Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (314)

Search Parameters:
Keywords = graphene dioxide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 5040 KiB  
Article
The Investigation of a Biocide-Free Antifouling Coating on Naval Steels Under Both Simulated and Actual Seawater Conditions
by Polyxeni Vourna, Pinelopi P. Falara and Nikolaos D. Papadopoulos
Processes 2025, 13(8), 2448; https://doi.org/10.3390/pr13082448 (registering DOI) - 1 Aug 2025
Viewed by 25
Abstract
This study developed a water-soluble antifouling coating to protect ship hulls against corrosion and fouling without the usage of a primer. The coating retains its adhesion to the steel substrate and reduces corrosion rates compared to those for uncoated specimens. The coating’s protective [...] Read more.
This study developed a water-soluble antifouling coating to protect ship hulls against corrosion and fouling without the usage of a primer. The coating retains its adhesion to the steel substrate and reduces corrosion rates compared to those for uncoated specimens. The coating’s protective properties rely on the interaction of conductive polyaniline (PAni) nanorods, magnetite (Fe3O4) nanoparticles, and graphene oxide (GO) sheets modified with titanium dioxide (TiO2) nanoparticles. The PAni/Fe3O4 nanocomposite improves the antifouling layer’s out-of-plane conductivity, whereas GO increases its in-plane conductivity. The anisotropy in the conductivity distribution reduces the electrostatic attraction and limits primary bacterial and pathogen adsorption. TiO2 augments the conductivity of the PAni nanorods, enabling visible light to generate H2O2. The latter decomposes into H2O and O2, rendering the coating environmentally benign. The coating acts as an effective barrier with limited permeability to the steel surface, demonstrating outstanding durability for naval steel over extended periods. Full article
(This article belongs to the Special Issue Metal Material, Coating and Electrochemistry Technology)
Show Figures

Figure 1

34 pages, 5133 KiB  
Article
New Scalable Electrosynthesis of Distinct High Purity Graphene Nanoallotropes from CO2 Enabled by Transition Metal Nucleation
by Kyle Hofstetter, Gad Licht and Stuart Licht
Crystals 2025, 15(8), 680; https://doi.org/10.3390/cryst15080680 - 25 Jul 2025
Viewed by 164
Abstract
The electrochemical conversion of CO2 into high-purity Graphene NanoCarbon (GNC) materials provides a compelling path to address climate change while producing economically valuable nanomaterials. This work presents the progress and prospects of new large-scale syntheses of GNC allotropes via the C2CNT (CO [...] Read more.
The electrochemical conversion of CO2 into high-purity Graphene NanoCarbon (GNC) materials provides a compelling path to address climate change while producing economically valuable nanomaterials. This work presents the progress and prospects of new large-scale syntheses of GNC allotropes via the C2CNT (CO2 to Carbon Nano Technology) process. The C2CNT molten carbonate electrolysis technique enables the formation of Carbon NanoTubes (CNTs), Magnetic CNTs (MCNTs), Carbon Nano-Onions (CNOs), Carbon Nano-Scaffolds (CNSs), and Helical CNTs (HCNTs) directly from atmospheric or industrial CO2. We discuss the morphology control enabled through variations in electrolyte composition, temperature, current density, and nucleation additives. We present results from scaled operations reaching up to 1000 tons/year CO2 conversion and propose design approaches to reach megaton scales to support climate mitigation and GNC mass production. The products demonstrate high crystallinity, as evidenced by Raman, XRD, SEM, and TGA analyses, and offer promising applications in electronics, construction, catalysis, and medical sectors. Full article
(This article belongs to the Special Issue Exploring New Materials for the Transition to Sustainable Energy)
23 pages, 8320 KiB  
Review
Investigation of Phosphorus Dendrons and Their Properties for the Functionalization of Materials
by Cédric-Olivier Turrin, Valérie Maraval and Anne-Marie Caminade
J. Compos. Sci. 2025, 9(8), 382; https://doi.org/10.3390/jcs9080382 - 22 Jul 2025
Viewed by 288
Abstract
Dendrons, also named dendritic wedges, are a kind of molecular tree, having a branched structure linked to a functional core. The functional core can be used in particular for the functionalization of materials. Different types of dendrons are known, synthesized either by a [...] Read more.
Dendrons, also named dendritic wedges, are a kind of molecular tree, having a branched structure linked to a functional core. The functional core can be used in particular for the functionalization of materials. Different types of dendrons are known, synthesized either by a convergent process, from the external part to the core, or by a divergent process from the core to the external part. Polyphosphorhydrazone (PPH) dendrons are always synthesized by a divergent process, which enables a fine-tuning of both the core function and the external functions. They have been used for the functionalization of diverse materials such as silica, titanium dioxide, gold, graphene oxide, or different types of nanoparticles. Nanocomposites based on materials functionalized with PPH dendrons have been used in diverse fields such as catalysts, chemical sensors, for trapping pollutants, to support cell cultures, and against cancers, as will be emphasized in this review. Full article
(This article belongs to the Special Issue Functional Composites: Fabrication, Properties and Applications)
Show Figures

Scheme 1

15 pages, 3095 KiB  
Article
Effect of Silver/Reduced Graphene Oxide@Titanium Dioxide (Ag/rGO@TiO2) Nanocomposites on the Mechanical Characteristics and Biocompatibility of Poly(Styrene-co-Methyl Methacrylate)-Based Bone Cement
by Mohan Raj Krishnan, Reem M. Alshabib and Edreese H. Alsharaeh
Polymers 2025, 17(14), 1970; https://doi.org/10.3390/polym17141970 - 18 Jul 2025
Viewed by 300
Abstract
This study reports the impact of a silver nanoparticles/reduced graphene oxide@titanium dioxide nanocomposite (Ag/rGO@TiO2) on the mechanical and biocompatibility properties of poly(styrene-co-methylmethacrylate)/poly methyl methacrylate (PS-PMMA/PMMA)-based bone cement. The chemical, structural, mechanical, and thermal characteristics of Ag/rGO@TiO2 nanocomposite-reinforced PS-PMMA bone cement [...] Read more.
This study reports the impact of a silver nanoparticles/reduced graphene oxide@titanium dioxide nanocomposite (Ag/rGO@TiO2) on the mechanical and biocompatibility properties of poly(styrene-co-methylmethacrylate)/poly methyl methacrylate (PS-PMMA/PMMA)-based bone cement. The chemical, structural, mechanical, and thermal characteristics of Ag/rGO@TiO2 nanocomposite-reinforced PS-PMMA bone cement ((Ag/rGO@TiO2)/(PS-PMMA)/PMMA) were evaluated using Fourier Transform Infrared spectroscopy (FT-IR), X-ray diffraction (XRD), nano-indentation, and electron microscopy. FT-IR, XRD, and transmission electron microscopy results confirmed the successful synthesis of the nanocomposite and the nanocomposite-incorporated bone cement. The elastic modulus (E) and hardness (H) of the ((Ag/rGO@TiO2)/(PS-PMMA)/PMMA) bone cement were measured to be 5.09 GPa and 0.202 GPa, respectively, compared to the commercial counterparts, which exhibited E and H values of 1.7 GPa to 3.7 GPa and 0.174 GPa, respectively. Incorporating Ag/rGO@TiO2 nanocomposites significantly enhanced the thermal properties of the bone cement. Additionally, in vitro studies demonstrated that the bone cement was non-toxic to the MG63 cell line. Full article
(This article belongs to the Special Issue Recent Advances and Applications of Polymer Nanocomposites)
Show Figures

Figure 1

18 pages, 2187 KiB  
Article
Study of Three-Component Fe2O3/TiO2/rGO Nanocomposite Thin Films Anode for Lithium-Ion Batteries
by Kaspars Kaprans, Gunars Bajars and Gints Kucinskis
Energies 2025, 18(13), 3490; https://doi.org/10.3390/en18133490 - 2 Jul 2025
Viewed by 335
Abstract
In this study, we synthesized anode materials based on iron oxide (Fe2O3), titanium dioxide (TiO2), and reduced graphene oxide (rGO) via the electrophoretic deposition technique. The structural and morphological characteristics of electrodes were examined through various methods [...] Read more.
In this study, we synthesized anode materials based on iron oxide (Fe2O3), titanium dioxide (TiO2), and reduced graphene oxide (rGO) via the electrophoretic deposition technique. The structural and morphological characteristics of electrodes were examined through various methods including SEM, XRD, Raman, and XPS. Among the investigated compositions, the three-component Fe2O3/TiO2/rGO electrode displayed superior electrochemical characteristics in comparison to the binary Fe2O3/rGO and TiO2/rGO electrodes. Specific capacities of 571, 683, and 729 mAh/g were achieved at 0.5 mA for the respective Fe2O3:TiO2 molar ratios of 1:1, 2:1, and 3:1. The 2:1 ratio configuration offered the most promising balance between cycling stability and capacity, highlighting its potential as a high-performance anode in lithium-ion batteries. This work contributes valuable insights into the synergistic behavior of dual-transition metal oxides in composite electrode design using a low-cost and scalable method. Full article
Show Figures

Figure 1

20 pages, 5663 KiB  
Article
Nanoparticle-Enhanced Engine Oils for Automotive Applications: Thermal Conductivity and Heat Capacity Improvements
by G. D. C. P. Galpaya, M. D. K. M. Gunasena, D. K. A. Induranga, H. V. V. Priyadarshana, S. V. A. A. Indupama, E. R. J. M. D. D. P. Wijesekara, M. I. Ishra, M. M. M. G. P. G. Mantilaka and K. R. Koswattage
Molecules 2025, 30(13), 2695; https://doi.org/10.3390/molecules30132695 - 22 Jun 2025
Viewed by 583
Abstract
The poor thermal and physical properties of conventional engine oils limit vehicle performance and durability. This research aims to investigate the effect of nanoparticles such as fullerene C60, titanium dioxide (TiO2), iron oxide (Fe2O3), and [...] Read more.
The poor thermal and physical properties of conventional engine oils limit vehicle performance and durability. This research aims to investigate the effect of nanoparticles such as fullerene C60, titanium dioxide (TiO2), iron oxide (Fe2O3), and reduced graphene oxide (rGO) nanoparticles on 10W30 Mobil engine oil. In this study, the effect of nanoparticle concentrations at different mass fractions (0.01, 0.05, and 0.1) was examined within the temperature range 30–120 °C. The nanofluids were prepared using a two-step direct mixing method and thermal properties were measured using a LAMBDA thermal conductivity meter, which uses the transient hot wire method according to the ISO standards. Due to the low concentrations of the nanofluids, surfactants were not required at all, and the stability of the nanofluids was visually monitored over a period of four weeks. Accordingly, the largest improvement in thermal conductivity occurred with TiO2/10W30 at a mass fraction of 0.1 wt.% at 80 °C, and the specific heat capacity improved due to Fe2O3/10W30 addition at a mass fraction of 0.1 at 70 °C; these were 5.8% and 14.4%, respectively, for the base oil. Thermal diffusivity remained largely unaffected by the addition of the nanoparticles, and fullerene C60 showed no significant effect on any thermal property. It was concluded that the thermal properties of the engine oil were considerably enhanced by the added nanoparticles at different weight fractions and temperature values. Full article
Show Figures

Figure 1

14 pages, 2670 KiB  
Communication
The Potential of MN4-GPs (M = Mn, Fe, Co, Ni, Cu, Mo) as Adsorbents for the Efficient Separation of CH4 from CO2 and H2S
by Shiqian Wei, Xinyu Tian, Zhen Rao, Chunxia Wang, Rui Tang, Ying He, Yu Luo, Qiang Fan, Weifeng Fan and Yu Hu
Materials 2025, 18(12), 2907; https://doi.org/10.3390/ma18122907 - 19 Jun 2025
Viewed by 323
Abstract
Carbon dioxide (CO2) and hydrogen sulfide (H2S) as harmful gases are always associated with methane (CH4) in natural gas, biogas, and landfill gas. Given that chemisorption and physisorption are the key gas separation technologies in industry, selecting [...] Read more.
Carbon dioxide (CO2) and hydrogen sulfide (H2S) as harmful gases are always associated with methane (CH4) in natural gas, biogas, and landfill gas. Given that chemisorption and physisorption are the key gas separation technologies in industry, selecting appropriate adsorbents is crucial to eliminate these harmful gases. The adsorption of CH4, CO2, and H2S has been studied based on the density functional theory (DFT) in this work to evaluate the feasibility of transition metal (M = Mn, Fe, Co, Ni, Cu, Mo) porphyrin-like moieties embedded in graphene sheets (MN4-GPs) as adsorbents. It was found that the interactions between gas molecules and MN4-GPs (M = Mn, Fe, Co, Ni, Cu, Mo) are different. The weaker interactions between CH4 and MN4-GPs (M = Co, Ni, Cu, Mo) than those between CO2 and MN4-GPs or between H2S and MN4-GPs are beneficial to the separation of CH4 from CO2 and H2S. The maximum difference in the interactions between gas molecules and MoN4-GPs means that MoN4-GPs have the greatest potential to become adsorbents. The different interfacial interactions are related to the amount of charge transfer, which could promote the formation of bonds between gas molecules and MN4-GPs to effectively enhance the interfacial interactions. Full article
Show Figures

Figure 1

17 pages, 4075 KiB  
Article
Design and Properties of Titanium Dioxide/Graphene Oxide Composites Exploitable in Wastewater Treatments
by Simona Ortelli, Lara Faccani, Enrico Ercolani, Ilaria Zanoni, Chiara Artusi, Magda Blosi, Stefania Albonetti and Anna Luisa Costa
Water 2025, 17(12), 1809; https://doi.org/10.3390/w17121809 - 17 Jun 2025
Viewed by 449
Abstract
Water is one of the necessities for human survival, and clean water is essential for life. As a result, there is an increasing focus on efficient wastewater treatment methods, including advanced oxidation processes using innovative heterogeneous photocatalysts. In this context, TiO2–graphene [...] Read more.
Water is one of the necessities for human survival, and clean water is essential for life. As a result, there is an increasing focus on efficient wastewater treatment methods, including advanced oxidation processes using innovative heterogeneous photocatalysts. In this context, TiO2–graphene oxide (TGO) composites offer a multifaceted approach to wastewater treatment, combining the photocatalytic properties of TiO2 with the adsorption capabilities and potential synergistic effects of graphene oxide. In this research, we intimately mixed commercial TiO2 powder with graphene oxide at different concentrations (9, 16, and 25 wt.%) by exploiting sonochemical activation. The morphological and physicochemical analyses confirmed the interfacial interactions and the successful formation of the composite. The TGO composites exhibited increased reactivity compared to both GO and TiO2 phases, during the photodegradation process of Rhodamine B (RhB), serving as a reaction model. Therefore, the photocatalytic results demonstrated the synergistic effect that occurs when a TiO2-based photocatalyst is combined with sonochemically activated GO. The Cu2+ adsorption tests, simulating the removal of heavy metals from contaminated water, revealed that TGO composites displayed intermediate capabilities compared to the pure phases’ higher (GO) and lower (TiO2) adsorption capacity. The functional characterizations revealed that the optimal design is represented by the sample containing 16 wt.% of GO. Overall, this study confirms that TGO composites are effective as photocatalysts and adsorbents for removing both organic and inorganic pollutants, making them strong candidates for wastewater treatment. Full article
(This article belongs to the Special Issue Recent Advances in Photocatalysis in Water and Wastewater Treatment)
Show Figures

Graphical abstract

12 pages, 1406 KiB  
Article
Switchable THz Bi-Functional Device for Absorption and Dual-Band Linear-to-Circular Polarization Conversion Based on Vanadium Dioxide–Graphene
by Yiqu Wang, Haohan Xie, Rong Liu and Jun Dong
Sensors 2025, 25(12), 3644; https://doi.org/10.3390/s25123644 - 10 Jun 2025
Viewed by 559
Abstract
This academic paper proposes a terahertz (THz) device featuring dynamic adjustability. This device relies on composite metamaterials made of graphene and vanadium dioxide (VO2). By integrating the electrically adjustable traits of graphene with the phase transition attributes of VO2 [...] Read more.
This academic paper proposes a terahertz (THz) device featuring dynamic adjustability. This device relies on composite metamaterials made of graphene and vanadium dioxide (VO2). By integrating the electrically adjustable traits of graphene with the phase transition attributes of VO2, the suggested metamaterial device can achieve both broadband absorption and dual-band linear-to-circular polarization conversion (LCPC) in the terahertz frequency range. When VO2 is in its metallic state and the Fermi level of graphene is set to zero electron volts (eV), the device shows remarkable broadband absorption. Specifically, it attains an absorption rate exceeding 90% within the frequency span of 2.28–3.73 terahertz (THz). Moreover, the device displays notable polarization insensitivity and high resistance to changes in the incident angle. Conversely, when VO2 shifts to its insulating state and the Fermi level of graphene stays at 0 eV, the device operates as a highly effective polarization converter. It attains the best dual-band linear-to-circular polarization conversion within the frequency ranges of 4.31–5.82 THz and 6.77–7.93 THz. Following the alteration of the Fermi level of graphene, the device demonstrated outstanding adjustability. The designed multi-functional device features a simple structure and holds significant application potential in terahertz technologies, including cloaking technology, reflectors, and spatial modulators. Full article
Show Figures

Figure 1

21 pages, 4061 KiB  
Article
Pore Engineering in Carbon Monoliths Through Soft Templating, In Situ Grown Graphene, and Post-Activation for CO2 Capture, H2 Storage, and Electrochemical Capacitor
by Madhav P. Chavhan, Moomen Marzouki, Mouna Jaouadi, Ouassim Ghodbane, Gabriela Zelenková, Miroslav Almasi, Monika Maříková, Petr Bezdicka, Jakub Tolasz and Natalija Murafa
Nanomaterials 2025, 15(12), 900; https://doi.org/10.3390/nano15120900 - 10 Jun 2025
Viewed by 520
Abstract
Controlled porosity with precise pore sizes in carbon monoliths (CMs) is crucial for optimizing performance in electrochemical energy storage and adsorption applications. This study explores the influence of porosity in CMs, developed from polymer precursors via the sol–gel route, employing soft templating, in [...] Read more.
Controlled porosity with precise pore sizes in carbon monoliths (CMs) is crucial for optimizing performance in electrochemical energy storage and adsorption applications. This study explores the influence of porosity in CMs, developed from polymer precursors via the sol–gel route, employing soft templating, in situ graphene growth, and post-activation. The effects on CO2 and H2 sorption and electrochemical capacitor (EC) performance are analyzed. Graphene is successfully grown in situ from graphene oxide (GO), as confirmed by several characterization analyses. The amount of GO incorporated influences the crosslink density of the polymer gel, generating various pore structures at both micro- and mesoscales, which impacts performance. For instance, CO2 capture peaks at 5.01 mmol g−1 (0 °C, 101 kPa) with 10 wt % GO, due to the presence of wider micropores that allow access to ultramicropores. For H2 storage, the best performance is achieved with 5 wt % GO, reaching 12.8 mmol g−1 (−196 °C, 101 kPa); this is attributed to the enlarged micropore volumes between 0.75 and 2 nm that are accessible by mesopores of 2 to 3 nm. In contrast, for the ECs, lower GO loadings (0.5 to 2 wt %) improve ion accessibility via mesopores (4 to 6 nm), enhancing rate capability through better conduction. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

19 pages, 6178 KiB  
Article
Enhanced Photoelectrochromic Performance of WO3 Through MoS2 and GO–MoS2 Quantum Dot Doping for Self-Powered Smart Window Application
by Jacinta Akoth Okwako, Seung-Han Song, Sunghyoek Park, Sebastian Waita, Bernard Aduda, Young-Sik Hong and Chi-Hwan Han
Energies 2025, 18(10), 2411; https://doi.org/10.3390/en18102411 - 8 May 2025
Viewed by 558
Abstract
Photoelectrochromic devices, which combine light-induced color change with energy-efficient optical modulation, have attracted significant attention for applications such as smart windows, displays, and optical sensors. However, achieving high optical modulation, fast switching speeds, and long-term stability remains a major challenge. In this study, [...] Read more.
Photoelectrochromic devices, which combine light-induced color change with energy-efficient optical modulation, have attracted significant attention for applications such as smart windows, displays, and optical sensors. However, achieving high optical modulation, fast switching speeds, and long-term stability remains a major challenge. In this study, we explore the structural and photoelectrochromic enhancements in tungsten oxide (WO3) films achieved by doping with molybdenum disulfide quantum dots (MoS2 QDs) and grapheneoxide–molybdenum disulfide quantum dots (GO–MoS2 QDs) for advanced photoelectrochromic devices. X-ray diffraction (XRD) analysis revealed that doping with MoS2 QDs and GO–MoS2 QDs leads to a reduction in the crystallite size of WO3, as evidenced by the broadening and decrease in peak intensity. Transmission Electron Microscopy (TEM) confirmed the presence of characteristic lattice fringes with interplanar spacings of 0.36 nm, 0.43 nm, and 0.34 nm, corresponding to the planes of WO3, MoS2, and graphene. Energy-Dispersive X-ray Spectroscopy (EDS) mapping indicated a uniform distribution of tungsten, oxygen, molybdenum, and sulfur, suggesting homogeneous doping throughout the WO3 matrix. Scanning Electron Microscopy (SEM) analysis showed a significant decrease in film thickness from 724.3 nm for pure WO3 to 578.8 nm for MoS2 QD-doped WO3 and 588.7 nm for GO–MoS2 QD-doped WO3, attributed to enhanced packing density and structural reorganization. These structural modifications are expected to enhance photoelectrochromic performance by improving charge transport and mechanical stability. Photoelectrochromic performance analysis showed a significant improvement in optical modulation upon incorporating MoS2 QDs and GO–MoS2 QDs into the WO3 matrix, achieving a coloration depth of 56.69% and 70.28% at 630 nm, respectively, within 10 min of 1.5 AM sun illumination, with more than 90% recovery of the initial transmittance within 7 h in dark conditions. Additionally, device stability was improved by the incorporation of GO–MoS2 QDs into the WO3 layer. The findings demonstrate that incorporating MoS2 QDs and GO–MoS2 QDs effectively modifies the structural properties of WO3, making it a promising material for high-performance photoelectrochromic applications. Full article
Show Figures

Figure 1

15 pages, 4930 KiB  
Article
Organophosphorus Pesticide Photoelectrochemical/Electrochemical Dual-Mode Smartsensors Derived from Synergistic Co,N-TiO2@ZrO2/3DGH Platform
by Zhouxiaolong Zhang, Hongting Ma, Hao Mo and Nan Zhu
Chemosensors 2025, 13(5), 167; https://doi.org/10.3390/chemosensors13050167 - 5 May 2025
Viewed by 711
Abstract
Organophosphorus pesticides (OPs), while pivotal for agricultural productivity, pose severe environmental and health risks due to their persistence and bioaccumulation. Existing detection methods, such as chromatography and spectroscopy, face limitations in field adaptability, cost, and operational complexity. To address these challenges, this study [...] Read more.
Organophosphorus pesticides (OPs), while pivotal for agricultural productivity, pose severe environmental and health risks due to their persistence and bioaccumulation. Existing detection methods, such as chromatography and spectroscopy, face limitations in field adaptability, cost, and operational complexity. To address these challenges, this study introduces a novel dual-mode photoelectrochemical–electrochemical (PEC-EC) sensor based on a Co,N-TiO2@ZrO2/3DGH nanocomposite. The sensor synergistically integrates zirconium oxide (ZrO2) for selective OP capture via phosphate-Zr coordination, cobalt-nitrogen co-doped titanium dioxide (Co,N-TiO2) for visible-light responsiveness, and a three-dimensional graphene hydrogel (3DGH) for enhanced conductivity. In the PEC mode under light irradiation, OP adsorption induces charge recombination, yielding a logarithmic photocurrent attenuation with a detection limit of 0.058 ng mL−1. Subsequently, the EC mode via square wave voltammetry (SWV) self-validates the results, achieving a detection limit of 0.716 ng mL−1. The dual-mode system demonstrates exceptional reproducibility, long-term stability, and selectivity against common interferents. Parallel measurements revealed <5% inter-mode discrepancy, validating the intrinsic self-checking capability. This portable platform bridges the gap between laboratory-grade accuracy and field-deployable simplicity, offering transformative potential for environmental monitoring and food safety management. Full article
Show Figures

Figure 1

20 pages, 19306 KiB  
Article
Integrated Development of Mechanical Strength and Thermoelectric Properties in Cement Composites Incorporating Graphene Oxide and Manganese Dioxide
by Jude Shalitha Perera, Anuradha Silva, Priyan Mendis, Shanaka Kristombu Baduge, Aathavan Kuhanandha, Lochlan Hau and Philip Trinh
J. Compos. Sci. 2025, 9(4), 196; https://doi.org/10.3390/jcs9040196 - 21 Apr 2025
Viewed by 539
Abstract
Cement-based thermoelectric materials are gaining popularity among materials scientists due to their robust mechanical characteristics and suitability for thermal energy harvesting in building applications. However, despite advancements in the development of these materials, a significant knowledge gap persists regarding their mechanical characterisation. This [...] Read more.
Cement-based thermoelectric materials are gaining popularity among materials scientists due to their robust mechanical characteristics and suitability for thermal energy harvesting in building applications. However, despite advancements in the development of these materials, a significant knowledge gap persists regarding their mechanical characterisation. This research aimed to enhance the thermoelectric performance of cement composites through the incorporation of graphene oxide (GO) and manganese dioxide (MnO2), while ensuring adequate compressive strength was maintained. An experimental investigation was conducted to simultaneously assess both properties of cement composites using identical specimens. Additionally, microstructural analysis of the samples was performed to further understand the integrated development of these two properties. To evaluate the integrative properties, a Pareto analysis was performed to identify the Pareto-optimal solutions for specific applications. Additionally, a new index, termed the Thermoelectric Strength Index (TSI), was developed to compare materials in applications where both thermoelectric efficiency and mechanical robustness are important. The findings indicated that while both GO and MnO2 enhanced the thermoelectric properties of cement, their reactions with the cement phases produced distinct relationships with compressive strength, especially when GO and MnO2 were added together. The TSI demonstrated that MnO2 was superior for simultaneously enhancing mechanical strength and thermoelectric performance, with the 7.5 wt.% formulation yielding the best results. This study demonstrates the complex interrelationship between the mechanical strength and thermoelectric properties of the investigated fillers, underscoring the necessity for a holistic approach in the development of thermoelectric cement composites. Full article
(This article belongs to the Special Issue Mechanical Properties of Composite Materials and Joints)
Show Figures

Figure 1

19 pages, 6273 KiB  
Article
Enhanced Efficiency of CZTS Solar Cells with Reduced Graphene Oxide and Titanium Dioxide Layers: A SCAPS Simulation Study
by Dounia Fatihi, Giorgio Tseberlidis, Vanira Trifiletti, Simona Binetti, Eleonora Isotta, Paolo Scardi, Abderrafi Kamal, R’hma Adhiri and Narges Ataollahi
ChemEngineering 2025, 9(2), 38; https://doi.org/10.3390/chemengineering9020038 - 1 Apr 2025
Viewed by 1127
Abstract
Copper zinc tin sulfide (commonly known as CZTS) solar cells (SCs) are gaining attention as a promising technology for sustainable electricity generation owing to their cost-effectiveness, availability of materials, and environmental advantages. The goal of this study is to enhance CZTS SC performance [...] Read more.
Copper zinc tin sulfide (commonly known as CZTS) solar cells (SCs) are gaining attention as a promising technology for sustainable electricity generation owing to their cost-effectiveness, availability of materials, and environmental advantages. The goal of this study is to enhance CZTS SC performance by adding a back surface field (BSF) layer. SC capacitance simulator software (SCAPS) was used to examine three different configurations. Another option is to replace the cadmium sulfide (CdS) buffer layer with a titanium dioxide (TiO2) layer. The results demonstrate that the reduced graphene oxide (rGO) BSF layer increases the conversion efficiency by 25.68% and significantly improves the fill factor, attributed to lowering carrier recombination and creating a quasi-ohmic contact at the interface between the metal and semiconductor. Furthermore, replacing the CdS buffer layer with TiO2 offers potential efficiency gains and mitigates environmental concerns associated with the toxicity of CdS. The results of this investigation could enhance the efficiency and viability of CZTS SCs for future energy applications. However, it is observed that BSF layers may become less effective at elevated temperatures due to increased recombination, leading to reduced carrier lifetime. This study underlines valuable insights into optimizing CZTS SC performance through advanced material choices, highlighting the dual benefits of improved efficiency and reduced environmental impact. Full article
(This article belongs to the Special Issue New Advances in Chemical Engineering)
Show Figures

Figure 1

30 pages, 6154 KiB  
Review
Recent Advances in Cu-Based Metal–Organic Framework Electrocatalysts for CO2 Reduction Reactions
by Honglin Gao, Ting Yang, Wen Nie, Yuefeng Gao, Zhen Wang and Aiyi Dong
Catalysts 2025, 15(4), 328; https://doi.org/10.3390/catal15040328 - 30 Mar 2025
Viewed by 1284
Abstract
The electrochemical reduction of carbon dioxide (CO2RR) utilizing intermittent electricity from renewable energy sources represents an emerging and promising approach to achieve carbon neutrality and mitigate the greenhouse effect. This review comprehensively summarizes recent advances in Cu-based metal–organic framework (MOF) electrocatalysts [...] Read more.
The electrochemical reduction of carbon dioxide (CO2RR) utilizing intermittent electricity from renewable energy sources represents an emerging and promising approach to achieve carbon neutrality and mitigate the greenhouse effect. This review comprehensively summarizes recent advances in Cu-based metal–organic framework (MOF) electrocatalysts for CO2RR, focusing on their applications in producing C1 and C2+ products. This paper highlights key strategies such as nanostructure manipulation, multi-component tandem catalysis, single-atom alloying, and ligand functionalization to optimize the binding energies of intermediate species and promote selective CO2RR pathways. Numerous examples are presented, showcasing remarkable Faradaic efficiencies and product selectivities achieved through rational catalyst design. Furthermore, the use of MOF-derived materials and composites with other materials, like carbon nanotubes, graphene, and metal oxides, is discussed to enhance conductivity, stability, and selectivity. Despite the significant progress, challenges remain in achieving stable and scalable catalysts with high activity and selectivity towards specific C2+ products. This review underscores the importance of precise control of catalyst composition, structure, and surface properties to tackle these challenges and provides valuable insights for future research directions in developing advanced Cu-based MOF electrocatalysts for practical applications in CO2 conversion technologies. Full article
Show Figures

Figure 1

Back to TopTop