Study on the Impact of Laser Settings on Parameters of Induced Graphene Layers Constituting the Antenna of UHF RFIDLIG Transponders
Abstract
:1. Introduction
1.1. Aim of Research
1.2. Textronic Transponder RFIDtex Without Galvanic Coupling
1.3. Transponder RFIDLIG with Laser-Induced Graphene
2. Materials and Methods
2.1. LIG Technology
2.2. Evaluation of RFIDLIG Transponders
3. Results
3.1. Technological Conditions of the LIG Sample Fabrication Process
3.2. Parameter Determination of RFIDLIG Transponders
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Z.; Cheng, S.; Zhang, H.; Yang, W.; Yi, Z.; Yi, Y.; Wang, J.; Ahmad, S.; Raza, R. Ultrathin broadband terahertz metamaterial based on single-layer nested patterned graphene. Phys. Lett. A 2025, 534, 130262. [Google Scholar] [CrossRef]
- Jiang, B.Q.; Hou, Y.G.; Wu, J.X.; Ma, Y.X.; Gan, X.T.; Zhao, J. In-fiber photoelectric device based on graphene-coated tilted fiber grating. Opto-Electron. Sci. 2023, 2, 230012. [Google Scholar] [CrossRef]
- Avinash, K.; Patolsky, F. Laser-induced grapheme structures: From synthesis and applications to future prospects. Mater. Today 2023, 30, 11. [Google Scholar] [CrossRef]
- Lin, J.; Peng, Z.; Liu, Y.; Ruiz-Zepeda, F.; Ye, R.; Samuel, E.L.; Yacaman, M.J.; Yakobson, B.I.; Tour, J.M. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 2014, 5, 5714. [Google Scholar] [CrossRef]
- Liu, J.; Ji, H.; Lv, X.; Zeng, C.; Li, H.; Li, F.; QU, B.; Ciu, F.; Zhou, Q. Laser-induced graphene (LIG)-driven medical sensors for health monitoring and diseases diagnosis. Microchim. Acta 2022, 189, 54. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, C.; Chen, Y.; Nie, Z. Research Progress on the Preparation and Applications of Laser-Induced Graphene Technology. Nanomaterials 2022, 12, 2336. [Google Scholar] [CrossRef]
- Stanford, M.G.; Zhang, C.; Fowlkes, J.D.; Hoffman, A.; Ivanov, I.N.; Rack, P.D.; Tour, J.M. High-Resolution Laser-Induced Graphene. Flexible Electronics beyond the Visible Limit. ACS Appl. Mater. Interfaces 2020, 12, 10902–10907. [Google Scholar] [CrossRef]
- Thaweeskulchai, T.; Sakdaphetsiri, K.; Schulte, A. Ten years of laser-induced graphene: Impact and future prospect on biomedical, healthcare, and wearable technology. Mikrochim. Acta 2024, 191, 292. [Google Scholar] [CrossRef]
- Rivadeneyra, A.; Salmeron, J.F.; Rodriguez, N.; Morales, D.P.; Colella, R.; Chietera, F.P. Laser-Fabricated Antennas for RFID Applications. In Proceedings of the 2020 50th European Microwave Conference (EuMC), Utrecht, The Netherlands, 12–14 January 2021; pp. 812–815. [Google Scholar] [CrossRef]
- Mostaccio, A.; Salvia, A.; Antonelli, G.; Martinelli, E.; Marrocco, G. Laser-Induced Graphene Fan Antenna for RFID applications. In Proceedings of the 2023 IEEE 13th International Conference on RFID Technology and Applications (RFID-TA), Aveiro, Portugal, 4–6 September 2023; pp. 25–28. [Google Scholar] [CrossRef]
- Mostaccio, A.; Naccarata, F.; Nanni, F.M.C.; Filippi, J.; Martinelli, E.; Marrocco, G. Soft and Flexible Wireless Epidermal Plaster Made by Laser-Induced Graphene. Sens. Lett. 2024, 8, 6007104. [Google Scholar] [CrossRef]
- Chietera, F.P.; Colella, R.; Verma, A.; Ferraris, E.; Corcione, C.E.; Moraila-Martinez, C.L.; Gerardo, D.; Catarinucci, L. Laser-Induced Graphene, Fused Filament Fabrication, and Aerosol Jet Printing for Realizing Conductive Elements of UHF RFID Antennas. IEEE J. Radio Freq. Identif. 2022, 6, 601–609. [Google Scholar] [CrossRef]
- Ziobro, A.; Jankowski-Mihułowicz, P.; Węglarski, M.; Pyt, P. Investigation of Factors Affecting the Performance of Textronic UHF RFID Transponders. Sensors 2023, 23, 9703. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Bridges, G.; Kordi, B. Magnetic Field Monitoring on HVdc Transmission Lines Using a UHF-RFID Tag. In Proceedings of the 2024 Photonics & Electromagnetics Research Symposium (PIERS), Chengdu, China, 21–25 April 2024; pp. 1–5. [Google Scholar] [CrossRef]
- Bouhassoune, I.; Chaibi, H.; Chehri, A.; Saadane, R. A Review of RFID-based Internet of Things in the Healthcare Area, the New Horizon of RFID. Procedia Comput. Sci. 2022, 207, 4151–4160. [Google Scholar] [CrossRef]
- Wagih, M.; Balocchi, L.; Benassi, F.; Carvalho, N.B.; Chiao, J.C.; Correia, R.; Costanzo, A.; Cui, Y.; Georgiadou, D.; Beeby, S.; et al. Microwave-Enabled Wearables: Underpinning Technologies, Integration Platforms, and Next-Generation Roadmap. J. Microw. 2023, 3, 193–226. [Google Scholar] [CrossRef]
- Ozek, E.A.; Tanyeli, S.; Yapici, M.K. Flexible Graphene Textile Temperature Sensing RFID Coils Based on Spray Printing. Sens. J. 2021, 21, 26382–26388. [Google Scholar] [CrossRef]
- Koski, K.; Lohan, E.S.; Sydänheimo, L.; Ukkonen, L.; Rahmat-Samii, Y. Electro-textile UHF RFID patch antennas for positioning and localization applications. In Proceedings of the 2014 IEEE RFID Technology and Applications Conference (RFID-TA), Tampere, Finland, 8–9 September 2014; pp. 246–250. [Google Scholar] [CrossRef]
- Yang, C.; Wang, X.; Mao, S. RFID-based 3D human pose tracking: A subject generalization approach. Digit. Commun. Netw. 2022, 8, 278–288. [Google Scholar] [CrossRef]
- Hanif, M.; Farhan, M.; Sharif, A. Design and analysis of flexible embroidered UHF-RFID tag on facemask for IoT applications using characteristics mode analysis. AEU—Int. J. Electron. Commun. 2023, 172, 154940. [Google Scholar] [CrossRef]
- Yu, M.; Wang, S.; Liu, Y.; Xu, L.; Ye, T.T. Passive Embroidered Stretch Sensor Utilizing UHF RFID Antennas. In Proceedings of the 2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Leicester, UK, 19–23 August 2019; pp. 497–501. [Google Scholar] [CrossRef]
- Pham, N.; Chien Dao, N.; Chung, J.-Y. A text-meandered RFID tag implemented with conductive threads. Microw. Opt. Technol. Lett. 2016, 58, 1978–1984. [Google Scholar] [CrossRef]
- Tranthuynga, T.; Ji-Seon, K.; Jooyong, K. Design and Optimization of Embroidered Antennas on Textile Using Silver Conductive Thread for Wearable Applications. Fibers Polym. 2021, 22, 2900–2909. [Google Scholar] [CrossRef]
- Briedis, U.; Vališevskis, A.; Ziemele, I.; Abele, I. Study of Durability of Conductive Threads Used for Integration of Electronics into Smart Clothing. Key Eng. Mater. 2019, 800, 320–325. [Google Scholar] [CrossRef]
- Tangsirinaruenart, O.; Stylios, G. A Novel Textile Stitch-Based Strain Sensor for Wearable End Users. Materials 2019, 12, 1469. [Google Scholar] [CrossRef]
- Jankowski-Mihułowicz, P.; Węglarski, M.; Chamera, M.; Pyt, P. Textronic UHF RFID Transponder. Sensors 2021, 21, 1093. [Google Scholar] [CrossRef] [PubMed]
- Dallinger, A.; Keller, K.; Fitzek, H.; Greco, F. Stretchable and Skin-Conformable Conductors Based on Polyurethane/Laser-Induced Graphene. ACS Appl. Mater. Interfaces 2020, 12, 19855–19865. [Google Scholar] [CrossRef] [PubMed]
- Jankowski-Mihułowicz, P.; Węglarski, M.; Wilczkiewicz, B.; Chamera, M.; Laskowski, G. The Influence of Textile Substrates on the Performance of Textronic RFID Transponders. Materials 2022, 15, 7060. [Google Scholar] [CrossRef] [PubMed]
- Abdulghafor, R.; Turaev, S.; Almohamedh, H.; Alabdan, R.; Almutairi, B.; Almutairi, A.; Almotairi, S. Recent Advances in Passive UHF-RFID Tag Antenna Design for Improved Read Range in Product Packaging Applications: A Comprehensive Review. Access 2021, 9, 63611–63635. [Google Scholar] [CrossRef]
- Ojaroudi Parchin, N.; Jahanbakhsh Basherlou, H.; Abd-Alhameed, R.A.; Noras, J.M. Dual-Band Monopole Antenna for RFID Applications. Future Internet 2019, 11, 31. [Google Scholar] [CrossRef]
- TROTEC JobControl Software Manual 2017, 01. Available online: https://maker-hub.georgefox.edu/w/images/4/4e/JobControl-Manual-EN.pdf (accessed on 6 January 2025).
- TROTEC FineMarker Hybrid Laser Main Parameters. Available online: https://graviranje.rs/Engraving_PORTAL/lasers/trotec/Trotec_FineMarker_Hybrid_Laser.html (accessed on 6 January 2025).
- Trotec_FineMarker_and_FineMarker_Hybrid_Laser.pdf. Available online: https://graviranje.rs/Engraving_PORTAL/lasers/trotec/pdf/Trotec_FineMarker_and_FineMarker_Hybrid_Laser.pdf (accessed on 6 January 2025).
- Talkin’ Things. RFID Performance Designed. Available online: https://talkinthings.com/rfid-tags (accessed on 6 January 2025).
- EPC Radio-Frequency Identity Protocols Generation-2 UHF RFID Standard; Specification for RFID Air Interface Protocol for Communications at 860 MHz–960 MHz, Ver. 2.1; GS1 EPCglobal Inc.: Nashville, TN, USA, 2018.
- Kawabata, S.; Seki, R.; Watanabe, T.; Ohba, T. Degradation of Graphene in High- and Low-Humidity Air, and Vacuum Conditions at 300–500 K. Nanomaterials 2024, 14, 166. [Google Scholar] [CrossRef]
- Ye, X.; Qiang, H.; Zheng, X.; Qi, M.; Yang, Y.; Li, C.; Yang, Y. Laser-induced graphene regrowth for repairing damaged graphene coating on Ni substrate. Mater. Chem. Phys. 2022, 287, 126270. [Google Scholar] [CrossRef]
- Zaidi, N.I.; Abd Rahman, N.H.; Yahya, M.F.; Nordin, M.S.A.; Subahir, S.; Yamada, Y.; Majumdar, A. Analysis on Bending Performance of the Electro-Textile Antennas with Bandwidth Enhancement for Wearable Tracking Application. IEEE Access 2022, 10, 31800–31820. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Forward link | DSB-ASK, Tari =25 μs |
Return link | FM0, 40 kHz |
Command | Query |
Laser Mode | Sample Number | p, % of Max | v, % of Max | kHzCut/ PPIEngr | OZ Coordinate | Path Width | R, kΩ |
---|---|---|---|---|---|---|---|
Cut CO2 | 1 | 7 | 5 | 5 | 62.06 | 1 | * |
2 | 5 | 1 | 10 | 55.26 | 1 | * | |
Engrave | 3 | 5 | 1 | 1000 | 62.06 | 1 | * |
4 | 5 | 6 | 1000 | 54 | 1 | * | |
5 | 9 | 5 | 1000 | 54 | 1 | 150 | |
6 | 9 | 5 | 1000 | 62.06 | 1 | * | |
7 | 10 | 5.2 | 750 | 54 | 1 | 13.35 | |
8 | 10 | 5.5 | 1000 | 54 | 1 | 13.47 | |
9 | 10 | 11 | 1000 | 54 | 1 | 12.8 | |
10 | 18 | 3 | 1000 | 54 | 1 | 16.3 | |
11 | 5 | 5.5 | 1000 | 54 | 1 | * | |
12 | 10 | 5.5 | 1000 | 60.48 | 1 | 11.5 | |
13 | 10.5 | 5.5 | 1000 | 60.48 | 1 | 10.4 | |
14 | 11 | 5.5 | 1000 | 60.48 | 1 | 9.6 | |
15 | 11 | 5.5 | 1000 | 60.48 | 2 | 4.77 | |
16 | 11 | 5.5 | 1000 | 60.48 | 2 | 5.7 | |
17 | 11 | 5.5 | 1000 | 60.48 | 4 | 2.29 |
Date | R15, kΩ | R16, kΩ | R17, kΩ |
---|---|---|---|
4 October 2024 | 4.77 | 5.7 | 2.29 |
20 February2025 | 6 | 6.6 | 2.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kolomijec, A.; Jankowski-Mihułowicz, P.; Węglarski, M.; Bailiuk, N. Study on the Impact of Laser Settings on Parameters of Induced Graphene Layers Constituting the Antenna of UHF RFIDLIG Transponders. Sensors 2025, 25, 1906. https://doi.org/10.3390/s25061906
Kolomijec A, Jankowski-Mihułowicz P, Węglarski M, Bailiuk N. Study on the Impact of Laser Settings on Parameters of Induced Graphene Layers Constituting the Antenna of UHF RFIDLIG Transponders. Sensors. 2025; 25(6):1906. https://doi.org/10.3390/s25061906
Chicago/Turabian StyleKolomijec, Aleksandr, Piotr Jankowski-Mihułowicz, Mariusz Węglarski, and Nikita Bailiuk. 2025. "Study on the Impact of Laser Settings on Parameters of Induced Graphene Layers Constituting the Antenna of UHF RFIDLIG Transponders" Sensors 25, no. 6: 1906. https://doi.org/10.3390/s25061906
APA StyleKolomijec, A., Jankowski-Mihułowicz, P., Węglarski, M., & Bailiuk, N. (2025). Study on the Impact of Laser Settings on Parameters of Induced Graphene Layers Constituting the Antenna of UHF RFIDLIG Transponders. Sensors, 25(6), 1906. https://doi.org/10.3390/s25061906