Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (491)

Search Parameters:
Keywords = graphene oxide membrane

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 9212 KiB  
Review
Advanced Materials-Based Nanofiltration Membranes for Efficient Removal of Organic Micropollutants in Water and Wastewater Treatment
by Haochun Wei, Haibiao Nong, Li Chen and Shiyu Zhang
Membranes 2025, 15(8), 236; https://doi.org/10.3390/membranes15080236 - 5 Aug 2025
Abstract
The increasing use of pharmaceutically active compounds (PhACs), endocrine-disrupting compounds (EDCs), and personal care products (PCPs) has led to the widespread presence of organic micropollutants (OMPs) in aquatic environments, posing a significant global challenge for environmental conservation. In recent years, advanced materials-based nanofiltration [...] Read more.
The increasing use of pharmaceutically active compounds (PhACs), endocrine-disrupting compounds (EDCs), and personal care products (PCPs) has led to the widespread presence of organic micropollutants (OMPs) in aquatic environments, posing a significant global challenge for environmental conservation. In recent years, advanced materials-based nanofiltration (NF) technologies have emerged as a promising solution for water and wastewater treatment. This review begins by examining the sources of OMPs, as well as the risk of OMPs. Subsequently, the key criteria of NF membranes for OMPs are discussed, with a focus on the roles of pore size, charge property, molecular interaction, and hydrophilicity in the separation performance. Against that background, this review summarizes and analyzes recent advancements in materials such as metal organic frameworks (MOFs), covalent organic frameworks (COFs), graphene oxide (GO), MXenes, hybrid materials, and environmentally friendly materials. It highlights the porous nature and structural diversity of organic framework materials, the advantage of inorganic layered materials in forming controllable nanochannels through stacking, the synergistic effects of hybrid materials, and the importance of green materials. Finally, the challenges related to the performance optimization, scalable fabrication, environmental sustainability, and complex separation of advanced materials-based membranes for OMP removal are discussed, along with future research directions and potential breakthroughs. Full article
Show Figures

Figure 1

12 pages, 1867 KiB  
Article
Graphene Oxide-Constructed 2 nm Pore Anion Exchange Membrane for High Purity Hydrogen Production
by Hengcheng Wan, Hongjie Zhu, Ailing Zhang, Kexin Lv, Hongsen Wei, Yumo Wang, Huijie Sun, Lei Zhang, Xiang Liu and Haibin Zhang
Crystals 2025, 15(8), 689; https://doi.org/10.3390/cryst15080689 - 29 Jul 2025
Viewed by 293
Abstract
Alkaline electrolytic water hydrogen generation, a key driver in the growth of hydrogen energy, heavily relies on high-efficiency and high-purity ion exchange membranes. In this study, three-dimensional (3D) wrinkled reduced graphene oxide (WG) nanosheets obtained through a simple thermal reduction process and two-dimensional [...] Read more.
Alkaline electrolytic water hydrogen generation, a key driver in the growth of hydrogen energy, heavily relies on high-efficiency and high-purity ion exchange membranes. In this study, three-dimensional (3D) wrinkled reduced graphene oxide (WG) nanosheets obtained through a simple thermal reduction process and two-dimensional (2D) graphene oxide act as building blocks, with ethylenediamine as a crosslinking stabilizer, to construct a unique 3D/2D 2 nm-tunneling structure between the GO and WG sheets through via an amide connection at a WG/GO ratio of 1:1. Here, the wrinkled graphene (WG) undergoes a transition from two-dimensional (2D) graphene oxide (GO) into three-dimensional (3D) through the adjustment of surface energy. By increasing the interlayer spacing and the number of ion fluid channels within the membranes, the E-W/G membrane has achieved the rapid passage of hydroxide ions (OH) and simultaneous isolation of produced gas molecules. Moreover, the dense 2 nm nano-tunneling structure in the electrolytic water process enables the E-W/G membrane to attain current densities >99.9% and an extremely low gas crossover rate of hydrogen and oxygen. This result suggests that the as-prepared membrane effectively restricts the unwanted crossover of gases between the anode and cathode compartments, leading to improved efficiency and reduced gas leakage during electrolysis. By enhancing the purity of the hydrogen production industry and facilitating the energy transition, our strategy holds great potential for realizing the widespread utilization of hydrogen energy. Full article
(This article belongs to the Section Macromolecular Crystals)
Show Figures

Figure 1

14 pages, 3187 KiB  
Article
Characterizations of Electrospun PVDF-Based Mixed Matrix Membranes with Nanomaterial Additives
by Haya Taleb, Venkatesh Gopal, Sofian Kanan, Raed Hashaikeh, Nidal Hilal and Naif Darwish
Nanomaterials 2025, 15(15), 1151; https://doi.org/10.3390/nano15151151 - 25 Jul 2025
Viewed by 359
Abstract
Water scarcity poses a formidable challenge around the world, especially in arid regions where limited availability of freshwater resources threatens both human well-being and ecosystem sustainability. Membrane-based desalination technologies offer a viable solution to address this issue by providing access to clean water. [...] Read more.
Water scarcity poses a formidable challenge around the world, especially in arid regions where limited availability of freshwater resources threatens both human well-being and ecosystem sustainability. Membrane-based desalination technologies offer a viable solution to address this issue by providing access to clean water. This work ultimately aims to develop a novel permselective polymeric membrane material to be employed in an electrochemical desalination system. This part of the study addresses the optimization, preparation, and characterization of a polyvinylidene difluoride (PVDF) polymeric membrane using the electrospinning technique. The membranes produced in this work were fabricated under specific operational, environmental, and material parameters. Five different additives and nano-additives, i.e., graphene oxide (GO), carbon nanotubes (CNTs), zinc oxide (ZnO), activated carbon (AC), and a zeolitic imidazolate metal–organic framework (ZIF-8), were used to modify the functionality and selectivity of the prepared PVDF membranes. Each membrane was synthesized at two different levels of additive composition, i.e., 0.18 wt.% and 0.45 wt.% of the entire PVDF polymeric solution. The physiochemical properties of the prepared membranes were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), zeta potential, contact angle, conductivity, porosity, and pore size distribution. Based on findings of this study, PVDF/GO membrane exhibited superior results, with an electrical conductivity of 5.611 mS/cm, an average pore size of 2.086 µm, and a surface charge of −38.33 mV. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

12 pages, 2384 KiB  
Article
Ultrahigh Water Permeance of a Reduced Graphene Oxide Membrane for Separation of Dyes in Wastewater
by Chengju Wu, Shouyuan Hu, Shoupeng Li, Hangxiang Zhuge, Liuhua Mu, Jie Jiang, Pei Li and Liang Chen
Inorganics 2025, 13(8), 251; https://doi.org/10.3390/inorganics13080251 - 22 Jul 2025
Viewed by 309
Abstract
Membrane separation technology has shown significant potential in the treatment of mixed dye wastewater. In this study, a reduced graphene oxide (AH-rGO) membrane was prepared using an amino-hydrothermal method and applied for the first time in mixed dye separation. These membranes can selectively [...] Read more.
Membrane separation technology has shown significant potential in the treatment of mixed dye wastewater. In this study, a reduced graphene oxide (AH-rGO) membrane was prepared using an amino-hydrothermal method and applied for the first time in mixed dye separation. These membranes can selectively recover high-value dyes while addressing the technical challenges of balancing permeability and selectivity in traditional membrane materials, which are often at odds with each other in the treatment of mixed dye wastewater. We simulated actual dye wastewater using four dyes: methyl orange (MO), methyl blue (MB), rhodamine B (RB), and Victoria Blue B (VBB). The four combinations of mixed dyes were MO/VBB, RB/VBB, MO/MB, and RB/MB, all of which demonstrated high water permeability and separation efficiency. Notably, the MO/VBB combination achieved a maximum water permeability rate of 118.79 L m2 h−1 bar−1 and a separation factor of 24.2. The AH-rGO membrane is currently the highest-permeability membrane available, achieving excellent separation results with typical mixed dye wastewater. Additionally, it demonstrates good stability. The experimental results indicate that the overall performance of the AH-rGO membrane is superior to that ofother graphene oxide (GO) membranes, which reveals the significant application potential of this membrane in the field of mixed dye wastewater treatment. Full article
(This article belongs to the Special Issue Carbon Nanomaterials for Advanced Technology, 2nd Edition)
Show Figures

Graphical abstract

21 pages, 4142 KiB  
Review
Nanomaterial-Enabled Enhancements in Thylakoid-Based Biofuel Cells
by Amit Sarode and Gymama Slaughter
Nanomaterials 2025, 15(14), 1092; https://doi.org/10.3390/nano15141092 - 14 Jul 2025
Viewed by 393
Abstract
Thylakoid-based photosynthetic biofuel cells (TBFCs) harness the inherent light-driven electron transfer pathways of photosynthesis to enable sustainable solar-to-electrical energy conversion. While TBFCs offer a unique route toward biohybrid energy systems, their practical deployment is hindered by sluggish electron transfer kinetics, unstable redox mediators, [...] Read more.
Thylakoid-based photosynthetic biofuel cells (TBFCs) harness the inherent light-driven electron transfer pathways of photosynthesis to enable sustainable solar-to-electrical energy conversion. While TBFCs offer a unique route toward biohybrid energy systems, their practical deployment is hindered by sluggish electron transfer kinetics, unstable redox mediators, and inefficient interfacing between biological and electrode components. This review critically examines recent advances in TBFCs, with a focus on three key surface engineering strategies: (i) incorporation of nanostructured materials to enhance electrode conductivity and surface area; (ii) application of redox mediators to facilitate charge transfer between photosynthetic proteins and electrodes; and (iii) functional exploitation of individual thylakoid components, including Photosystem I (PSI) and Photosystem II (PSII), to augment photogenerated current output. By systematically evaluating current advancements, this review highlights the synergistic role of materials and biological components in advancing TBFC technology and offers insights into next generation biohybrid solar energy systems with enhanced efficiency and scalability. Full article
(This article belongs to the Special Issue Advanced Nanotechnology in Fuel Cells)
Show Figures

Graphical abstract

12 pages, 2165 KiB  
Article
Flexible Piezoresistive Sensors Based on PANI/rGO@PDA/PVDF Nanofiber for Wearable Biomonitoring
by Hong Pan, Yuxiao Wang, Guangzhong Xie, Chunxu Chen, Haozhen Li, Fang Wu and Yuanjie Su
J. Compos. Sci. 2025, 9(7), 339; https://doi.org/10.3390/jcs9070339 - 30 Jun 2025
Viewed by 425
Abstract
Fibrous structure is a promising building block for developing high-performance wearable piezoresistive sensors. However, the inherent non-conductivity of the fibrous polymer remains a bottleneck for highly sensitive and fast-responsive piezoresistive sensors. Herein, we reported a polyaniline/reduced graphene oxide @ polydopamine/poly (vinylidene fluoride) (PANI/rGO@PDA/PVDF) [...] Read more.
Fibrous structure is a promising building block for developing high-performance wearable piezoresistive sensors. However, the inherent non-conductivity of the fibrous polymer remains a bottleneck for highly sensitive and fast-responsive piezoresistive sensors. Herein, we reported a polyaniline/reduced graphene oxide @ polydopamine/poly (vinylidene fluoride) (PANI/rGO@PDA/PVDF) nanofiber piezoresistive sensor (PNPS) capable of versatile wearable biomonitoring. The PNPS was fabricated by integrating rGO sheets and PANI particles into a PDA-modified PVDF nanofiber network, where PDA was implemented to boost the interaction between the nanofiber networks and functional materials, PANI particles were deposited on a nanofiber substrate to construct electroactive nanofibers, and rGO sheets were utilized to interconnect nanofibers to strengthen in-plane charge carrier transport. Benefitting from the synergistic effect of multi-dimensional electroactive materials in piezoresistive membranes, the as-fabricated PNPS exhibits a high sensitivity of 13.43 kPa−1 and a fast response time of 9 ms, which are significantly superior to those without an rGO sheet. Additionally, a wide pressure detection range from 0 to 30 kPa and great mechanical reliability over 12,000 cycles were attained. Furthermore, the as-prepared PNPS demonstrated the capability to detect radial arterial pulses, subtle limb motions, and diverse respiratory patterns, highlighting its potential for wearable biomonitoring and healthcare assessment. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, 3rd Edition)
Show Figures

Figure 1

14 pages, 1673 KiB  
Article
Drying and Film Formation Processes of Graphene Oxide Suspension on Nonwoven Fibrous Membranes with Varying Wettability
by Zeman Liu, Jiaxing Fan, Jian Xue and Fei Guo
Surfaces 2025, 8(2), 39; https://doi.org/10.3390/surfaces8020039 - 18 Jun 2025
Viewed by 484
Abstract
Graphene oxide (GO) films have attracted significant attention due to their potential in separation and filtration applications. Based on their unique lamellar structure and ultrathin nature, GO films are difficult to maintain in a free-standing form and typically require substrate support. Consequently, understanding [...] Read more.
Graphene oxide (GO) films have attracted significant attention due to their potential in separation and filtration applications. Based on their unique lamellar structure and ultrathin nature, GO films are difficult to maintain in a free-standing form and typically require substrate support. Consequently, understanding their film formation behavior and mechanisms on substrates is of paramount importance. This work employs commonly used nonwoven fibrous membranes as substrates and guided by the coffee-ring theory, systematically investigates the film formation behaviors, film morphology, and underlying mechanisms of GO films on fibrous membranes with varying wettability. Fibrous membranes with different wetting properties—hydrophilic, hydrophobic, and superhydrophobic—were prepared via electrospinning and initiated chemical vapor deposition (iCVD) surface modification techniques. The spreading behaviors, deposition dynamics, capillary effects, and evaporation-induced film formation mechanisms of GO suspensions on these substrates were thoroughly examined. The results showed that GO formed belt-like, ring-like, and circular patterns on the three fibrous membranes, respectively. GO films encapsulated more than the upper half, approximately the upper half, and the top portion of fibers, respectively. Pronounced wrinkling of GO films was observed except for those on the hydrophilic fibrous membrane. This work demonstrates that tuning the wettability of fibrous substrates enables precise control over GO film morphology, including fiber encapsulation, wrinkling, and coverage area. Furthermore, it deepens the understanding of the interactions between 1D nanofibers and 2D GO sheets at low-dimensional scales, laying a foundational basis for the optimized design of membrane engineering. Full article
(This article belongs to the Special Issue Surface Engineering of Thin Films)
Show Figures

Graphical abstract

13 pages, 4682 KiB  
Communication
Seven-Channel Polyethersulfone Hollow-Fiber Membrane Preparation with Vapor-Induced Phase Separation
by Xiaoyao Wang, Zhiyuan Hao, Rui Huang, Yajing Huang, Huiqun Zhang and Xiujuan Hao
Membranes 2025, 15(6), 175; https://doi.org/10.3390/membranes15060175 - 10 Jun 2025
Viewed by 953
Abstract
Polyethersulfone (PES) has been widely used to fabricate hollow-fiber ultrafiltration membranes due to its good oxidative, thermal, and hydrolytic stability. Typical PES hollow-fiber membranes with a single bore have limited strength and may break under uneven pressure and vibration during membrane backwashing. Multi-channel [...] Read more.
Polyethersulfone (PES) has been widely used to fabricate hollow-fiber ultrafiltration membranes due to its good oxidative, thermal, and hydrolytic stability. Typical PES hollow-fiber membranes with a single bore have limited strength and may break under uneven pressure and vibration during membrane backwashing. Multi-channel hollow-fiber membranes have stronger breaking force due to their larger cross-sectional area, but fabricating them remains challenging due to the difficulty in controlling the phase inversion process. This study uses the vapor-induced phase separation (VIPS) method to fabricate a seven-channel PES hollow-fiber membrane, and the air gap and air relative humidity can help in membrane morphology control. Moreover, carboxylic graphene quantum dots (CGQDs) are first used in ultrafiltration membranes to increase membrane porosity and hydrophilicity. We found that the membrane prepared with a 7.5% CGQD mass fraction, a 10 cm air gap, and 99% relative humidity had the highest flux and porosity; the membrane pore size distribution was concentrated at 72 nm, and the pure water flux could reach 464 L·m−2 h−1·bar−1. In the long-term filtration performance test, the membrane can reject more than about 15% TOC and 84% turbidity at 50 L·m−2 h−1 flux, confirming its stability for water purification applications. Full article
(This article belongs to the Special Issue Membrane Technologies for Water Purification)
Show Figures

Figure 1

18 pages, 2611 KiB  
Article
The Impact of Graphene Oxide Nanoparticles Decorated with Silver Nanoparticles (GrO/AgNP) on the Cellulose Acetate (CA) Membrane Matrix Used for Hydrocarbon Removal from Water
by Marian Băjan, Diana Luciana Cursaru and Sonia Mihai
Membranes 2025, 15(6), 158; https://doi.org/10.3390/membranes15060158 - 23 May 2025
Viewed by 925
Abstract
Adding nanomaterials to polymer membranes can improve certain properties, such as the photocatalytic degradation of contaminants and antibacterial qualities. However, the interaction between nanomaterials and polymers is often limited by the presence of functional groups that can trap nanostructures within the polymer matrix. [...] Read more.
Adding nanomaterials to polymer membranes can improve certain properties, such as the photocatalytic degradation of contaminants and antibacterial qualities. However, the interaction between nanomaterials and polymers is often limited by the presence of functional groups that can trap nanostructures within the polymer matrix. This study focuses on the synthesis of silver-decorated graphene oxide nanoparticles and their integration into cellulose acetate membranes. Characterization of the membranes was conducted using various techniques, including electron microscopy (SEM), thermogravimetric analysis, FTIR, goniometry, and filterability tests. The results indicate that CA membranes with decorated nanoparticles exhibit improved thermal stability, making them more effective for removing heavy hydrocarbons without the risk of nanomaterial elution during temperature fluctuations in the contaminated water flow subjected to filtration. Furthermore, these decorated structures enhance hydrophobicity due to interactions between the oxygenated groups of GrO and silver ions. While these additional networks may reduce the permeate flow rate, they significantly increase the efficiency of contaminant removal. Full article
Show Figures

Figure 1

18 pages, 7323 KiB  
Article
Graphene Oxide-Doped CNT Membrane for Dye Adsorption
by Mariafrancesca Baratta, Fiore Pasquale Nicoletta and Giovanni De Filpo
Nanomaterials 2025, 15(11), 782; https://doi.org/10.3390/nano15110782 - 22 May 2025
Viewed by 440
Abstract
Recently, graphene oxide (GO) has been largely investigated as a potential adsorbent towards dyes. However, the major obstacle to its full employment is linked to its natural powder consistence, which greatly complexifies the operations of recovery and reuse. With the aim to overcome [...] Read more.
Recently, graphene oxide (GO) has been largely investigated as a potential adsorbent towards dyes. However, the major obstacle to its full employment is linked to its natural powder consistence, which greatly complexifies the operations of recovery and reuse. With the aim to overcome this issue, the present work reports on the design of GO-modified carbon nanotubes buckypapers (BPs), in which the main component, GO, is entirely entrapped in the BP grid generated by CNTs for the double purpose of (a) increasing adsorption performance of GO-BPs and (b) ensure a fast process of regeneration and reuse. Adsorption experiments were performed towards several dyes: Acid Blue 29 (AB29), Crystal Violet (CV), Eosyn Y (EY), Malachite Green (MG), and Rhodamine B (RB) (Ci = 50 ppm, pH = 6). Results demonstrated that adsorption is strictly dependent on the charge occurring both on GO-BP and dye surfaces, observing great adsorption capacities towards MG (493.44 mg g−1), RB (467.35 mg g−1), and CV (374.53 mg g−1), due to the best coupling of dye cationic form with negative GO-BP surface. Adsorption isotherms revealed that dyes capture onto GO-BPs is thermodynamically favored (ΔG < 0), becoming more negative at 313 K. Kinetic studies evidenced that the process can be described through a pseudo-first-order model, with MG, RB, and CV exhibiting the highest values of k1. In view of these results, the following trend in GO-BP adsorption performance has been derived: MG ≈ RB > CV > AB29 > EY. Full article
Show Figures

Graphical abstract

13 pages, 4315 KiB  
Article
Electrospun Graphene Oxide/Poly(m-phenylene isophthalamide) Composite Nanofiber Membranes for High Performance
by Enling Tian, Yinping Bi and Yiwei Ren
Membranes 2025, 15(5), 145; https://doi.org/10.3390/membranes15050145 - 12 May 2025
Viewed by 729
Abstract
Due to its distinctive two-dimensional structure and high specific surface area, graphene oxide (GO) is expected to be a very promising material to be used for membrane separation. Not only can it improve the mechanical strength, surface wettability, and thermal stability of the [...] Read more.
Due to its distinctive two-dimensional structure and high specific surface area, graphene oxide (GO) is expected to be a very promising material to be used for membrane separation. Not only can it improve the mechanical strength, surface wettability, and thermal stability of the membrane, but it can also improve the filtration performance and shelf life of the polymer membrane. Graphene oxide/poly(meta-phenylene isophthalamide) (GO/PMIA) nanofiber membranes were prepared by means of an electrospinning technique. The effects of adding different amounts of GO on the PMIA nanofiber membranes were studied. The results indicated that the GO had a strong affinity with the PMIA matrix by forming hydrogen bonds. The composite nanofiber membranes exhibited better filtration and thermostability performance than those of the pristine membrane. As the loading amount of GO was 1.0 wt%, the air filtration efficiency of the composite nanofiber membrane was 97.79%, the pressure drop was 85.45 Pa and the glass transition temperature was 299.8 °C. Full article
(This article belongs to the Special Issue Prospects for Nanocomposite Membrane Applications)
Show Figures

Figure 1

28 pages, 9876 KiB  
Article
Nanofiltration Membranes from Poly(sodium-p-styrenesulfonate)/Polyethylenimine Polyelectrolyte Complex Modified with Carbon Nanoparticles for Enhanced Water Treatment
by Mariia Dmitrenko, Olga Mikhailovskaya, Roman Dubovenko, Anton Mazur, Anna Kuzminova, Igor Prikhodko, Konstantin Semenov, Rongxin Su and Anastasia Penkova
Polymers 2025, 17(10), 1306; https://doi.org/10.3390/polym17101306 - 10 May 2025
Viewed by 540
Abstract
Industrial wastewater poses a significant environmental challenge due to its harmful effects. The development of sustainable membrane processes for water treatment and the environmentally friendly production of polymer membranes is one of the major challenges of our time. An alternative approach is to [...] Read more.
Industrial wastewater poses a significant environmental challenge due to its harmful effects. The development of sustainable membrane processes for water treatment and the environmentally friendly production of polymer membranes is one of the major challenges of our time. An alternative approach is to prepare polyelectrolyte complex (PEC) membranes using the aqueous phase separation (APS) method without the use of toxic solvents. In this work, PEC nanofiltration membranes of poly(sodium-p-styrenesulfonate) (PSS)/polyethylenimine (PEI) modified with carbon nanoparticles (graphene oxide, polyhydroxylated fullerene (HF), multi-walled carbon nanotubes) were developed for enhanced water treatment from anionic food dyes and heavy metal ions. The effect of varying the PSS/PEI monomer ratio, carbon nanoparticles, the content of the optimal HF modifier, and the cross-linking agent on the membrane properties was studied in detail. The changes in the structure and physicochemical properties of the PEC-based membranes were investigated using spectroscopic, microscopic, thermogravimetric analysis methods, and contact angle measurements. The PSS and PEI interactions during PEC formation and the effect of PEI protonation on membrane properties were investigated using computational methods. The optimal cross-linked PEC/HF(1%) (1:1.75 PSS/PEI) membrane had more than 2 times higher permeability compared to the pristine PEC membrane, with dye and heavy metal ion rejection of 99.99 and >97%, respectively. Full article
(This article belongs to the Section Polymer Membranes and Films)
Show Figures

Graphical abstract

17 pages, 11479 KiB  
Article
Study of Sorption Activity of Carbon Nanomaterials for Capture of Chlorine-Containing Gases
by Yulia Ioni and Victoria Ibragimova
Clean Technol. 2025, 7(2), 39; https://doi.org/10.3390/cleantechnol7020039 - 8 May 2025
Viewed by 1314
Abstract
Chlorine gas and hydrogen chloride are highly reactive chemicals that pose a significant hazard to living organisms upon direct contact. Also, chlorine-containing gases are often by-products of industrial chemical synthesis and can be released into the air as a result of accidents. This [...] Read more.
Chlorine gas and hydrogen chloride are highly reactive chemicals that pose a significant hazard to living organisms upon direct contact. Also, chlorine-containing gases are often by-products of industrial chemical synthesis and can be released into the air as a result of accidents. This can lead to great pollution of the environment. To remove toxic gases, various filter systems can be used. Filters based on carbon nanomaterials can be suitable for capturing gaseous chlorine-containing substances, preventing their spread into the air. In this work, the sorption activity of various carbon-based nanomaterials (graphene oxide, modified graphene oxide, reduced graphene oxide, multi-walled carbon nanotubes, carbon black) in relation to gaseous chlorine and hydrogen chloride was investigated for the first time. It has been shown that employed carbon nanomaterials have an excellent ability to remove chlorine and hydrogen chloride from the air, exceeding the performance of activated carbon. Modified graphene oxide with an increased surface area showed the highest sorption capacity of 73.1 mL HCl and 200.0 mL Cl2 per gram of the sorbent, that is almost two and five times, respectively, higher than that of activated carbon. The results show that carbon nanomaterials could potentially be used for industrial filters and membrane fabrication. Full article
Show Figures

Figure 1

16 pages, 4105 KiB  
Article
Biosafety and Blood Compatibility of Graphene Oxide Particles in In Vitro Experiments
by Yuriy Prylutskyy, Patrycja Bełdzińska, Natalia Derewońko, Tetiana Halenova, Nataliia Raksha, Marcin Zakrzewski, Grzegorz Gołuński, Svitlana Prylutska, Uwe Ritter, Olexii Savchuk and Jacek Piosik
Materials 2025, 18(9), 2128; https://doi.org/10.3390/ma18092128 - 6 May 2025
Viewed by 519
Abstract
Graphene oxide (GO), owing to its extraordinary application prospects in biomedicine, is attracting growing research attention. However, the biosafety and blood compatibility of GO required for its clearance for use in clinical trials remain elusive. Therefore, we studied the mutagenic properties of GO [...] Read more.
Graphene oxide (GO), owing to its extraordinary application prospects in biomedicine, is attracting growing research attention. However, the biosafety and blood compatibility of GO required for its clearance for use in clinical trials remain elusive. Therefore, we studied the mutagenic properties of GO as well as its cell toxicity and blood compatibility. Prior to biological experiments, we assessed the structural organization of GO using dynamic light scattering and microscopic visualization methods. The results of both the Ames mutagenicity test performed on Salmonella enterica serovar Typhimurium TA98 and TA102 strains and the cytotoxicity test on noncancerous, immortalized human keratinocytes revealed no mutagenic or toxic effects of GO. Simultaneously, GO reduced the viability of the MelJuSo human melanoma cell line. A blood compatibility assay revealed that a concentration of 10 μg/mL was critical for GO biosafety, as greater concentrations induced diverse side effects. Specifically, GO disrupts erythrocytes’ membranes in the dose-dependent manner. Moreover, GO at higher concentrations both inhibited the process of ADP (a physiological platelet agonist)-induced cell aggregation and affected their disaggregation process in platelet-rich plasma. However, in the blood clotting assessment, GO showed no effects on the activated partial thromboplastin time, prothrombin time, or thrombin time of the platelet-poor plasma. The obtained results clearly indicate that the relationship between the GO preparation method, its size, and concentration and biosafety must be cautiously monitored in the context of further possible biomedical applications. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Figure 1

18 pages, 4953 KiB  
Article
Self-Standing Adsorbent Composites of Waste-Derived Biochar and Reduced Graphene Oxide for Water Decontamination
by Anna Dotti, Marianna Guagliano, Vittorio Ferretti di Castelferretto, Roberto Scotti, Simone Pedrazzi, Marco Puglia, Romano V. A. Orrù, Cinzia Cristiani, Elisabetta Finocchio, Andrea Basso Peressut and Saverio Latorrata
Molecules 2025, 30(9), 1997; https://doi.org/10.3390/molecules30091997 - 30 Apr 2025
Cited by 2 | Viewed by 565
Abstract
Adsorption is one of the simplest and most cost-effective techniques for water decontamination. In this field, biochar has recently emerged as a promising alternative to traditional adsorbents, exhibiting a high surface area and affinity to metal ions, as well as often being waste-derived. [...] Read more.
Adsorption is one of the simplest and most cost-effective techniques for water decontamination. In this field, biochar has recently emerged as a promising alternative to traditional adsorbents, exhibiting a high surface area and affinity to metal ions, as well as often being waste-derived. Similarly, reduced graphene oxide (rGO) shows an excellent adsorption capacity. Having self-assembling properties, it has already been employed to obtain self-standing heavy-metal-adsorbing membranes. In this research, a novel self-standing membrane of biochar and rGO is presented. It was obtained through an eco-friendly method, consisting of the simple mechanical mixing of the two components, followed by vacuum filtration and mild drying. Vine pruning biochar (VBC) was employed in different rGO/biochar mass ratios, ranging from 1/1 to 1/9. The best compromise between membrane integrity and biochar content was achieved with a 4/6 proportion. This sample was also replicated using chestnut-shell-derived biochar. The composite rGO–biochar membranes were characterized through XRD, FTIR-ATR, TG-DTG, SEM-EDX, BET, ZP, particle dimension, and EPR analyses. Then, they were tested for metal ion adsorption with 10 mM Cu2+ and 100 mM Zn2+ aqueous solutions. The adsorption capacity of copper and zinc was found to be in the range of 1.51–4.03 mmolCu g−1 and 18.16–21.99 mmolZn g−1, respectively, at an acidic pH, room temperature, and contact time of 10 min. Interestingly, the composite rGO–biochar membranes exhibited a capture behavior between that of pure rGO and VBC. Full article
(This article belongs to the Special Issue Novel Two-Dimensional Energy-Environmental Materials)
Show Figures

Figure 1

Back to TopTop