Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (420)

Search Parameters:
Keywords = graphene nano-platelets (GNPs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 5059 KiB  
Article
Effects of Graphene-Based Nanomaterials on Anaerobic Digestion of Thermally Hydrolyzed Municipal Sewage Sludge
by Luiza Usevičiūtė, Tomas Januševičius, Vaidotas Danila and Mantas Pranskevičius
Materials 2025, 18(15), 3561; https://doi.org/10.3390/ma18153561 - 29 Jul 2025
Viewed by 250
Abstract
In this study, the effects of graphene-based nanomaterials—specifically graphene nanoplatelets (GNPs) and graphene oxide (GO) nanosheets—on methane (CH4) production during anaerobic digestion (AD) of thermally hydrolyzed sewage sludge were investigated. Anaerobic digestion was carried out over a 40-day period under mesophilic [...] Read more.
In this study, the effects of graphene-based nanomaterials—specifically graphene nanoplatelets (GNPs) and graphene oxide (GO) nanosheets—on methane (CH4) production during anaerobic digestion (AD) of thermally hydrolyzed sewage sludge were investigated. Anaerobic digestion was carried out over a 40-day period under mesophilic conditions in batch digesters with a volume of 2.65 L. The influence of various dosages of GNPs and GO nanosheets on methane yields was assessed, including a comparison between GNPs with different specific surface areas (320 m2/g and 530 m2/g). The highest CH4 yield (194 mL/g-VSadded) was observed with a GNP dosage of 5 mg/g-TS and a surface area of 530 m2/g, showing an increase of 3.08% compared to the control. This treatment group had the greatest positive effect also on the degradation of organic matter, with total solids (TS) and volatile solids (VS) removal reaching 34.35% and 44.18%, respectively. However, the GO dosages that significantly decreased cumulative CH4 production were determined to be 10–15 mg/g-TS. Graphene oxide at dosages of 10 and 15 mg/g-TS reduced specific cumulative CH4 yields by 4.03% and 5.85%, respectively, compared to the control, indicating CH4 yield inhibition. This lab-scale study highlights the potential for integrating GNPs into full-scale, continuously operated wastewater treatment anaerobic digesters for long-term use in future applications. Full article
Show Figures

Figure 1

15 pages, 2217 KiB  
Article
Energy-Based Approach for Fatigue Life Prediction of Additively Manufactured ABS/GNP Composites
by Soran Hassanifard and Kamran Behdinan
Polymers 2025, 17(15), 2032; https://doi.org/10.3390/polym17152032 - 25 Jul 2025
Viewed by 272
Abstract
This study examines the effectiveness of energy-based models for fatigue life prediction of additively manufactured acrylonitrile butadiene styrene (ABS)/graphene nanoplatelet (GNP) composites. The effects of varying GNP weight percentages and filament raster orientations on the fatigue life of the samples were investigated theoretically. [...] Read more.
This study examines the effectiveness of energy-based models for fatigue life prediction of additively manufactured acrylonitrile butadiene styrene (ABS)/graphene nanoplatelet (GNP) composites. The effects of varying GNP weight percentages and filament raster orientations on the fatigue life of the samples were investigated theoretically. The required stress and strain values for use in energy-based models were obtained by solving two sets of Neuber and Ramberg–Osgood equations, utilizing the available values of notch strength reduction factors at each load level and the average Young modulus for each composite material. Results revealed that none of the studied energy-based models could accurately predict the fatigue life of the samples across the entire high- and low-cycle fatigue regimes, with strong dependence on the stress ratio (R). Instead, a novel fatigue life prediction model was developed by combining two existing energy-based models, incorporating stress ratio dependence for cases with negative mean stress. This model was tested for R values roughly between −0.22 and 0. Results showed that, for all samples at each raster orientation, most of the predicted fatigue lives fell within the upper and lower bounds, with a factor of ±2 across the entire range of load levels. These findings highlight the reliability of the proposed model for a wide range of R values when mean stress is negative. Full article
Show Figures

Figure 1

19 pages, 4188 KiB  
Article
Enhanced Mechanical and Electrical Performance of Epoxy Nanocomposites Through Hybrid Reinforcement of Carbon Nanotubes and Graphene Nanoplatelets: A Synergistic Route to Balanced Strength, Stiffness, and Dispersion
by Saba Yaqoob, Zulfiqar Ali, Alberto D’Amore, Alessandro Lo Schiavo, Antonio Petraglia and Mauro Rubino
J. Compos. Sci. 2025, 9(7), 374; https://doi.org/10.3390/jcs9070374 - 17 Jul 2025
Viewed by 354
Abstract
Carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) have attracted significant interest as hybrid reinforcements in epoxy (Ep) composites for enhancing mechanical performance in structural applications, such as aerospace and automotive. These 1D and 2D nanofillers possess exceptionally high aspect ratios and intrinsic mechanical [...] Read more.
Carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) have attracted significant interest as hybrid reinforcements in epoxy (Ep) composites for enhancing mechanical performance in structural applications, such as aerospace and automotive. These 1D and 2D nanofillers possess exceptionally high aspect ratios and intrinsic mechanical properties, substantially improving composite stiffness and tensile strength. In this study, epoxy nanocomposites were fabricated with 0.1 wt.% and 0.3 wt.% of CNTs and GNPs individually, and with 1:1 CNT:GNP hybrid fillers at equivalent total loadings. Scanning electron microscopy of fracture surfaces confirmed that the CNTGNP hybrids dispersed uniformly, forming an interconnected nanostructured network. Notably, the 0.3 wt.% CNTGNP hybrid system exhibited minimal agglomeration and voids, preventing crack initiation and propagation. Mechanical testing revealed that the 0.3 wt.% CNTGNP/Ep composite achieved the highest tensile strength of approximately 84.5 MPa while maintaining a well-balanced stiffness profile (elastic modulus ≈ 4.62 GPa). The hybrid composite outperformed both due to its synergistic reinforcement mechanisms and superior dispersion despite containing only half the concentration of each nanofiller relative to the individual 0.3 wt.% CNT or GNP systems. In addition to mechanical performance, electrical conductivity analysis revealed that the 0.3 wt.% CNTGNP hybrid composite exhibited the highest conductivity of 0.025 S/m, surpassing the 0.3 wt.% CNT-only system (0.022 S/m), owing to forming a well-connected three-dimensional conductive network. The 0.1 wt.% CNT-only composite also showed enhanced conductivity (0.0004 S/m) due to better dispersion at lower filler loadings. These results highlight the dominant role of CNTs in charge transport and the effectiveness of hybrid networks in minimizing agglomeration. These findings demonstrate that CNTGNP hybrid fillers can deliver optimally balanced mechanical enhancement in epoxy matrices, offering a promising route for designing lightweight, high-performance structural composites. Further optimization of nanofiller dispersion and interfacial chemistry may yield even greater improvements. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

22 pages, 3503 KiB  
Article
Advancing Compatibility and Interfacial Interaction Between PEEK and GNPs Through a Strategic Approach Using Pyrene-Functionalized PDMAEMA-b-PMMA Copolymer
by Chae-Yun Nam, Dohyun Im, Jun-Hyung Lee, Jinwon Kim, Kie-Yong Cho and Ho-Gyu Yoon
Polymers 2025, 17(12), 1599; https://doi.org/10.3390/polym17121599 - 8 Jun 2025
Viewed by 785
Abstract
Polyetheretherketone (PEEK), known for its high heat and chemical resistance and excellent mechanical properties, is extensively utilized, particularly as a metal substitute, in the automotive industry. Although PEEK exhibits outstanding properties, enhancements are essential to improve its practical performance. In this study, we [...] Read more.
Polyetheretherketone (PEEK), known for its high heat and chemical resistance and excellent mechanical properties, is extensively utilized, particularly as a metal substitute, in the automotive industry. Although PEEK exhibits outstanding properties, enhancements are essential to improve its practical performance. In this study, we aimed to improve the performance of PEEK by incorporating graphene nanoplatelets (GNPs) and optimizing their dispersion through non-covalent functionalization. We synthesized pyrene-functionalized poly(dimethylaminoethyl methacrylate)-b-poly(methyl methacrylate) (py-PDMAEMA-b-PMMA) as a compatibilizer of PEEK and GNPs and investigated the thermal, mechanical, and tribological properties of the PEEK/GNP composites—GNPs treated with py-PDMAEMA-b-PMMA (F-GNP) and untreated GNPs (pristine GNPs, P-GNP). The F-GNP composites exhibited higher crystallinity and tensile strength than the P-GNP composites, with the best performance observed at a GNP content of 0.1 wt.%. Furthermore, scanning electron microscopy analysis confirmed the enhanced tribological behavior (including a low friction coefficient and reduced abrasive wear) of the F-GNP composites. These enhancements were attributed to the improved interfacial bonding and uniform stress distribution enabled by py-PDMAEMA-b-PMMA. These findings highlight the potential of F-GNP composites to expand the application scope of PEEK to fields requiring superior mechanical performance, such as the automotive and electronics industries. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

25 pages, 3882 KiB  
Article
Graphene Nanoplatelets Reinforced ABS Nanocomposite Films by Sonication-Assisted Cast Film Technique for Emission Shielding Application
by Mohammed Iqbal Shueb, Noraiham Mohamad, Syarfa Zahirah Sapuan, Yee See Khee, Dewi Suriyani Che Halin, Andrei Victor Sandu and Petrica Vizureanu
Materials 2025, 18(11), 2645; https://doi.org/10.3390/ma18112645 - 5 Jun 2025
Viewed by 618
Abstract
The rapid proliferation of electronic devices has heightened the demand for efficient electromagnetic interference (EMI) shielding materials, as conventional alternatives increasingly fall short in mitigating harmful electromagnetic radiation. In this study, we report the fabrication of acrylonitrile butadiene styrene (ABS) nanocomposite films reinforced [...] Read more.
The rapid proliferation of electronic devices has heightened the demand for efficient electromagnetic interference (EMI) shielding materials, as conventional alternatives increasingly fall short in mitigating harmful electromagnetic radiation. In this study, we report the fabrication of acrylonitrile butadiene styrene (ABS) nanocomposite films reinforced with graphene nanoplatelets (GNPs), offering a promising solution to this growing challenge. A persistent issue in incorporating GNPs into the ABS matrix is their poor wettability, which impedes uniform dispersion. To overcome this, a sonication-assisted casting technique was employed, enabling effective integration of GNPs at loadings of 1, 3, and 5 wt%. The resulting nanocomposite films exhibit uniform dispersion and enhanced functional properties. Comprehensive characterization using FESEM, UV-Vis spectroscopy, TGA, DSC, FTIR, and dielectric/EMI analyses revealed significant improvements in thermal stability, UV absorption, and dielectric behavior. Notably, the films demonstrated moderate EMI shielding effectiveness, reaching 0.0064 dB at 4 MHz. These findings position the developed GNP-reinforced ABS nanocomposites as promising candidates for advanced applications in the automotive, aerospace, and electronics industries. Full article
(This article belongs to the Special Issue Obtaining and Characterization of New Materials (5th Edition))
Show Figures

Figure 1

16 pages, 3482 KiB  
Article
Conducting EVA/GNP Composite Films with Multifunctional Applications: Effect of the Phosphonium-Based Ionic Liquid
by André A. Schettini, Debora P. Schmitz, Beatriz S. Cunha and Bluma G. Soares
J. Compos. Sci. 2025, 9(6), 256; https://doi.org/10.3390/jcs9060256 - 23 May 2025
Viewed by 504
Abstract
The application of graphene nanoplatelets (GNPs) in polymer composites is a challenge due to their high tendency to agglomerate and restack during processing. In this work, alkyl phosphonium-based ionic liquid was used to assist the dispersion of GNP in an ethylene-vinyl acetate (EVA) [...] Read more.
The application of graphene nanoplatelets (GNPs) in polymer composites is a challenge due to their high tendency to agglomerate and restack during processing. In this work, alkyl phosphonium-based ionic liquid was used to assist the dispersion of GNP in an ethylene-vinyl acetate (EVA) matrix, through a melt-mixing procedure. The mechanical properties and creep resistance of the films prepared by the film extrusion process were evaluated. The results demonstrated that the noncovalent treatment of GNP with the ionic liquid (IL) enhanced the electrical conductivity and creep stability of the EVA composites. The microwave absorbing properties were studied in the X-band and Ku-band. A reflection loss (RL) of −15 dB for EVA containing 0.5 wt% of GNP and 1:1 wt% of GNP/IL was achieved. The use of a multi-layered structure containing thin film layers was efficient for enhancing the microwave absorbing performance, with a minimum RL of −24.6 dB and effective absorption bandwidth of 4.3 GHz. This result is attributed to the internal reflection and scattering of the radiation between layers. The use of simple, low-cost materials and procedures, combined with the system’s excellent mechanical and electrical properties, makes it a promising candidate for multifunctional applications as electrostatic dissipative and microwave absorbing materials for electronic packaging and other electronic devices. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

18 pages, 5791 KiB  
Article
Mechanical, Electrical and Fractural Characteristics of Carbon Nanomaterial-Added Cement Composites
by Manan Bhandari, Jianguang Yue and Il-Woo Nam
Appl. Sci. 2025, 15(9), 4673; https://doi.org/10.3390/app15094673 - 23 Apr 2025
Viewed by 483
Abstract
This study investigates the effects of different carbon nanomaterials (CNMs), namely, carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphene, and graphite nanoplatelets (GNP) on the mechanical, electrical, and fractural characteristics of cement composites. The electrical conductivity results indicated that CNT- and CNF-added composites exhibited [...] Read more.
This study investigates the effects of different carbon nanomaterials (CNMs), namely, carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphene, and graphite nanoplatelets (GNP) on the mechanical, electrical, and fractural characteristics of cement composites. The electrical conductivity results indicated that CNT- and CNF-added composites exhibited percolation threshold ranges of 0.1% to 0.3% and 0.3% to 1.0%, respectively. Regarding the mechanical properties tests, the composite with a 1.0% CNF showed the best results. Furthermore, fractural characteristics results indicated that even additions of the smallest dosage, i.e., 0.1% of CNM, exhibited positive results. Overall, the study highlighted the potential of CNM-added cement composites. Full article
Show Figures

Figure 1

19 pages, 5824 KiB  
Article
3D Printing and Electrospinning of Drug- and Graphene-Enhanced Polycaprolactone Scaffolds for Osteochondral Nasal Repair
by Izabella Rajzer, Anna Kurowska, Anna Nikodem, Jarosław Janusz, Adam Jabłoński, Magdalena Ziąbka, Elżbieta Menaszek, Jana Frankova, Wojciech Piekarczyk and Janusz Fabia
Materials 2025, 18(8), 1826; https://doi.org/10.3390/ma18081826 - 16 Apr 2025
Cited by 2 | Viewed by 2835
Abstract
A novel bi-layered scaffold, obtained via 3D printing and electrospinning, was designed to improve osteochondral region reconstruction. The upper electrospun membrane will act as a barrier against unwanted tissue infiltration, while the lower 3D-printed layer will provide a porous structure for tissue ingrowth. [...] Read more.
A novel bi-layered scaffold, obtained via 3D printing and electrospinning, was designed to improve osteochondral region reconstruction. The upper electrospun membrane will act as a barrier against unwanted tissue infiltration, while the lower 3D-printed layer will provide a porous structure for tissue ingrowth. Graphene was integrated into the scaffold for its antibacterial properties, and the drug Osteogenon® (OST) was added to promote bone tissue regeneration. The composite scaffolds were subjected to comprehensive physical, thermal, and mechanical evaluations. Additionally, their biological functionality was assessed by means of NHAC-kn cells. The 0.5% graphene addition to PCL significantly increased strain at break, enhancing the material ductility. GNP also acted as an effective nucleating agent, raising crystallization temperatures and supporting mineralization. The high surface area of graphene facilitated rapid apatite formation by attracting calcium and phosphate ions. This was confirmed by FTIR, µCT and SEM analyses, which highlighted the positive impact of graphene on mineral deposition. The synergistic interaction between graphene nanoplatelets and Osteogenon® created a bioactive environment that enhanced cell adhesion and proliferation, and promoted superior apatite formation. These findings highlight the scaffold’s potential as a promising biomaterial for osteochondral repair and regenerative medicine. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Graphical abstract

22 pages, 5693 KiB  
Article
Graphene Nanoplatelet Distribution Governs Thermal Conductivity and Stability of Paraffin-Based PCMs
by Levina E. A. Wijkhuijs, Pauline Schmit, Ingeborg Schreur-Piet, Henk Huinink, Remco Tuinier and Heiner Friedrich
Nanomaterials 2025, 15(8), 587; https://doi.org/10.3390/nano15080587 - 11 Apr 2025
Viewed by 623
Abstract
Materials for heat storage are important to fully utilize renewable energy sources and to realize a constant, on-demand supply. Organic phase change materials (PCMs) can play a crucial role in heat storage, as they have many advantages; however, their widespread commercial adoption is [...] Read more.
Materials for heat storage are important to fully utilize renewable energy sources and to realize a constant, on-demand supply. Organic phase change materials (PCMs) can play a crucial role in heat storage, as they have many advantages; however, their widespread commercial adoption is hindered by their low thermal conductivity and lack of cyclic stability. To enhance performance, highly thermally conductive fillers such as graphene nanoplatelets (GNPs) have been used; however, the role of the filler network has not been investigated. Here, we present, from a colloidal perspective, an in-depth study of GNP networks in paraffin PCMs. We investigate how GNP size, aspect ratio, and network topology determine thermal conductivity and cyclic stability of the composite. Our results show that the best-performing GNP network is random, with an optimized GNP aspect ratio. Filler fractions should be such that overlap between GNPs is guaranteed, which prevents leakage of paraffin from the composite, ensuring cyclic stability. These results not only contribute valuable insights into the design of new PCM composites but also emphasize the significance of considering filler geometry and network topology alongside filler type and fraction for optimizing thermal performance and cyclic stability. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

26 pages, 4983 KiB  
Article
Mechanical, Thermal, and Flammability Properties of Eco-Friendly Nanocomposites from Recycled PET/PA-11 Blends Reinforced with Graphene Nanoplatelets
by Unsia Habib, Mohammed E. Ali Mohsin, Zahid Iqbal Khan, Zurina Mohamad, Norhayani Othman, Suleiman Mousa, SK Safdar Hossain and Syed Sadiq Ali
Polymers 2025, 17(8), 1038; https://doi.org/10.3390/polym17081038 - 11 Apr 2025
Cited by 1 | Viewed by 776
Abstract
This study investigates the development of sustainable nanocomposites using recycled polyethylene terephthalate (RPET) and polyamide 11 (PA-11) blends reinforced with graphene nanoplatelets (GNPs). RPET/PA-11 blends were compatibilized with 2 phr Joncryl® and processed using melt blending followed by injection moulding. The effects [...] Read more.
This study investigates the development of sustainable nanocomposites using recycled polyethylene terephthalate (RPET) and polyamide 11 (PA-11) blends reinforced with graphene nanoplatelets (GNPs). RPET/PA-11 blends were compatibilized with 2 phr Joncryl® and processed using melt blending followed by injection moulding. The effects of varying GNP contents (1–4 phr) on mechanical, thermal, and flame-retardant properties were analysed. The nanocomposite with 1 phr GNPs exhibited an optimal balance of mechanical, flame-retardant, and thermal properties, along with improved dispersion compared to higher GNP loadings. Higher GNP concentrations led to increased stiffness but also promoted agglomeration, which negatively impacted tensile and impact strength. Thermal analysis revealed that GNPs influenced the cold crystallization behaviour of RPET, while the TGA results indicated a moderate enhancement in thermal stability. The maximum degradation temperature (Tmax) increased from 410.38 °C to 430.06 °C with 1 phr GNPs but declined at higher loadings. Similarly, flammability tests showed an improvement in the limiting oxygen index (LOI) from 19 to 24. Morphological analysis confirmed that GNPs facilitated PA-11 dispersion within the RPET matrix, particularly at lower GNP concentrations (1 phr). These findings highlight the potential of RPET/PA-11/GNP nanocomposites for multifunctional applications, providing an optimal balance between mechanical performance, thermal stability, and flame resistance. This research highlights the synergistic effect of GNPs in achieving sustainable, high-performance materials, addressing the challenges of plastic waste management and the need for eco-friendly engineering solutions for industries such as automotive, packaging, and construction. Full article
(This article belongs to the Collection Feature Papers in Polymer Processing and Engineering)
Show Figures

Figure 1

19 pages, 12145 KiB  
Article
Optimization of Processing Parameters of Powder Metallurgy for Preparing AZ31/GNP Nanocomposites Using Taguchi Method
by Sachin Kumar Sharma, Lozica Ivanović, Sandra Gajević, Lokesh Kumar Sharma, Yogesh Sharma, Slavica Miladinović and Blaža Stojanović
Appl. Sci. 2025, 15(8), 4181; https://doi.org/10.3390/app15084181 - 10 Apr 2025
Viewed by 517
Abstract
The systematic optimization approach highlights the potential of powder metallurgy and GNP reinforcement to enhance the mechanical properties of AZ31 magnesium alloys, making them suitable for lightweight structural applications. The present study employs the Taguchi approach to optimize the processing parameters of powder [...] Read more.
The systematic optimization approach highlights the potential of powder metallurgy and GNP reinforcement to enhance the mechanical properties of AZ31 magnesium alloys, making them suitable for lightweight structural applications. The present study employs the Taguchi approach to optimize the processing parameters of powder metallurgy for the fabrication of AZ31/graphene nanoplatelet (1.75 wt.%GNP) composites. The process parameters are varied at three levels, i.e., compaction pressure (250 MPa, 300 MPa, and 350 MPa), sintering temperature (500 °C, 550 °C, and 600 °C), and sintering time (45 min, 60 min, and 75 min) using an L9 orthogonal array. The impact of these parameters on microhardness and compressive strength was analyzed using a signal-to-noise (SN) ratio and an analysis of variance (ANOVA) approach. The results indicate that compaction pressure significantly influences both microhardness (72.99%) and compressive strength (68.38%), followed by sintering temperature and sintering time. Optimal parameter combinations (350 MPa, 600 °C, and 60 min) yielded maximum microhardness (108.5 Hv) and compressive strength (452.2 MPa). Regression models demonstrated strong predictive capabilities with R² values exceeding 85%. This study underscores the importance of efficient parameter optimization to achieve enhanced material properties in a cost-effective manner. Full article
Show Figures

Figure 1

21 pages, 3618 KiB  
Article
Ternary Restoration Binders as Piezoresistive Sensors: The Effect of Superplasticizer and Graphene Nanoplatelets’ Addition
by Maria-Evangelia Stogia, Ermioni D. Pasiou, Zoi S. Metaxa, Stavros K. Kourkoulis and Nikolaos D. Alexopoulos
Nanomaterials 2025, 15(7), 538; https://doi.org/10.3390/nano15070538 - 2 Apr 2025
Viewed by 551
Abstract
The present article investigates the effect of superplasticizer and graphene nanoplatelet addition on the flexural and electrical behaviour of nanocomposites for applications related to the restoration/conservation of Cultural Heritage Monuments in laboratory scale. Graphene nanoplatelets’ addition is used to transform the matrix into [...] Read more.
The present article investigates the effect of superplasticizer and graphene nanoplatelet addition on the flexural and electrical behaviour of nanocomposites for applications related to the restoration/conservation of Cultural Heritage Monuments in laboratory scale. Graphene nanoplatelets’ addition is used to transform the matrix into a piezo-resistive self-sensor by efficiently dispersing electrically conductive graphene nanoplatelets (GnPs) in the material matrix to create electrically conductive paths. Nevertheless, the appropriate dispersion is difficult to be achieved as the GnPs tend to agglomerate due to Van der Waals forces. To this end, the effect of the addition of carboxyl-based superplasticizer (SP) is proposed in the present investigation to efficiently disperse the GnPs in the water mix of the binders. Five (5) different ratios of SP per GnPs addition were examined. The GnPs concentration was chosen to be within the range of 0.05 to 1.50 wt.% of the binder. The same ultrasonic energy was applied in all of the suspensions to further aid the dispersion process. The incorporation of graphene nanoplatelets at low concentrations (0.15 wt.%) significantly increases flexural strength when added in equal quantity to superplasticizer (SP1 series). The SP addition at higher concentrations does not enhance the mechanical properties through effective dispersion of the GnPs. Additionally, a correlation was established between the electrical resistivity (ρ) values of the produced nanocomposites and the modulus of elasticity as a function of the GnPs concentration. The functional correlation between these parameters was also confirmed by linear regression analysis, resulting from the experimental data fitting. Finally, the acoustic emission (AE) can effectively capture damage evolution in such lime-based composites, while the emitted cumulative energy rises as the GnPs concentration is increased. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

20 pages, 6783 KiB  
Article
Tailoring the Conductivity and Flexibility of Natural Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-Based Biocomposites by Introduction of Carbon Nanomaterials and Atactic Poly-3-hydroxybutyrate
by Viktoriia Talaniuk, Marcin Godzierz, Wanda Sikorska, Grażyna Adamus, Aleksander Forys and Urszula Szeluga
Materials 2025, 18(7), 1585; https://doi.org/10.3390/ma18071585 - 1 Apr 2025
Viewed by 1474
Abstract
In the present work, we provide the development results of highly efficient conductive biopolymer composite films with potential use as piezoresistive sensors. Natural isotactic biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was selected as the primary biopolymer material. To reduce the crystallinity and improve the [...] Read more.
In the present work, we provide the development results of highly efficient conductive biopolymer composite films with potential use as piezoresistive sensors. Natural isotactic biopolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was selected as the primary biopolymer material. To reduce the crystallinity and improve the processability of PHBV, the synthetic atactic (R,S)poly-3-hydroxybutyrate ((R,S)-PHB) polyester was blended with the semicrystalline PHBV biopolyester. Graphene nanomaterials with different structures, comprising crude multi-walled carbon nanotubes (MWCNTs), oxidatively functionalized multi-walled carbon nanotubes (ox-MWCNTs) and graphene nanoplatelets (GNPs), were proposed as electroactive fillers. The preparation of the composites was based on a simplified solvent casting method and the conductive graphene fillers were dispersed into the biopolyester matrix without any further routines. As a result of the optimization, a PHBV/((R,S)-PHB) mass ratio of 70:30 was found to be the most promising composition to obtain composite films with the expected mechanical characteristics. The influence of graphene filler structure on the degree of crystallinity, viscoelastic, electrical, and piezoresistive properties obtained for of the composites was determined. The lowest PHBV/PHB matrix crystallinities of 37% (DSC) and 39% (XRD) were recorded for the composite with 1% ox-MWCNTs and 1% GNPs. The most promising piezoresistive responses were noted for composites filled simultaneously with 1% GNPs and 1% ox-MWCNTs or MWCNTs. However, a 1.5% deformation and recovery did not affect the initial conductivity of the PHBV/(R,S)-PHB +1%MWCNTs+1%GNP system (9 × 10−5 S/cm), while for the system with oxidized carbon nanotubes, the resistance increases by approximately 0.2% in relation to the initial value (8 × 10−6 S/cm). Full article
Show Figures

Figure 1

17 pages, 22554 KiB  
Article
Static and Fatigue Strength of Graphene Nanoplatelet-Reinforced AA6061-T6 Friction Stir Spot-Welded Lap Joints
by Amir Alkhafaji, Daniel Camas and Hayder Al-Asadi
J. Manuf. Mater. Process. 2025, 9(3), 98; https://doi.org/10.3390/jmmp9030098 - 18 Mar 2025
Viewed by 559
Abstract
Despite the significant economic and environmental advantages of friction stir spot welding (FSSW) and its amazing results in welding similar and dissimilar metals and alloys, some of which were known as unweldable, it has some structural and characteristic defects such as keyhole formation, [...] Read more.
Despite the significant economic and environmental advantages of friction stir spot welding (FSSW) and its amazing results in welding similar and dissimilar metals and alloys, some of which were known as unweldable, it has some structural and characteristic defects such as keyhole formation, hook defects, and bond line oxidation. This has prompted researchers to focus on these defects and propose and investigate techniques to treat or compensate for their deteriorating effects on microstructural and mechanical properties under different loading conditions. In this experimental study, sheets of AA6061-T6 aluminum alloy with a thickness of 1.8 mm were employed to investigate the influence of reinforcement by graphene nanoplatelets (GNPs) with lateral sizes of 1–10 µm and thicknesses of 3–9 nm on the static and fatigue behavior of FSSW lap joints. The welding process was carried out with constant, predetermined welding parameters and a constant amount of nanofiller throughout the experiment. Cross-sections of as-welded specimens were tested by optical microscope (OM) and energy-dispersive spectroscopy (EDS) to ensure the incorporation of the nanographene into the matrix of the base alloy by measuring the weight percentage (wt.%) of carbon. Microhardness and tensile tests revealed a significant improvement in both tensile shear strength and micro-Vickers hardness due to the reinforcement process. The fatigue behavior of the GNP-reinforced FSSW specimens was evaluated under low and high cycle fatigue conditions. The reinforcement process had a detrimental effect on the fatigue life of the joints under cyclic loading conditions. The microstructural analysis and examinations conducted during this study revealed that this reduction in fatigue strength is attributed to the agglomeration of GNPs at the grain boundaries of the aluminum matrix, leading to porosity in the stir zone (SZ), the formation of continuous brittle phases, and a transition in the fracture mechanism from ductile to brittle. The experimental results, including fracture modes, are presented and thoroughly discussed. Full article
Show Figures

Figure 1

15 pages, 4119 KiB  
Article
Enhanced Tribological and Electrical Performance of Graphene-Coated Polyetheretherketone Nanocomposites
by Pyoung-Chan Lee, Seo-Hwa Hong, Jung-Hoon Kim, Jae-Young Seo, Youn-Ki Ko, Jin-Uk Ha, Sun-Kyoung Jeoung, Myeong-Gi Kim and Beom-Gon Cho
Polymers 2025, 17(6), 721; https://doi.org/10.3390/polym17060721 - 9 Mar 2025
Viewed by 963
Abstract
Polyetheretherketone (PEEK) is widely used across various industries due to its high thermal stability, chemical resistance, and superior mechanical properties. However, its tribological and electrical properties require enhancement for advanced applications. This study investigates the effect of graphene coating on PEEK microspheres to [...] Read more.
Polyetheretherketone (PEEK) is widely used across various industries due to its high thermal stability, chemical resistance, and superior mechanical properties. However, its tribological and electrical properties require enhancement for advanced applications. This study investigates the effect of graphene coating on PEEK microspheres to improve their performance. Functionalized graphene oxide (CMG+) and graphene nanoplatelets (GnPs) were introduced onto the PEEK surface via an electrostatic self-adsorption process, followed by high-speed mixing and hot-pressing to fabricate PEEK–graphene nanocomposites. The structural, thermal, tribological, and electrical properties of the composites were systematically analyzed. The results show that graphene acts as a nucleating agent, enhancing the crystallinity of the nanocomposites. Tribological tests indicate that CMG+ significantly reduces the friction coefficient, with CMG1.0 and CMG2.0 samples showing friction reductions of 54% and 63%, respectively, compared to pure PEEK. Moreover, electrical property evaluations reveal that surface resistance decreases with increasing graphene content, achieving optimal conductivity at 1.0 wt.% CMG+ and further enhancement with the addition of GnPs. These findings demonstrate that the functionalized graphene-coated PEEK microspheres exhibit superior tribological and electrical performance due to nanoscale interactions, making them suitable for electrostatically dissipative and wear-resistant applications. Full article
(This article belongs to the Special Issue Synthesis and Applications of Polymer-Based Nanocomposites)
Show Figures

Graphical abstract

Back to TopTop