Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (90)

Search Parameters:
Keywords = graphene antenna

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1664 KB  
Article
Quantized Nuclear Recoil in the Search for Sterile Neutrinos in Tritium Beta Decay with PTOLEMY
by Wonyong Chung, Mark Farino, Andi Tan, Christopher G. Tully and Shiran Zhang
Universe 2025, 11(9), 297; https://doi.org/10.3390/universe11090297 - 2 Sep 2025
Viewed by 540
Abstract
The search for keV-scale sterile neutrinos in tritium beta decay is made possible through the theoretically allowed small admixture of electron flavor in right-handed, singlet, massive neutrino states. A distinctive feature of keV-scale sterile-neutrino–induced threshold distortions in the tritium beta spectrum is the [...] Read more.
The search for keV-scale sterile neutrinos in tritium beta decay is made possible through the theoretically allowed small admixture of electron flavor in right-handed, singlet, massive neutrino states. A distinctive feature of keV-scale sterile-neutrino–induced threshold distortions in the tritium beta spectrum is the presence of quantized nuclear-recoil effects, as predicted for atomic tritium bound to two-dimension materials such as graphene. The sensitivities to the sterile neutrino mass and electron-flavor mixing are considered in the context of the PTOLEMY detector simulation with tritiated graphene substrates. The ability to scan the entire tritium energy spectrum with a narrow energy window, low backgrounds, and high-resolution differential energy measurements provides the opportunity to pinpoint the quantized nuclear-recoil effects. providing an additional tool for identifying the kinematics of the production of sterile neutrinos. Background suppression is achieved by transversely accelerating electrons into a high magnetic field, where semi-relativistic electron tagging can be performed with cyclotron resonance emission RF antennas followed by deceleration through the PTOLEMY filter into a high-resolution differential energy detector operating in a zero-magnetic-field region. The PTOLEMY-based approach to keV-scale searches for sterile neutrinos involves a novel precision apparatus utilizing two-dimensional materials to yield high-resolution, sub-eV mass determination for electron-flavor mixing fractions of |Ue4|2105 and smaller. Full article
Show Figures

Figure 1

39 pages, 7688 KB  
Review
Advances and Applications of Graphene-Enhanced Textiles: A 10-Year Review of Functionalization Strategies and Smart Fabric Technologies
by Patricia Rocio Durañona Aznar and Heitor Luiz Ornaghi Junior
Textiles 2025, 5(3), 28; https://doi.org/10.3390/textiles5030028 - 22 Jul 2025
Viewed by 2780
Abstract
Graphene has emerged as a promising material for transforming conventional textiles into smart, multi-functional platforms due to its exceptional electrical, thermal, and mechanical properties. This review aims to provide a comprehensive overview of the latest advances in graphene-enhanced fabrics over the past ten [...] Read more.
Graphene has emerged as a promising material for transforming conventional textiles into smart, multi-functional platforms due to its exceptional electrical, thermal, and mechanical properties. This review aims to provide a comprehensive overview of the latest advances in graphene-enhanced fabrics over the past ten years, focusing on their functional properties and real-world applications. This article examines the main strategies used to incorporate graphene and its derivatives—such as graphene oxide and reduced graphene oxide—into textile substrates through coating, printing, or composite formation. The structural, electrical, thermal, mechanical, and electrochemical properties of these fabrics are discussed based on characterization techniques including microscopy, Raman spectroscopy, and cyclic voltammetry. Functional evaluations in wearable strain sensors, biosignal acquisition, electrothermal systems, and energy storage devices are highlighted to demonstrate the versatility of these materials. Although challenges remain in scalability, durability, and washability, recent developments in fabrication and encapsulation methods show significant potential to overcome these limitations. This review concludes by outlining the major opportunities and future directions for graphene-based textiles in areas such as personalized health monitoring, active thermal wear, and integrated wearable electronics. Full article
Show Figures

Figure 1

17 pages, 4334 KB  
Article
Wafer-Level Fabrication of Radiofrequency Devices Featuring 2D Materials Integration
by Vitor Silva, Ivo Colmiais, Hugo Dinis, Jérôme Borme, Pedro Alpuim and Paulo M. Mendes
Nanomaterials 2025, 15(14), 1119; https://doi.org/10.3390/nano15141119 - 18 Jul 2025
Viewed by 547
Abstract
Two-dimensional (2D) materials have been proposed for use in a multitude of applications, with graphene being one of the most well-known 2D materials. Despite their potential to contribute to innovative solutions, the fabrication of such devices still faces significant challenges. One of the [...] Read more.
Two-dimensional (2D) materials have been proposed for use in a multitude of applications, with graphene being one of the most well-known 2D materials. Despite their potential to contribute to innovative solutions, the fabrication of such devices still faces significant challenges. One of the key challenges is the fabrication at a wafer-level scale, a fundamental step for allowing reliable and reproducible fabrication of a large volume of devices with predictable properties. Overcoming this barrier will allow further integration with sensors and actuators, as well as enabling the fabrication of complex circuits based on 2D materials. This work presents the fabrication steps for a process that allows the on-wafer fabrication of active and passive radiofrequency (RF) devices enabled by graphene. Two fabrication processes are presented. In the first one, graphene is transferred to a back gate surface using critical point drying to prevent cracks in the graphene. In the second process, graphene is transferred to a flat surface planarized by ion milling, with the gate being buried beneath the graphene. The fabrication employs a damascene-like process, ensuring a flat surface that preserves the graphene lattice. RF transistors, passive RF components, and antennas designed for backscatter applications are fabricated and measured, illustrating the versatility and potential of the proposed method for 2D material-based RF devices. The integration of graphene on devices is also demonstrated in an antenna. This aimed to demonstrate that graphene can also be used as a passive device. Through this device, it is possible to measure different backscatter responses according to the applied graphene gating voltage, demonstrating the possibility of wireless sensor development. With the proposed fabrication processes, a flat graphene with good quality is achieved, leading to the fabrication of RF active devices (graphene transistors) with intrinsic fT and fmax of 14 GHz and 80 GHz, respectively. Excellent yield and reproducibility are achieved through these methods. Furthermore, since the graphene membranes are grown by Chemical Vapor Deposition (CVD), it is expected that this process can also be applied to other 2D materials. Full article
(This article belongs to the Special Issue Advanced 2D Materials for Emerging Application)
Show Figures

Figure 1

26 pages, 389 KB  
Review
Recent Advancements in Millimeter-Wave Antennas and Arrays: From Compact Wearable Designs to Beam-Steering Technologies
by Faisal Mehmood and Asif Mehmood
Electronics 2025, 14(13), 2705; https://doi.org/10.3390/electronics14132705 - 4 Jul 2025
Cited by 1 | Viewed by 3676
Abstract
Millimeter-wave (mmWave) antennas and antenna arrays have gained significant attention due to their pivotal role in emerging wireless communication, sensing, and imaging technologies. With the rapid deployment of 5G and the transition toward 6G networks, the demand for compact, high-gain, and reconfigurable mmWave [...] Read more.
Millimeter-wave (mmWave) antennas and antenna arrays have gained significant attention due to their pivotal role in emerging wireless communication, sensing, and imaging technologies. With the rapid deployment of 5G and the transition toward 6G networks, the demand for compact, high-gain, and reconfigurable mmWave antennas has intensified. This article highlights recent advancements in mmWave antenna technologies, including hybrid beamforming using phased arrays, dynamic beam-steering enabled by liquid crystal and MEMS-based structures, and high-capacity MIMO architectures. We also examine the integration of metamaterials and metasurfaces for miniaturization and gain enhancement. Applications covered include wearable antennas with low-SAR textile substrates, conformal antennas for UAV-based mmWave relays, and high-resolution radar arrays for autonomous vehicles. The study further analyzes innovative fabrication methods such as inkjet and aerosol jet printing, micromachining, and laser direct structuring, along with advanced materials like Kapton, PDMS, and graphene. Numerical modeling techniques such as full-wave EM simulation and machine learning-based optimization are discussed alongside experimental validation approaches. Beyond communications, we assess mmWave systems for biomedical imaging, security screening, and industrial sensing. Key challenges addressed include efficiency degradation at high frequencies, interference mitigation in dense environments, and system-level integration. Finally, future directions, including AI-driven design automation, intelligent reconfigurable surfaces, and integration with quantum and terahertz technologies, are outlined. This comprehensive synthesis aims to serve as a valuable reference for advancing next-generation mmWave antenna systems. Full article
(This article belongs to the Special Issue Recent Advancements of Millimeter-Wave Antennas and Antenna Arrays)
Show Figures

Figure 1

33 pages, 4158 KB  
Review
Graphene-Based Plasmonic Antenna for Advancing Nano-Scale Sensors
by Waqas Ahmad, Yihuan Wang, Guangqing Du, Qing Yang and Feng Chen
Nanomaterials 2025, 15(12), 943; https://doi.org/10.3390/nano15120943 - 18 Jun 2025
Cited by 3 | Viewed by 1807
Abstract
The integration of two-dimensional graphene with gold nanostructures has significantly advanced surface plasmon resonance (SPR)-based optical biosensors, due to graphene’s exceptional optical, electronic, and surface properties. This review examines recent developments in graphene-based hybrid nanomaterials designed to enhance SPR sensor performance. The synergistic [...] Read more.
The integration of two-dimensional graphene with gold nanostructures has significantly advanced surface plasmon resonance (SPR)-based optical biosensors, due to graphene’s exceptional optical, electronic, and surface properties. This review examines recent developments in graphene-based hybrid nanomaterials designed to enhance SPR sensor performance. The synergistic combination of graphene and other functional materials enables superior plasmonic sensitivity, improves biomolecular interaction, and enhances signal transduction. Key focus areas include the fundamental principle of graphene-enhanced SPR, the functional advantages of graphene hybrid platforms, and their recent applications in detecting biomolecules, disease biomarkers, and pathogens. Finally, current limitations and potential future perspectives are discussed, highlighting the transformative potential of these hybrid nanomaterials in next-generation optical biosensing Full article
(This article belongs to the Special Issue Applications of Nanomaterials in Optical Sensors, Second Edition)
Show Figures

Figure 1

13 pages, 452 KB  
Article
Enhanced mm-Wave Frequency Up-Conversion via a Time-Varying Graphene Aperture on a Cavity Resonator
by Stamatios Amanatiadis, Theodosios Karamanos, Fabrice Lemoult and Nikolaos V. Kantartzis
Micromachines 2025, 16(6), 679; https://doi.org/10.3390/mi16060679 - 4 Jun 2025
Viewed by 640
Abstract
The transition to 5G and beyond has highlighted the need for efficient devices that operate at mm-wave frequencies, which require new structures and pose fabrication challenges. This paper proposes a novel non-linear antenna that combines the well-established substrate-integrated cavity (SIC) radiators and time-varying [...] Read more.
The transition to 5G and beyond has highlighted the need for efficient devices that operate at mm-wave frequencies, which require new structures and pose fabrication challenges. This paper proposes a novel non-linear antenna that combines the well-established substrate-integrated cavity (SIC) radiators and time-varying graphene for generating harmonic frequencies in the mm-wave spectrum. Graphene is represented as having a dispersive surface conductivity, while time modulation of the conductivity is introduced by varying the applied bias electric field. A modified FDTD algorithm is, additionally, used to simulate the time-varying graphene behaviour under different modulation schemes. The final antenna design involves an SIC resonator with a graphene-covered slot aperture for radiation. The numerical study highlights the effective generation of harmonics using the modulated graphene at the mm-wave regime. Finally, different modulation schemes are applied to enhance certain higher-order harmonics, demonstrating the potential of this non-linear antenna design for future mm-wave and THz frequency applications. Full article
Show Figures

Figure 1

29 pages, 3201 KB  
Review
Screen Printing for Energy Storage and Functional Electronics: A Review
by Juan C. Rubio and Martin Bolduc
Electron. Mater. 2025, 6(2), 7; https://doi.org/10.3390/electronicmat6020007 - 30 May 2025
Cited by 2 | Viewed by 2915
Abstract
Printed electronics employ established printing methods to create low-cost, mechanically flexible devices including batteries, supercapacitors, sensors, antennas and RFID tags on plastic, paper and textile substrates. This review focuses on the specific contribution of screen printing to that landscape, examining how ink viscosity, [...] Read more.
Printed electronics employ established printing methods to create low-cost, mechanically flexible devices including batteries, supercapacitors, sensors, antennas and RFID tags on plastic, paper and textile substrates. This review focuses on the specific contribution of screen printing to that landscape, examining how ink viscosity, mesh selection and squeegee dynamics govern film uniformity, pattern resolution and ultimately device performance. Recent progress in advanced ink systems is surveyed, highlighting carbon allotropes (graphene, carbon nano-onions, carbon nanotubes, graphite), silver and copper nanostructures, MXene and functional oxides that collectively enhance mechanical robustness, electrical conductivity and radio-frequency behavior. Parallel improvements in substrate engineering such as polyimide, PET, TPU, cellulose and elastomers demonstrate the technique’s capacity to accommodate complex geometries for wearable, medical and industrial applications while supporting environmentally responsible material choices such as water-borne binders and bio-based solvents. By mapping two decades of developments across energy-storage layers and functional electronics, the article identifies the key process elements, recurring challenges and emerging sustainable practices that will guide future optimization of screen-printing materials and protocols for high-performance, customizable and eco-friendly flexible devices. Full article
Show Figures

Figure 1

39 pages, 6737 KB  
Review
Materials-Driven Advancements in Chipless Radio-Frequency Identification and Antenna Technologies
by Hafsa Anam, Syed Muzahir Abbas, Iain B. Collings and Subhas Mukhopadhyay
Sensors 2025, 25(9), 2867; https://doi.org/10.3390/s25092867 - 1 May 2025
Cited by 1 | Viewed by 1090
Abstract
This article presents a comprehensive analysis of the technical characteristics of advanced versatile materials used in chipless radio-frequency identification (RFID) tags and antennas. The focus is on materials that are used as radiators and substrates. Crucial aspects include flexibility, weight, size, gain, environmental [...] Read more.
This article presents a comprehensive analysis of the technical characteristics of advanced versatile materials used in chipless radio-frequency identification (RFID) tags and antennas. The focus is on materials that are used as radiators and substrates. Crucial aspects include flexibility, weight, size, gain, environmental sustainability, efficiency, fabrication time and type, and cost. A comprehensive set of tables are presented that summarize and compare material properties. The materials include flexible high-tech ink substances, graphene, and liquid crystals, as well as metamaterials which possess properties that allow for an increased bandwidth. Printing techniques are discussed for high-performance high-resolution fabricated tags. This paper contributes by systematically comparing emerging materials for chipless RFID tags, highlighting their impact on performance and sustainability. It also provides practical guidance for material selection and fabrication techniques to enable next-generation wireless applications. It presents a broad understanding of various materials and their use. The paper provides direction for the deployment and utilization of inexpensive passive chipless RFID tags in future intelligent wireless networks. The advancement of chipless RFID is largely driven by the development of innovative materials, especially in the realm of advanced materials and smart materials, which enable the creation of more cost-effective, flexible, and scalable RFID systems. Full article
(This article belongs to the Special Issue Feature Papers in the Internet of Things Section 2025)
Show Figures

Figure 1

23 pages, 18184 KB  
Article
A Wearable Dual-Band Magnetoelectric Dipole Rectenna for Radio Frequency Energy Harvesting
by Xin Sun, Jingwei Zhang, Wenjun Wang and Daping He
Electronics 2025, 14(7), 1314; https://doi.org/10.3390/electronics14071314 - 26 Mar 2025
Cited by 2 | Viewed by 934
Abstract
This article presents a novel, compact, and flexible dual-band magnetoelectric dipole rectenna designed for radio frequency (RF) energy harvesting. The rectenna consists of a unique antenna structure, combining electric and magnetic dipoles to create unidirectional radiation patterns, minimizing interference from the human body. [...] Read more.
This article presents a novel, compact, and flexible dual-band magnetoelectric dipole rectenna designed for radio frequency (RF) energy harvesting. The rectenna consists of a unique antenna structure, combining electric and magnetic dipoles to create unidirectional radiation patterns, minimizing interference from the human body. The rectifier is integrated with the antenna through conjugate matching, eliminating the need for additional matching circuits, reducing circuit losses, minimizing design complexity, and improving conversion efficiency. The proposed rectenna utilizes a flexible graphene film as the radiating element, which offers excellent conductivity and corrosion resistance, enabling conformal operation in diverse scenarios. Simulation and experimental results show that the rectenna operates effectively at 3.5 GHz and 4.9 GHz, achieving peak conversion efficiencies of 53.43% and 43.95%, respectively, at an input power of 4 dBm. The simulated and measured results achieved good agreement. The rectenna maintains stable performance under various bending conditions, demonstrating its suitability for flexible, wearable RF energy-harvesting systems. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

9 pages, 3098 KB  
Article
Terahertz Reconfigurable Planar Graphene Hybrid Yagi–Uda Antenna
by Qimeng Liu, Renbin Zhong, Boli Xu, Jiale Dong, Gefu Teng, Ke Zhong, Zhenhua Wu, Kaichun Zhang, Min Hu and Diwei Liu
Nanomaterials 2025, 15(7), 488; https://doi.org/10.3390/nano15070488 - 25 Mar 2025
Cited by 1 | Viewed by 835
Abstract
In this paper, we design a frequency reconfigurable antenna for terahertz communication. The antenna is based on a Yagi design, with the main radiating elements being a pair of dipole antennas printed on the top and bottom of a dielectric substrate, respectively. The [...] Read more.
In this paper, we design a frequency reconfigurable antenna for terahertz communication. The antenna is based on a Yagi design, with the main radiating elements being a pair of dipole antennas printed on the top and bottom of a dielectric substrate, respectively. The director and reflector elements give the antenna end-fire characteristics. The ends of the two arms of the dipole are constructed by staggered metal and graphene parasitic patches. By utilizing the effect of gate voltage on the conductivity of graphene, the equivalent length of the dipole antenna arms are altered and thereby adjust the antenna’s operating frequency. The proposed reconfigurable hybrid Yagi–Uda antenna can operate in five frequency bands separately at a peak gain of 4.53 dB. This reconfigurable antenna can meet the diverse requirements of the system without changing its structure and can reduce the size and cost while improving the performance. Full article
Show Figures

Figure 1

17 pages, 5259 KB  
Article
Study on the Impact of Laser Settings on Parameters of Induced Graphene Layers Constituting the Antenna of UHF RFIDLIG Transponders
by Aleksandr Kolomijec, Piotr Jankowski-Mihułowicz, Mariusz Węglarski and Nikita Bailiuk
Sensors 2025, 25(6), 1906; https://doi.org/10.3390/s25061906 - 19 Mar 2025
Cited by 1 | Viewed by 900
Abstract
The aim of the research is to investigate the impact of laser operation parameters on the LIG (laser-induced graphene) process. It focuses on evaluating the feasibility of using the induced conductive layers to create antenna circuits that are dedicated to radio-frequency identification (RFID) [...] Read more.
The aim of the research is to investigate the impact of laser operation parameters on the LIG (laser-induced graphene) process. It focuses on evaluating the feasibility of using the induced conductive layers to create antenna circuits that are dedicated to radio-frequency identification (RFID) technology. Given the specific design of textile RFIDtex transponders, applying the LIG technique to fabricate antenna modules on a flexible substrate (e.g., Kapton) opens new possibilities for integrating RFID labels with modern materials and products. The paper analyses the efficiency of energy and data transmission in the proposed innovative UHF RFIDLIG tags. The signal strength, read range, and effectiveness are estimated in the experimental setup, providing key insights into the performance of the devices. Based on the obtained results, it can be concluded that changes in laser cutting parameters, the size of the induced graphene layer, and the method of fixing the Kapton substrate significantly affect the quality of the cutting/engraving components and the conductivity of burned paths. However, these changes do not directly affect the correct operation of the RFIDLIG transponders, owing to the fact that these structures are resistant to external impacts. Nevertheless, an increased range of data readout from the RFIDLIG tags can be achieved by using graphene paths with higher conductivity. The obtained results confirm the validity of the proposed concept and provide a foundation for further research on adapting the LIG method to automated logistics, ultimately leading to the development of more versatile and innovative solutions for identification processes. Full article
(This article belongs to the Special Issue Sensors Technologies for Measurements and Signal Processing)
Show Figures

Figure 1

13 pages, 5755 KB  
Article
Graphene Monolayer Nanomesh Structures and Their Applications in Electromagnetic Energy Harvesting for Solving the Matching Conundrum of Rectennas
by Mircea Dragoman, Adrian Dinescu, Martino Aldrigo, Daniela Dragoman, Elaheh Mohebbi, Eleonora Pavoni and Emiliano Laudadio
Nanomaterials 2024, 14(19), 1542; https://doi.org/10.3390/nano14191542 - 24 Sep 2024
Cited by 1 | Viewed by 1241
Abstract
In this paper, we investigate various graphene monolayer nanomesh structures (diodes) formed only by nanoholes, with a diameter of just 20 nm and etched from the graphene layer in different shapes (such as rhombus, bow tie, rectangle, trapezoid, and triangle), and their electrical [...] Read more.
In this paper, we investigate various graphene monolayer nanomesh structures (diodes) formed only by nanoholes, with a diameter of just 20 nm and etched from the graphene layer in different shapes (such as rhombus, bow tie, rectangle, trapezoid, and triangle), and their electrical properties targeting electromagnetic energy harvesting applications. In this respect, the main parameters characterizing any nonlinear device for energy harvesting are extracted from tens of measurements performed on a single chip containing the fabricated diodes. The best nano-perforated graphene structure is the triangle nanomesh structure, which exhibits remarkable performance in terms of its characteristic parameters, e.g., a 420 Ω differential resistance for optimal impedance matching to an antenna, a high responsivity greater than 103 V/W, and a low noise equivalent power of 847 pW/√Hz at 0 V. Full article
Show Figures

Graphical abstract

11 pages, 7525 KB  
Communication
Graphene-Based Tunable Polarization Conversion Metasurface for Array Antenna Radar Cross-Section Reduction
by Yang’an Zhang, Yuxi Li, Yao Li, Xueguang Yuan, Xin Yan and Xia Zhang
Sensors 2024, 24(15), 5044; https://doi.org/10.3390/s24155044 - 4 Aug 2024
Viewed by 2375
Abstract
A graphene-based tunable polarization conversion metasurface (PCM) was designed and analyzed for the purpose of reducing the radar cross-section (RCS) of array antennas. The metasurface comprises periodic shuttle-shaped metal patches, square-patterned graphene, and inclined grating-patterned graphene. By adjusting the Fermi energy levels of [...] Read more.
A graphene-based tunable polarization conversion metasurface (PCM) was designed and analyzed for the purpose of reducing the radar cross-section (RCS) of array antennas. The metasurface comprises periodic shuttle-shaped metal patches, square-patterned graphene, and inclined grating-patterned graphene. By adjusting the Fermi energy levels of the upper (μ1) and lower (μ2) graphene layers, different states were achieved. In State 1, with μ1 = 0 eV and μ2 = 0.5 eV, the polarization conversion ratio (PCR) exceeded 0.9 in the bandwidths of 1.65–2.19 THz and 2.29–2.45 THz. In State 2, with μ1 = μ2 = 0.5 eV, the PCR was greater than 0.9 in the 1.23–1.85 THz and 2.24–2.60 THz bands. In State 3, with μ1 = μ2 = 1 eV, the PCR exceeded 0.9 in the 2.56–2.75 THz and 3.73–4.05 THz bands. By integrating the PCM with the array antenna, tunable RCS reduction was obtained without affecting the basic radiation functionality of the antenna. In State 1, RCS reduction was greater than 10 dB in the 1.60–2.43 THz and 3.63–3.72 THz frequency ranges. In State 2, the RCS reduction exceeded 10 dB in the 2.07–2.53 THz, 2.78–2.98 THz, and 3.70–3.81 THz bands. In State 3, RCS reduction was greater than 10 dB in the 1.32–1.43 THz, 2.51–2.76 THz, and 3.76–4.13 THz frequency ranges. This polarization conversion metasurface shows significant potential for applications in switchable and tunable antenna RCS reduction. Full article
(This article belongs to the Section Sensor Materials)
Show Figures

Figure 1

15 pages, 6393 KB  
Article
Flexible Graphene Film-Based Antenna Sensor for Large Strain Monitoring of Steel Structures
by Shun Weng, Jingqi Zhang, Ke Gao, Hongping Zhu and Tingjun Peng
Sensors 2024, 24(13), 4388; https://doi.org/10.3390/s24134388 - 6 Jul 2024
Viewed by 1825
Abstract
In the field of wireless strain monitoring, it is difficult for the traditional metal-made antenna sensor to conform well with steel structures and monitor large strain deformation. To solve this problem, this study proposes a flexible antenna strain sensor based on a ductile [...] Read more.
In the field of wireless strain monitoring, it is difficult for the traditional metal-made antenna sensor to conform well with steel structures and monitor large strain deformation. To solve this problem, this study proposes a flexible antenna strain sensor based on a ductile graphene film, which features a 6.7% elongation at break and flexibility due to the microscopic wrinkle structure and layered stacking structure of the graphene film. Because of the use of eccentric embedding in the feeding form, the sensor can be miniaturized and can simultaneously monitor strain in two directions. The sensing mechanism of the antenna is analyzed using a void model, and an antenna is designed based on operating frequencies of 3 GHz and 3.5 GHz. The embedding size is optimized using a Smith chart and impedance matching principle. Both the simulation and experimental results verify that the resonant frequency and strain magnitude are linearly inversely proportional. The experimental results show that the strain sensitivity is 1.752 kHz/με along the geometric length and 1.780 kHz/με along the width, with correlation coefficients of 0.99173 and 0.99295, respectively. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

10 pages, 4507 KB  
Article
Graphene-Tuned, Tightly Coupled Hybrid Plasmonic Meta-Atoms
by Kai Chen, Ke Li, Yiming Wang, Zihao Zhang, Yanpeng Shi, Aimin Song and Yifei Zhang
Nanomaterials 2024, 14(8), 713; https://doi.org/10.3390/nano14080713 - 19 Apr 2024
Cited by 1 | Viewed by 1710
Abstract
Tightly coupled meta-atoms (TCMAs) are densely packed metamaterials with unnatural refractive indexes. Actively modulated TCMAs with tunable optical properties have found many applications in beam shaping, holography, and enhanced light–matter interactions. Typically, TCMAs are studied in the classic Bloch theory. Here, tightly coupled [...] Read more.
Tightly coupled meta-atoms (TCMAs) are densely packed metamaterials with unnatural refractive indexes. Actively modulated TCMAs with tunable optical properties have found many applications in beam shaping, holography, and enhanced light–matter interactions. Typically, TCMAs are studied in the classic Bloch theory. Here, tightly coupled H-shaped meta-atoms are proposed with an ultra-high permittivity of ~6000, and their active modulation with graphene is designed by using the tightly coupled dipole array (TCDA) theory. The H-shaped meta-atoms are used as dipole arms, and the graphene strips function as the dipole loads. By tuning the chemical potential of graphene, the resonant amplitude, frequency, and permittivity are dynamically modulated. The simulations indicate that the real and imaginary parts of permittivity change from 6854 to 1522 and from 7356 to 2870, respectively. The experimental validation demonstrates a modulation depth of 11.6% in the resonant frequency, i.e., from 219.4 to 195 GHz, and a substantial 52.5% modulation depth in transmittance under a bias voltage of less than 1.5 V. Full article
(This article belongs to the Special Issue Nanomaterials for Terahertz Technology Applications)
Show Figures

Figure 1

Back to TopTop