Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = granular superconductivity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 356 KiB  
Review
Bose Metals, from Prediction to Realization
by M. C. Diamantini and C. A. Trugenberger
Materials 2024, 17(19), 4924; https://doi.org/10.3390/ma17194924 - 9 Oct 2024
Cited by 1 | Viewed by 1116
Abstract
Bose metals are metals made of Cooper pairs, which form at very low temperatures in superconducting films and Josephson junction arrays as an intermediate phase between superconductivity and superinsulation. We predicted the existence of this 2D metallic phase of bosons in the mid [...] Read more.
Bose metals are metals made of Cooper pairs, which form at very low temperatures in superconducting films and Josephson junction arrays as an intermediate phase between superconductivity and superinsulation. We predicted the existence of this 2D metallic phase of bosons in the mid 1990s, showing that they arise due to topological quantum effects. The observation of Bose metals in perfectly regular Josephson junction arrays fully confirms our prediction and rules out alternative models based on disorder. Here, we review the basic mechanism leading to Bose metals. The key points are that the relevant vortices in granular superconductors are core-less, mobile XY vortices which can tunnel through the system due to quantum phase slips, that there is no charge-phase commutation relation preventing such vortices from being simultaneously out of condensate with charges, and that out-of-condensate charges and vortices are subject to topological mutual statistics interactions, a quantum effect that dominates at low temperatures. These repulsive mutual statistics interactions are sufficient to increase the energy of the Cooper pairs and lift them out of condensate. The result is a topological ground state in which charge conduction along edges and vortex movement across them organize themselves so as to generate the observed metallic saturation at low temperatures. This state is known today as a bosonic topological insulator. Full article
(This article belongs to the Special Issue Advanced Materials with Strong Electron Correlations)
Show Figures

Figure 1

2 pages, 402 KiB  
Correction
Correction: Galluzzi et al. Pinning Energy and Evidence of Granularity in the AC Susceptibility of an YBa2Cu3O7-x Superconducting Film. Appl. Sci. 2024, 14, 4379
by Armando Galluzzi, Adrian Crisan, Alina Marinela Ionescu, Ion Ivan, Antonio Leo, Gaia Grimaldi and Massimiliano Polichetti
Appl. Sci. 2024, 14(17), 7664; https://doi.org/10.3390/app14177664 - 30 Aug 2024
Viewed by 597
Abstract
There was an error in the original publication [...] Full article
Show Figures

Figure 2

14 pages, 5387 KiB  
Article
Pinning Energy and Evidence of Granularity in the AC Susceptibility of an YBa2Cu3O7-x Superconducting Film
by Armando Galluzzi, Adrian Crisan, Alina Marinela Ionescu, Ion Ivan, Antonio Leo, Gaia Grimaldi and Massimiliano Polichetti
Appl. Sci. 2024, 14(11), 4379; https://doi.org/10.3390/app14114379 - 22 May 2024
Cited by 3 | Viewed by 1496 | Correction
Abstract
The study of granularity in superconducting films by using AC susceptibility has a crucial role in the development of and improvement in the ReBCO-coated conductors, which are a constantly evolving reality in the modern power applications of superconductivity. Specifically, the study of the [...] Read more.
The study of granularity in superconducting films by using AC susceptibility has a crucial role in the development of and improvement in the ReBCO-coated conductors, which are a constantly evolving reality in the modern power applications of superconductivity. Specifically, the study of the granularity is essential because the ReBCO superconducting wires and tapes are far from the regularity of a single crystal while they often present an inter- and intragranular contribution to the critical current density. On the other hand, the AC susceptibility is a key part of the characterization of a granular sample because this technique is very sensitive to the presence of granularity in the superconductors and, moreover, the study of its first harmonic allows for determining pivotal properties such as the pinning energy as well as the dissipation processes acting in the sample. The pinning energy values and the granularity of an YBCO thin film have been studied by means of AC susceptibility measurements as a function of the AC amplitude, temperature, and DC field. In particular, the first harmonic imaginary component of the AC susceptibility χ1 related to the dissipation processes of the sample has been studied. First, starting from the Brandt approach, the critical current density Jc and the pinning energy U of the sample have been extracted at 77 K by using the χ1 measurements as a function of the AC amplitude at different AC frequencies and DC fields. From these measurements, a first signal of granularity appears. In order to confirm it, the temperature dependence of the χ1 at different DC fields has been studied and a contribution deriving from the inter- and intragranular part of the sample has emerged. By taking the temperature corresponding to the crossover between the two contributions at the different DC fields, the intergranular and intragranular response has been separated. Successively, the temperature has been fixed to 77 K, together with an AC frequency equal to 1597.9 Hz, and the χ1 as a function of the DC field at different AC amplitudes has been analyzed showing a clear presence of granularity in all the curves. By drawing the contour plot of the χ1 with the DC and AC values, it was possible to determine the best parameters to put at 77 K in order to exploit the material for applications. Full article
Show Figures

Figure 1

9 pages, 449 KiB  
Review
Superconductors without Symmetry Breaking
by Maria Cristina Diamantini
Condens. Matter 2024, 9(2), 21; https://doi.org/10.3390/condmat9020021 - 2 Apr 2024
Viewed by 2033
Abstract
We review the main features of type-III superconductivity. This is a new type of superconductivity that exists in both 2 and 3 spatial dimensions. The main characteristics are emergent granularity and the superconducting gap being opened by a topological mechanism, with no Higgs [...] Read more.
We review the main features of type-III superconductivity. This is a new type of superconductivity that exists in both 2 and 3 spatial dimensions. The main characteristics are emergent granularity and the superconducting gap being opened by a topological mechanism, with no Higgs field involved. Superconductivity is destroyed by the proliferation of vortices and not by the breaking of Cooper pairs, which survive above the critical temperature. The hallmark of this superconductivity mechanism, in 3 spatial dimensions (3D), is the Vogel–Fulcher–Taman scaling of the resistance with temperature. Full article
(This article belongs to the Special Issue Superstripes Physics, 2nd Edition)
Show Figures

Figure 1

14 pages, 510 KiB  
Article
Topological Gauge Theory of Josephson Junction Arrays: The Discovery of Superinsulation
by Maria Cristina Diamantini
Condens. Matter 2023, 8(4), 97; https://doi.org/10.3390/condmat8040097 - 16 Nov 2023
Viewed by 2131
Abstract
We review the topological gauge theory description of Josephson junction arrays (JJA), fabricated systems which exhibit the superconductor-to-insulator transition (SIT). This description revealed the topological nature of the phases around the SIT and led to the discovery of a new state of matter, [...] Read more.
We review the topological gauge theory description of Josephson junction arrays (JJA), fabricated systems which exhibit the superconductor-to-insulator transition (SIT). This description revealed the topological nature of the phases around the SIT and led to the discovery of a new state of matter, the superinsulator, characterized by infinite resistance, even at finite temperatures, due to linear confinement of electric charges. This discovery is particularly relevant for the physics of superconducting films with emergent granularity, which are modeled with JJAs and share the same phase diagram. Full article
Show Figures

Figure 1

10 pages, 4396 KiB  
Article
Calculation of Forces to the High Granularity Calorimeter Stainless Steel Absorber Plates in the CMS Magnetic Field
by Vyacheslav Klyukhin
Symmetry 2023, 15(11), 2017; https://doi.org/10.3390/sym15112017 - 3 Nov 2023
Cited by 1 | Viewed by 1010
Abstract
The general-purpose Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) at CERN incorporates a hadronic calorimeter to register the energies of the charged and neutral hadrons produced in proton–proton collisions at the LHC at a center-of-mass energy of 13.6 TeV. [...] Read more.
The general-purpose Compact Muon Solenoid (CMS) detector at the Large Hadron Collider (LHC) at CERN incorporates a hadronic calorimeter to register the energies of the charged and neutral hadrons produced in proton–proton collisions at the LHC at a center-of-mass energy of 13.6 TeV. This calorimeter is located inside a superconducting solenoid that is 6 m in diameter and 12.5 m in length, generating a central magnetic flux density of 3.8 T. For operating optimally in the high pileup and high radiation environment of the High-Luminosity LHC, the existing CMS endcap calorimeters will be replaced with a new high granularity calorimeter (HGCal) with an electromagnetic section and a hadronic section in each of the two endcaps. The hadronic section of the HGCal will include 44 stainless-steel absorber plates with a relative permeability value well below 1.05. The volume occupied by 22 plates in each endcap is about 21 m3. The calculation of the axial electromagnetic forces acting on the absorber plates is a crucial element in designing the mechanical construction of the device. With a three-dimensional computer model of the CMS magnet, the axial forces on each absorber plate were calculated, and the dependence of forces on the central magnetic flux density value is presented. The method of calculation and the obtained results are discussed. Full article
Show Figures

Figure 1

10 pages, 291 KiB  
Review
Superconductors with a Topological Gap
by Maria Cristina Diamantini
Condens. Matter 2023, 8(2), 46; https://doi.org/10.3390/condmat8020046 - 16 May 2023
Cited by 1 | Viewed by 1746
Abstract
I review a new superconductivity mechanism in which the gap is opened through a topological mechanism and not through the Landau mechanism of spontaneous symmetry breaking. As a consequence, the low-energy effective theory which describes these new superconductors is not the Landau–Ginzburg theory, [...] Read more.
I review a new superconductivity mechanism in which the gap is opened through a topological mechanism and not through the Landau mechanism of spontaneous symmetry breaking. As a consequence, the low-energy effective theory which describes these new superconductors is not the Landau–Ginzburg theory, formulated in terms of a local-order parameter, but a topological-field theory formulated in terms of emerging gauge fields. This new mechanism is realized as global superconductivty in Josephson junction arrays and in thin superconducting films with thicknesses comparable to the superconducting coherence length, which exhibits emergent granularity. Full article
18 pages, 3892 KiB  
Article
Cometal Addition Effect on Superconducting Properties and Granular Behaviours of Polycrystalline FeSe0.5Te0.5
by Manasa Manasa, Mohammad Azam, Tatiana Zajarniuk, Ryszard Diduszko, Tomasz Cetner, Andrzej Morawski, Andrzej Wiśniewski and Shiv J. Singh
Materials 2023, 16(7), 2892; https://doi.org/10.3390/ma16072892 - 5 Apr 2023
Cited by 8 | Viewed by 2258
Abstract
The enhanced performance of superconducting FeSe0.5Te0.5 materials with added micro-sized Pb and Sn particles is presented. A series of Pb- and Sn-added FeSe0.5Te0.5 (FeSe0.5Te0.5 + xPb + ySn; x = y = [...] Read more.
The enhanced performance of superconducting FeSe0.5Te0.5 materials with added micro-sized Pb and Sn particles is presented. A series of Pb- and Sn-added FeSe0.5Te0.5 (FeSe0.5Te0.5 + xPb + ySn; x = y = 0–0.1) bulks are fabricated by the solid-state reaction method and characterized through various measurements. A very small amount of Sn and Pb additions (x = y ≤ 0.02) enhance the transition temperature (Tconset) of pure FeSe0.5Te0.5 by ~1 K, sharpening the superconducting transition and improving the metallic nature in the normal state, whereas larger metal additions (x = y ≥ 0.03) reduce Tconset by broadening the superconducting transition. Microstructural analysis and transport studies suggest that at x = y > 0.02, Pb and Sn additions enhance the impurity phases, reduce the coupling between grains, and suppress the superconducting percolation, leading to a broad transition. FeSe0.5Te0.5 samples with 2 wt% of cometal additions show the best performance with their critical current density, Jc, and the pinning force, Fp, which might be attributable to providing effective flux pinning centres. Our study shows that the inclusion of a relatively small amount of Pb and Sn (x = y ≤ 0.02) works effectively for the enhancement of superconducting properties with an improvement of intergrain connections as well as better phase uniformity. Full article
(This article belongs to the Special Issue Novel Superconducting Materials and Applications of Superconductivity)
Show Figures

Figure 1

12 pages, 1354 KiB  
Article
(Magneto)Transport Properties of (TiZrNbNi)1−xCux and (TiZrNbCu)1−xCox Complex Amorphous Alloys
by Marko Kuveždić, Emil Tafra, Ignacio A. Figueroa and Mario Basletić
Materials 2023, 16(4), 1711; https://doi.org/10.3390/ma16041711 - 18 Feb 2023
Cited by 1 | Viewed by 1685
Abstract
We present a systematic study of electrical resistivity, superconductive transitions and the Hall effect for three systems of compositionally complex amorphous alloys of early (TE) and late (TL) transition metals: (TiZrNbNi)1xCux and [...] Read more.
We present a systematic study of electrical resistivity, superconductive transitions and the Hall effect for three systems of compositionally complex amorphous alloys of early (TE) and late (TL) transition metals: (TiZrNbNi)1xCux and (TiZrNbCu)1xCox in a broad composition range of 0<x<0.5 as well as Ti0.30Zr0.15Nb0.15Cu0.2Ni0.2, Ti0.15Zr0.30Nb0.15Cu0.2Ni0.2 and Ti0.15Zr0.15Nb0.30Cu0.2Ni0.2. All samples showed high resistivity at room temperature, 140–240 μΩ cm, and the superconducting transition temperatures decreased with increasing late transition metal content, similar to binary amorphous and crystalline high-entropy TE-TL alloys. The Hall coefficient RH was temperature-independent and positive for all samples (except for (TiZrNbCu)0.57Co0.43), in good agreement with binary TE-TL alloys. Finally, for the temperature dependence of resistivity, as far as the authors are aware, we present a new model with two conduction channels, one of them being variable range hopping, such as the parallel conduction mode in the temperature range 20–200 K, with the exponent p=1/2. We examine this in the context of variable range hopping in granular metals. Full article
(This article belongs to the Special Issue Compositional Complex Alloys: From Amorphous to High-Entropy)
Show Figures

Figure 1

18 pages, 2497 KiB  
Article
Complex Phase-Fluctuation Effects Correlated with Granularity in Superconducting NbN Nanofilms
by Meenakshi Sharma, Manju Singh, Rajib K. Rakshit, Surinder P. Singh, Matteo Fretto, Natascia De Leo, Andrea Perali and Nicola Pinto
Nanomaterials 2022, 12(23), 4109; https://doi.org/10.3390/nano12234109 - 22 Nov 2022
Cited by 9 | Viewed by 2650
Abstract
Superconducting nanofilms are tunable systems that can host a 3D–2D dimensional crossover leading to the Berezinskii–Kosterlitz–Thouless (BKT) superconducting transition approaching the 2D regime. Reducing the dimensionality further, from 2D to quasi-1D superconducting nanostructures with disorder, can generate quantum and thermal phase slips (PS) [...] Read more.
Superconducting nanofilms are tunable systems that can host a 3D–2D dimensional crossover leading to the Berezinskii–Kosterlitz–Thouless (BKT) superconducting transition approaching the 2D regime. Reducing the dimensionality further, from 2D to quasi-1D superconducting nanostructures with disorder, can generate quantum and thermal phase slips (PS) of the order parameter. Both BKT and PS are complex phase-fluctuation phenomena of difficult experiments. We characterized superconducting NbN nanofilms thinner than 15 nm, on different substrates, by temperature-dependent resistivity and current–voltage (I-V) characteristics. Our measurements evidence clear features related to the emergence of BKT transition and PS events. The contemporary observation in the same system of BKT transition and PS events, and their tunable evolution in temperature and thickness was explained as due to the nano-conducting paths forming in a granular NbN system. In one of the investigated samples, we were able to trace and characterize the continuous evolution in temperature from quantum to thermal PS. Our analysis established that the detected complex phase phenomena are strongly related to the interplay between the typical size of the nano-conductive paths and the superconducting coherence length. Full article
(This article belongs to the Special Issue Novel Research in Low-Dimensional Systems)
Show Figures

Figure 1

13 pages, 9234 KiB  
Article
Effect of Impurity Scattering on Percolation of Bosonic Islands and Superconductivity in Fe Implanted NbN Thin Films
by Rajdeep Adhikari, Bogdan Faina, Verena Ney, Julia Vorhauer, Antonia Sterrer, Andreas Ney and Alberta Bonanni
Nanomaterials 2022, 12(18), 3105; https://doi.org/10.3390/nano12183105 - 7 Sep 2022
Cited by 3 | Viewed by 2405
Abstract
A reentrant temperature dependence of the thermoresistivity ρxx(T) between an onset local superconducting ordering temperature Tloconset and a global superconducting transition at T=Tglooffset has been reported in disordered conventional 3-dimensional (3D) superconductors. The [...] Read more.
A reentrant temperature dependence of the thermoresistivity ρxx(T) between an onset local superconducting ordering temperature Tloconset and a global superconducting transition at T=Tglooffset has been reported in disordered conventional 3-dimensional (3D) superconductors. The disorder of these superconductors is a result of either an extrinsic granularity due to grain boundaries, or of an intrinsic granularity ascribable to the electronic disorder originating from impurity dopants. Here, the effects of Fe doping on the electronic properties of sputtered NbN layers with a nominal thickness of 100 nm are studied by means of low-T/high-μ0H magnetotransport measurements. The doping of NbN is achieved via implantation of 35 keV Fe ions. In the as-grown NbN films, a local onset of superconductivity at Tloconset=15.72K is found, while the global superconducting ordering is achieved at Tglooffset=15.05K, with a normal state resistivity ρxx=22μΩ·cm. Moreover, upon Fe doping of NbN, ρxx=40μΩ·cm is estimated, while Tloconset and Tglooffset are measured to be 15.1 K and 13.5 K, respectively. In Fe:NbN, the intrinsic granularity leads to the emergence of a bosonic insulator state and the normal-metal-to-superconductor transition is accompanied by six different electronic phases characterized by a N-shaped T dependence of ρxx(T). The bosonic insulator state in a s-wave conventional superconductor doped with dilute magnetic impurities is predicted to represent a workbench for emergent phenomena, such as gapless superconductivity, triplet Cooper pairings and topological odd frequency superconductivity. Full article
(This article belongs to the Special Issue Superconductivity in Nanosystems)
Show Figures

Figure 1

8 pages, 1368 KiB  
Article
MgB2 Thin Films Fabricated by Pulsed Laser Deposition Using Nd:YAG Laser in an In Situ Two-Step Process
by Toshinori Ozaki, Satoshi Kikukawa, Rika Tanaka, Akiyasu Yamamoto, Akihiro Tsuruta and Yuji Tsuchiya
Condens. Matter 2022, 7(3), 48; https://doi.org/10.3390/condmat7030048 - 2 Aug 2022
Cited by 4 | Viewed by 3009
Abstract
Magnesium diboride (MgB2) thin films on r-cut sapphire (r-Al2O3) single crystals were fabricated by a precursor, which was obtained at room temperature via a pulsed laser deposition (PLD) method using a Nd:YAG laser, and [...] Read more.
Magnesium diboride (MgB2) thin films on r-cut sapphire (r-Al2O3) single crystals were fabricated by a precursor, which was obtained at room temperature via a pulsed laser deposition (PLD) method using a Nd:YAG laser, and an in situ postannealing process. The onset superconducting transition, Tconset, and zero-resistivity transition, Tczero, were observed at 33.6 and 31.7 K, respectively, in the MgB2 thin films prepared by a Mg-rich target with a ratio of Mg:B = 3:2. The critical current density, Jc, calculated from magnetization measurements reached up to 0.9 × 106 A cm−2 at 20 K and 0 T. The broad angular Jc peak was found at 28 K when the magnetic fields were applied in a direction parallel to the film surface (θ = 90°). This could be indicative of the granular structure with randomly oriented grains. Our results demonstrate that this process is a promising candidate for the fabrication of MgB2 superconducting devices. Full article
(This article belongs to the Special Issue Layered Superconductors III)
Show Figures

Figure 1

15 pages, 3031 KiB  
Article
On the Localization of Persistent Currents Due to Trapped Magnetic Flux at the Stacking Faults of Graphite at Room Temperature
by Regina Ariskina, Markus Stiller, Christian E. Precker, Winfried Böhlmann and Pablo D. Esquinazi
Materials 2022, 15(10), 3422; https://doi.org/10.3390/ma15103422 - 10 May 2022
Cited by 18 | Viewed by 2269
Abstract
Granular superconductivity at high temperatures in graphite can emerge at certain two-dimensional (2D) stacking faults (SFs) between regions with twisted (around the c-axis) or untwisted crystalline regions with Bernal (ABA…) and/or rhombohedral (ABCABCA…) stacking order. One way to observe experimentally such 2D superconductivity [...] Read more.
Granular superconductivity at high temperatures in graphite can emerge at certain two-dimensional (2D) stacking faults (SFs) between regions with twisted (around the c-axis) or untwisted crystalline regions with Bernal (ABA…) and/or rhombohedral (ABCABCA…) stacking order. One way to observe experimentally such 2D superconductivity is to measure the frozen magnetic flux produced by a permanent current loop that remains after removing an external magnetic field applied normal to the SFs. Magnetic force microscopy was used to localize and characterize such a permanent current path found in one natural graphite sample out of ∼50 measured graphite samples of different origins. The position of the current path drifts with time and roughly follows a logarithmic time dependence similar to the one for flux creep in type II superconductors. We demonstrate that a ≃10 nm deep scratch on the sample surface at the position of the current path causes a change in its location. A further scratch was enough to irreversibly destroy the remanent state of the sample at room temperature. Our studies clarify some of the reasons for the difficulties of finding a trapped flux in a remanent state at room temperature in graphite samples with SFs. Full article
(This article belongs to the Special Issue Advanced 2D Materials for New-Generation Electronic Devices)
Show Figures

Figure 1

18 pages, 1714 KiB  
Article
Superconducting Properties and Electron Scattering Mechanisms in a Nb Film with a Single Weak-Link Excavated by Focused Ion Beam
by Marlon Ivan Valerio-Cuadros, Davi Araujo Dalbuquerque Chaves, Fabiano Colauto, Ana Augusta Mendonça de Oliveira, Antônio Marcos Helgueira de Andrade, Tom Henning Johansen, Wilson Aires Ortiz and Maycon Motta
Materials 2021, 14(23), 7274; https://doi.org/10.3390/ma14237274 - 28 Nov 2021
Cited by 4 | Viewed by 3143
Abstract
Granularity is one of the main features restricting the maximum current which a superconductor can carry without losses, persisting as an important research topic when applications are concerned. To directly observe its effects on a typical thin superconducting specimen, we have modeled the [...] Read more.
Granularity is one of the main features restricting the maximum current which a superconductor can carry without losses, persisting as an important research topic when applications are concerned. To directly observe its effects on a typical thin superconducting specimen, we have modeled the simplest possible granular system by fabricating a single artificial weak-link in the center of a high-quality Nb film using the focused ion beam technique. Then, its microstructural, magnetic, and electric properties in both normal and superconducting states were studied. AC susceptibility, DC magnetization, and magneto-transport measurements reveal well-known granularity signatures and how they negatively affect superconductivity. Moreover, we also investigate the normal state electron scattering mechanisms in the Boltzmann theory framework. The results clearly demonstrate the effect of the milling technique, giving rise to an additional quadratic-in-temperature contribution to the usual cubic-in-temperature sd band scattering for the Nb film. Finally, by analyzing samples with varying density of incorporated defects, the emergence of the additional contribution is correlated to a decrease in their critical temperature, in agreement with recent theoretical results. Full article
Show Figures

Figure 1

13 pages, 860 KiB  
Article
Potassium-Doped Para-Terphenyl: Structure, Electrical Transport Properties and Possible Signatures of a Superconducting Transition
by Nicola Pinto, Corrado Di Nicola, Angela Trapananti, Marco Minicucci, Andrea Di Cicco, Augusto Marcelli, Antonio Bianconi, Fabio Marchetti, Claudio Pettinari and Andrea Perali
Condens. Matter 2020, 5(4), 78; https://doi.org/10.3390/condmat5040078 - 1 Dec 2020
Cited by 12 | Viewed by 4520
Abstract
Preliminary evidence for the occurrence of high-TC superconductivity in alkali-doped organic materials, such as potassium-doped p-terphenyl (KPT), were recently obtained by magnetic susceptibility measurements and by the opening of a large superconducting gap as measured by ARPES and STM techniques. In [...] Read more.
Preliminary evidence for the occurrence of high-TC superconductivity in alkali-doped organic materials, such as potassium-doped p-terphenyl (KPT), were recently obtained by magnetic susceptibility measurements and by the opening of a large superconducting gap as measured by ARPES and STM techniques. In this work, KPT samples have been synthesized by a chemical method and characterized by low-temperature Raman scattering and resistivity measurements. Here, we report the occurrence of a resistivity drop of more than 4 orders of magnitude at low temperatures in KPT samples in the form of compressed powder. This fact was interpreted as a possible sign of a broad superconducting transition taking place below 90 K in granular KPT. The granular nature of the KPT system appears to be also related to the 20 K broadening of the resistivity drop around the critical temperature. Full article
(This article belongs to the Special Issue Quantum Complex Matter 2020)
Show Figures

Figure 1

Back to TopTop