic-related pollutants, green infrastructure, and architectural intelligence, identifying critical gaps in the integration of computational optimization with nature-based solutions (NBS). To empirically substantiate these theoretical insights, this study draws on longitudinal 24 h dynamic blood pressure (BP) monitoring (3–9 months), revealing that chronic exposure to environmental noise (mean 79.84 dB) increases cardiovascular risk by approximately 1.8-fold. BP data (average 132/76 mmHg), along with observed hypertensive spikes (systolic > 172 mmHg, diastolic ≤ 101 mmHg), underscore the inadequacy of current urban design strategies in mitigating health risks. Based on these findings, this paper advocates for the integration of AI-driven approaches to optimize urban environments, offering actionable recommendations for developing adaptive, human-centric, and health-responsive urban planning frameworks that enhance resilience and public health in the face of accelerating urbanization. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

25 pages, 2893 KiB  
Review
Ecosystem Services in Urban Blue-Green Infrastructure: A Bibliometric Review
by Xuefei Wang, Qi Hu, Run Zhang, Chuanhao Sun and Mo Wang
Water 2025, 17(15), 2273; https://doi.org/10.3390/w17152273 - 30 Jul 2025
Viewed by 98
Abstract
Urban blue-green infrastructure (UBGI) is a comprehensive solution that balances environmental, social, and economic development objectives and has emerged as a critical approach for fostering urban resilience and sustainable development. This paper conducts a systematic bibliometric analysis of 975 academic articles published between [...] Read more.
Urban blue-green infrastructure (UBGI) is a comprehensive solution that balances environmental, social, and economic development objectives and has emerged as a critical approach for fostering urban resilience and sustainable development. This paper conducts a systematic bibliometric analysis of 975 academic articles published between 2000 and 2023 in the Web of Science Core Collection, focusing specifically on the ecosystem services associated with UBGI. Employing CiteSpace visualization technology, this study elucidates the major research trends, thematic clusters, and international collaboration patterns shaping this field. The research delves into the diverse range of ecosystem services provided by blue-green infrastructure and analyzes their contributions to urban well-being. Findings indicate that regulatory services—particularly climate regulation, biodiversity enhancement, and water resource management—have become central research foci within the contexts of urban green infrastructure (UGI), urban blue infrastructure (UBI), and UBGI. Co-citation and keyword analyses reveal that nature-based solutions, hybrid green–gray infrastructure, and the application of urban resilience frameworks are gaining increasing scholarly attention. By summarizing the evolutionary trajectory and priority directions of UBGI research, this study provides significant insights for future interdisciplinary research aimed at enhancing the supply of urban environmental ecosystem services. Full article
Show Figures

Figure 1

31 pages, 3855 KiB  
Article
Exploring Sidewalk Built Environment Design Strategies to Promote Walkability in Tropical Humid Climates
by Pakin Anuntavachakorn, Purinat Pawarana, Tarid Wongvorachan, Chaniporn Thampanichwat and Suphat Bunyarittikit
Buildings 2025, 15(15), 2659; https://doi.org/10.3390/buildings15152659 - 28 Jul 2025
Viewed by 314
Abstract
The world is facing a state of “global boiling,” causing damage to various sectors. Developing pedestrian systems is a key to mitigating it, especially in tropical and humid cities where the climate discourages walking and increases the need for shaded walkways. Recent research [...] Read more.
The world is facing a state of “global boiling,” causing damage to various sectors. Developing pedestrian systems is a key to mitigating it, especially in tropical and humid cities where the climate discourages walking and increases the need for shaded walkways. Recent research shows a lack of data and in-depth studies on the built environment promoting walkability in such climates, creating a research gap this study aims to fill. Using Singapore as a case study, four locations—Marina Bay, Orchard Road, Boat Quay, and Chinatown—were surveyed and analyzed through visual decoding and questionnaires. Results show that natural light is the most frequently observed and important element in pedestrian pathway design in tropical and humid areas. Trees and sidewalks are also important in creating a walk-friendly environment. Green spaces significantly influence the desire to walk, though no clear positive outcomes were found. Additionally, “Other Emotions” negatively affect the decision to walk, suggesting these should be avoided in future pedestrian pathway designs to encourage walking. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

25 pages, 2756 KiB  
Article
The People-Oriented Urban Planning Strategies in Digital Era—Inspiration from How Urban Amenities Shape the Distribution of Micro-Celebrities
by Han He and Huasheng Zhu
Land 2025, 14(8), 1519; https://doi.org/10.3390/land14081519 - 23 Jul 2025
Viewed by 334
Abstract
How to promote sustainable development and deal with the actual development demands in economic transformation through land-use planning is crucial for local governments. The urban sustainable development mainly relies on creativity and talents in the digital era, and talents are increasingly attracted by [...] Read more.
How to promote sustainable development and deal with the actual development demands in economic transformation through land-use planning is crucial for local governments. The urban sustainable development mainly relies on creativity and talents in the digital era, and talents are increasingly attracted by local people-oriented land use. However, the current planning ideology remains at meeting corporate and people’s basic needs rather than specific needs of talents, especially the increasingly emerging digital creatives. To promote the talent agglomeration and sustainable development through land planning, this paper uses micro-celebrities on Bilibili, an influential creative content creation platform among young people in China, as an example to study the geographical distribution of digital creative talents and its relationship with urban amenities by constructing an index system of urban amenities, comprising natural, leisure, infrastructure, and social and institutional amenities. The concept of borrowed amenities is introduced to examine the effects of amenities of surrounding cities. This study demonstrates that micro-celebrities show a stronger preference for amenities compared with other skilled talents. Meanwhile, social and institutional amenities are most crucial. Furthermore, urban leisure represented by green spaces and consumption spaces is also attractive. At the regional scale, with prefecture-level cities as units, the local talents agglomeration is also influenced by the borrowed amenities in the context of regional integration. It indicates that the local land use should consider the characteristics of the surrounding cities. This study provides strategic inspiration that a happy and sustainable city should first be people-oriented and provide sufficient space for consumption, entertainment, and interaction. Full article
Show Figures

Figure 1

19 pages, 3568 KiB  
Article
Heat Impact of Urban Sprawl: How the Spatial Composition of Residential Suburbs Impacts Summer Air Temperatures and Thermal Comfort
by Mahmuda Sharmin, Manuel Esperon-Rodriguez, Lauren Clackson, Sebastian Pfautsch and Sally A. Power
Atmosphere 2025, 16(8), 899; https://doi.org/10.3390/atmos16080899 - 23 Jul 2025
Viewed by 262
Abstract
Urban residential design influences local microclimates and human thermal comfort. This study combines empirical microclimate data with remotely sensed data on tree canopy cover, housing lot size, surface permeability, and roof colour to examine thermal differences between three newly built and three established [...] Read more.
Urban residential design influences local microclimates and human thermal comfort. This study combines empirical microclimate data with remotely sensed data on tree canopy cover, housing lot size, surface permeability, and roof colour to examine thermal differences between three newly built and three established residential suburbs in Western Sydney, Australia. Established areas featured larger housing lots and mature street trees, while newly developed suburbs had smaller lots and limited vegetation cover. Microclimate data were collected during summer 2021 under both heatwave and non-heatwave conditions in full sun, measuring air temperature, relative humidity, wind speed, and wet-bulb globe temperature (WBGT) as an index of heat stress. Daily maximum air temperatures reached 42.7 °C in new suburbs, compared to 39.3 °C in established ones (p < 0.001). WBGT levels during heatwaves were in the “extreme caution” category in new suburbs, while remaining in the “caution” range in established ones. These findings highlight the benefits of larger green spaces, permeable surfaces, and lighter roof colours in the context of urban heat exposure. Maintaining mature trees and avoiding dark roofs can significantly reduce summer heat and improve outdoor thermal comfort across a range of conditions. Results of this work can inform bottom-up approaches to climate-responsive urban design where informed homeowners can influence development outcomes. Full article
(This article belongs to the Section Biometeorology and Bioclimatology)
Show Figures

Figure 1

21 pages, 5704 KiB  
Article
A Novel Framework for Assessing Urban Green Space Equity Integrating Accessibility and Diversity: A Shenzhen Case Study
by Fei Chang, Zhengdong Huang, Wen Liu and Jiacheng Huang
Remote Sens. 2025, 17(15), 2551; https://doi.org/10.3390/rs17152551 - 23 Jul 2025
Viewed by 257
Abstract
Urban green spaces (UGS) are essential for residents’ well-being, environmental quality, and social cohesion. However, previous studies have typically employed undifferentiated analytical frameworks, overlooking UGS types and failing to adequately measure the structural disparities of different UGS types within residents’ walking distance. To [...] Read more.
Urban green spaces (UGS) are essential for residents’ well-being, environmental quality, and social cohesion. However, previous studies have typically employed undifferentiated analytical frameworks, overlooking UGS types and failing to adequately measure the structural disparities of different UGS types within residents’ walking distance. To address this, this study integrates Gaussian Two-Step Floating Catchment Area models, Simpson’s index, and the Gini coefficient to construct an accessibility–diversity–equality assessment framework for UGS. This study conducted an analysis of accessibility, diversity, and equity for various types of UGSs under pedestrian conditions, using the high-density city of Shenzhen, China as a case study. Results reveal high inequality in accessibility to most UGS types within 15 min to 30 min walking range, except residential green spaces, which show moderate-high inequality (Gini coefficient: 0.4–0.6). Encouragingly, UGS diversity performs well, with over 80% of residents able to access three or more UGS types within walking distance. These findings highlight the heterogeneous UGS supply and provide actionable insights for optimizing green space allocation to support healthy urban development. Full article
Show Figures

Figure 1

26 pages, 381 KiB  
Article
Environmental Burden and School Readiness in an Urban County: Implications for Communities to Promote Healthy Child Development
by Rebecca J. Bulotsky-Shearer, Casey Mullins, Abby Mutic, Carin Molchan, Elizabeth Campos, Scott C. Brown and Ruby Natale
Sustainability 2025, 17(15), 6692; https://doi.org/10.3390/su17156692 - 22 Jul 2025
Viewed by 354
Abstract
Geographic disparities threaten equitable access for children to health-promoting safe green spaces, and quality early education in the communities in which they live and grow. To address gaps in the field, we integrated the fields of developmental psychology, public health, and environmental science [...] Read more.
Geographic disparities threaten equitable access for children to health-promoting safe green spaces, and quality early education in the communities in which they live and grow. To address gaps in the field, we integrated the fields of developmental psychology, public health, and environmental science to examine, at the population level, associations between the environmental burden, socioeconomic vulnerability, and kindergarten readiness in a diverse urban county. Three administrative datasets were integrated through an early childhood data sharing research partnership in Miami-Dade County. The Bruner Child Raising Vulnerability Index, the five domains of the Environmental Burden module from the Environmental Justice Index, and public school kindergarten readiness scores were aggregated at the census tract level. Analysis of variance and multiple regression analyses found associations between socioeconomic vulnerability and race/ethnicity. The socioeconomic vulnerability levels were highest in census tracts with a higher percentage of Black residents, compared to all other races/ethnicities. Areas of greater social vulnerability had lower kindergarten readiness and a higher environmental burden. A higher environmental burden predicted lower kindergarten readiness scores above and beyond race/ethnicity and socioeconomic vulnerability. The findings advance our understanding of global challenges to sustainable healthy child development, such as the persistence of a disproportionate environmental burden and inequitable access to resources such as green spaces and early education programs. The present study results can inform community health improvement plans to reduce risk exposures and promote greater access to positive environmental and educational resources for all children. Full article
22 pages, 1663 KiB  
Article
Smart City: Information-Analytical Developing Model (The Case of the Visegrad Region)
by Tetiana Fesenko, Anna Avdiushchenko and Galyna Fesenko
Sustainability 2025, 17(14), 6640; https://doi.org/10.3390/su17146640 - 21 Jul 2025
Viewed by 321
Abstract
Assessing a city’s level of smartness according to global indices is a relatively new area of investigation. It is useful in encouraging a rethinking of urban digital strategies, although the different approaches to global smart city rankings have been subject to criticism. This [...] Read more.
Assessing a city’s level of smartness according to global indices is a relatively new area of investigation. It is useful in encouraging a rethinking of urban digital strategies, although the different approaches to global smart city rankings have been subject to criticism. This paper highlights the methodological features of constructing the Smart City Index (SCI) from the IMD (International Institute for Management Development) based on residents’ assessments, their satisfaction with electronic services, and their perception of the priority of urban infrastructure areas. The Central European cities of the Visegrad region (Prague/Czech Republic, Budapest/Hungary, Bratislava/Slovakia, Warsaw and Krakow/Poland) were chosen as the basis for an in-depth analysis. The architectonics, i.e., the internal system of constructing and calculating city rankings by SCI, is analyzed. A comparative analysis of the technology indicators (e-services) in five cities of the Visegrad region, presented in the SCI, showed the smart features of each city. The progressive and regressive trends in the dynamics of smartness in the cities in the Visegrad region were identified in five urban spheres indicated in the Index: Government, Activity, Health and Safety, Mobility, and Opportunities. This also made it possible to identify certain methodological gaps in the SCI in establishing interdependencies between the data on the residents’ perception of the priority of areas of life in a particular city and the residents’ level of satisfaction with electronic services. In particular, the structural indicators “Affordable housing” and “Green spaces” are not supported by e-services. This research aims to bridge this methodological gap by proposing a model for evaluating the e-service according to the degree of coverage of different spheres of life in the city. The application of the project, as well as cross-sectoral and systemic approaches, made it possible to develop basic models for assessing the value of e-services. These models can be implemented by municipalities to assess and monitor e-services, as well as to select IT projects and elaborate strategies for smart sustainable city development. Full article
(This article belongs to the Special Issue Smart Cities, Smart Governance and Sustainable Development)
Show Figures

Figure 1

17 pages, 1467 KiB  
Article
Confidence-Based Knowledge Distillation to Reduce Training Costs and Carbon Footprint for Low-Resource Neural Machine Translation
by Maria Zafar, Patrick J. Wall, Souhail Bakkali and Rejwanul Haque
Appl. Sci. 2025, 15(14), 8091; https://doi.org/10.3390/app15148091 - 21 Jul 2025
Viewed by 389
Abstract
The transformer-based deep learning approach represents the current state-of-the-art in machine translation (MT) research. Large-scale pretrained transformer models produce state-of-the-art performance across a wide range of MT tasks for many languages. However, such deep neural network (NN) models are often data-, compute-, space-, [...] Read more.
The transformer-based deep learning approach represents the current state-of-the-art in machine translation (MT) research. Large-scale pretrained transformer models produce state-of-the-art performance across a wide range of MT tasks for many languages. However, such deep neural network (NN) models are often data-, compute-, space-, power-, and energy-hungry, typically requiring powerful GPUs or large-scale clusters to train and deploy. As a result, they are often regarded as “non-green” and “unsustainable” technologies. Distilling knowledge from large deep NN models (teachers) to smaller NN models (students) is a widely adopted sustainable development approach in MT as well as in broader areas of natural language processing (NLP), including speech, and image processing. However, distilling large pretrained models presents several challenges. First, increased training time and cost that scales with the volume of data used for training a student model. This could pose a challenge for translation service providers (TSPs), as they may have limited budgets for training. Moreover, CO2 emissions generated during model training are typically proportional to the amount of data used, contributing to environmental harm. Second, when querying teacher models, including encoder–decoder models such as NLLB, the translations they produce for low-resource languages may be noisy or of low quality. This can undermine sequence-level knowledge distillation (SKD), as student models may inherit and reinforce errors from inaccurate labels. In this study, the teacher model’s confidence estimation is employed to filter those instances from the distilled training data for which the teacher exhibits low confidence. We tested our methods on a low-resource Urdu-to-English translation task operating within a constrained training budget in an industrial translation setting. Our findings show that confidence estimation-based filtering can significantly reduce the cost and CO2 emissions associated with training a student model without drop in translation quality, making it a practical and environmentally sustainable solution for the TSPs. Full article
(This article belongs to the Special Issue Deep Learning and Its Applications in Natural Language Processing)
Show Figures

Figure 1

23 pages, 9488 KiB  
Article
Effects of 2D/3D Urban Morphology on Cooling Effect Diffusion of Urban Rivers in Summer: A Case Study of Huangpu River in Shanghai
by Yuhui Wang, Shuo Sheng, Junda Huang and Yuncai Wang
Land 2025, 14(7), 1498; https://doi.org/10.3390/land14071498 - 19 Jul 2025
Viewed by 342
Abstract
The diffusion effect of river cooling is critical for mitigating the urban heat island effect in riverside areas and for establishing an urban cooling network. River cooling effect diffusion is influenced by the two-dimensional (2D) and three-dimensional (3D) urban morphology of surrounding areas. [...] Read more.
The diffusion effect of river cooling is critical for mitigating the urban heat island effect in riverside areas and for establishing an urban cooling network. River cooling effect diffusion is influenced by the two-dimensional (2D) and three-dimensional (3D) urban morphology of surrounding areas. However, the characteristics of 2D/3D urban morphology that facilitate efficient river cooling effect diffusion remain unclear. This study establishes a technical framework to analyze river cooling effect diffusion resistance (RCDR) across different urban morphologies, using the Huangpu River waterside area in Shanghai as a case study. Seven urban morphology indicators, derived from both 2D and 3D dimensions, were developed to characterize the river cooling effect diffusion resistance. The relative contributions and marginal effects were analyzed using the Boosted Regression Tree (BRT) model. The study found that (1) river cooling effect diffusion was heterogeneous, with four typical patterns; (2) the Landscape Shape Index (LSI) and Blue-green Space Ratio (BGR) significantly impacted cooling effect diffusion; and (3) optimal cooling effect diffusion occurred when the blue-green space occupancy ratio exceeded 20% and building density ranged from 0.1 to 0.3. This study’s technical framework offers a new perspective on river cooling effect diffusion and heat island mitigation in riverside spaces, with significant practical value and potential for broader application. Full article
Show Figures

Figure 1

22 pages, 37656 KiB  
Article
Investigating Urban Heat Islands in Miami, Florida, Utilizing Planet and Landsat Satellite Data
by Suraj K C, Anuj Chiluwal, Lalit Pun Magar and Kabita Paudel
Atmosphere 2025, 16(7), 880; https://doi.org/10.3390/atmos16070880 - 18 Jul 2025
Viewed by 432
Abstract
Miami, Florida, renowned for its cultural richness and coastal beauty, also faces the concerning challenges created by urban heat islands (UHIs). As one of the hottest cities of the United States, Miami is facing escalating temperatures and threatening heat-related vulnerabilities due to urbanization [...] Read more.
Miami, Florida, renowned for its cultural richness and coastal beauty, also faces the concerning challenges created by urban heat islands (UHIs). As one of the hottest cities of the United States, Miami is facing escalating temperatures and threatening heat-related vulnerabilities due to urbanization and climate change. Our study addresses the critical issue of mapping and investigating UHIs in complex urban settings. This study leveraged Planet satellite data and Landsat data to conceptualize and develop appropriate mitigation strategies for UHIs in Miami. Utilizing the Planet satellite imagery and Landsat data, we conducted a combined study of land cover and land surface temperature variations within the city. This approach fuses remotely sensed data to identify the UHI hotspots. This study aims for dynamic approaches for UHI mitigation. This includes studying the status of green spaces present in the city, possible expansion of urban green spaces, the propagation of cool roof initiatives, and exploring the recent climatic trend of the city. The research revealed that built-up areas consistently showed higher land surface temperatures while zones with dense vegetation have lower surface temperatures, supporting the role of urban green spaces in surface temperature reduction. This research can also set a robust model for addressing UHIs in other cities facing rapid urbanization and experiencing mounting temperatures each passing year by helping in assessing LST, land cover, and related spectral indices as well. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

20 pages, 5466 KiB  
Article
Decoding Retail Commerce Patterns with Multisource Urban Knowledge
by Tianchu Xia, Yixue Chen, Fanru Gao, Yuk Ting Hester Chow, Jianjing Zhang and K. L. Keung
Math. Comput. Appl. 2025, 30(4), 75; https://doi.org/10.3390/mca30040075 - 17 Jul 2025
Viewed by 241
Abstract
Urban commercial districts, with their unique characteristics, serve as a reflection of broader urban development patterns. However, only a handful of studies have harnessed point-of-interest (POI) data to model the intricate relationship between retail commercial space types and other factors. This paper endeavors [...] Read more.
Urban commercial districts, with their unique characteristics, serve as a reflection of broader urban development patterns. However, only a handful of studies have harnessed point-of-interest (POI) data to model the intricate relationship between retail commercial space types and other factors. This paper endeavors to bridge this gap, focusing on the influence of urban development factors on retail commerce districts through the lens of POI data. Our exploration underscores how commercial zones impact the density of residential neighborhoods and the coherence of pedestrian pathways. To facilitate our investigation, we propose an ensemble clustering technique for identifying and outlining urban commercial areas, including Kernel Density Analysis (KDE), Density-based Spatial Clustering of Applications with Noise (DBSCAN), Geographically Weighted Regression (GWR). Our research uses the city of Manchester as a case study, unearthing the relationship between commercial retail catchment areas and a range of factors (retail commercial space types, land use function, walking coverage). These include land use function, walking coverage, and green park within the specified areas. As we explore the multiple impacts of different urban development factors on retail commerce models, we hope this study acts as a springboard for further exploration of the untapped potential of POI data in urban business development and planning. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

11 pages, 3507 KiB  
Proceeding Paper
Resilient Cities and Urban Green Infrastructure—Nexus Between Remote Sensing and Sustainable Development
by Suman Kumari, Tesfaye Temtime Tessema, Laden Husamaldin, Sharad Kumar Gupta, Philip Cox, Dale Mortimer, Andrea Benedetto and Fabio Tosti
Eng. Proc. 2025, 94(1), 8; https://doi.org/10.3390/engproc2025094008 - 17 Jul 2025
Viewed by 276
Abstract
Cities are the growth engines responsible for shaping the global economy, major contributors to climate change, and are significantly affected by it. However, the United Nations adopted the Sustainable Development Goals (SDGs) to make these cities and human settlements inclusive, safe, resilient, and [...] Read more.
Cities are the growth engines responsible for shaping the global economy, major contributors to climate change, and are significantly affected by it. However, the United Nations adopted the Sustainable Development Goals (SDGs) to make these cities and human settlements inclusive, safe, resilient, and sustainable. Yet, the rapid and unplanned urban expansion exacerbates various environmental challenges and reduces green cover in urban areas. To address these issues and meet the SDGs, stakeholders need to emphasise and optimise urban spaces. This study investigates the borough-level analysis of green spaces and human exposure to green spaces across London using satellite-derived datasets on vegetation and socio-economic factors to examine the variations in urban vegetation cover and urban population exposure to vegetation cover between 2017 and 2024. This study highlights the spatial disparity in green space coverage and exposure to green space between the inner and outer boroughs of London. The methodology used here suggests an average loss of approximately 11 and 9 percent in green space coverage and green space exposure to population, respectively, between 2017 and 2024 across London boroughs. Full article
Show Figures

Figure 1

26 pages, 3149 KiB  
Article
The Spatiotemporal Impact of Socio-Economic Factors on Carbon Sink Value: A Geographically and Temporally Weighted Regression Analysis at the County Level from 2000 to 2020 in China’s Fujian Province
by Tao Wang and Qi Liang
Land 2025, 14(7), 1479; https://doi.org/10.3390/land14071479 - 17 Jul 2025
Viewed by 318
Abstract
Evaluating the economic value of carbon sinks is fundamental to advancing carbon market mechanisms and supporting sustainable regional development. This study focuses on Fujian Province in China, aiming to assess the spatiotemporal evolution of carbon sink value and analyze the influence of socio-economic [...] Read more.
Evaluating the economic value of carbon sinks is fundamental to advancing carbon market mechanisms and supporting sustainable regional development. This study focuses on Fujian Province in China, aiming to assess the spatiotemporal evolution of carbon sink value and analyze the influence of socio-economic drivers. Carbon sink values from 2000 to 2020 were estimated using Net Ecosystem Productivity (NEP) simulation combined with the carbon market valuation method. Eleven socio-economic variables were selected through correlation and multicollinearity testing, and their impacts were examined using Geographically and Temporally Weighted Regression (GTWR) at the county level. The results indicate that the total carbon sink value in Fujian declined from CNY 3.212 billion in 2000 to CNY 2.837 billion in 2020, showing a spatial pattern of higher values in the southern region and lower values in the north. GTWR analysis reveals spatiotemporal heterogeneity in the effects of socio-economic factors. For example, the influence of urbanization and retail sales of consumer goods shifts direction over time, while the effects of industrial structure, population, road, and fixed asset investment vary across space. This study emphasizes the necessity of incorporating spatial and temporal dynamics into carbon sink valuation. The findings suggest that northern areas of Fujian should prioritize ecological restoration, rapidly urbanizing regions should adopt green development strategies, and counties guided by investment and consumption should focus on sustainable development pathways to maintain and enhance carbon sink capacity. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

Back to TopTop