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Abstract: We review the main features of type-III superconductivity. This is a new type of super-
conductivity that exists in both 2 and 3 spatial dimensions. The main characteristics are emergent
granularity and the superconducting gap being opened by a topological mechanism, with no Higgs
field involved. Superconductivity is destroyed by the proliferation of vortices and not by the breaking
of Cooper pairs, which survive above the critical temperature. The hallmark of this superconductiv-
ity mechanism, in 3 spatial dimensions (3D), is the Vogel–Fulcher–Taman scaling of the resistance
with temperature.
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1. Introduction

Traditional superconductors (see, e.g., [1]) are characterized by two length scales, the
coherence length ξ and the London penetration depth λ. The corresponding energies de-
scribe the gaps for two excitations: the Higgs mode, corresponding to amplitude oscillations
of the order parameter, and the photon, which becomes massive by absorbing the phase of
the order parameter via the Anderson–Higgs mechanism. The Higgs gap coincides with
the superconducting gap (for a recent comprehensive review, see [2]). However, since its
decay to single-particle excitations is suppressed by inverse powers of the temperature [3],
and it is unaffected by Coulomb interactions [4], at low temperatures, it can be considered
a well-defined, undamped mode.

Since the Higgs does not couple linearly to external electromagnetic probes, it is
difficult to detect by standard techniques. In fact, it has been observed only recently by [5]
using monocycle THz pulses able to excite it. THz lasers became available only in the last
decade or so.

The two scales of superconductors determine the shape and behavior of Abrikosov vor-
tices, the solitons of the Ginzburg–Landau theory (for a review, see [1]). These have two cores
of sizes ξ and λ, respectively. Type-I superconductors are realized when ξ >

√
2λ. In this

case, the Higgs core exceeds the gauge core, and magnetic fields H cannot penetrate the
superconductor. When it exceeds critical value Hc, superconductivity is destroyed. Type-II
superconductors are realized when ξ <

√
2λ. The Higgs core is the smallest one, and

magnetic fields can penetrate in the form of a vortex lattice between two lower and upper
critical fields Hc1 and Hc2, superconductivity being destroyed only above the upper critical
field Hc2 [1].

Type-I superconductors [1,6] are characterized by a complete Meissner effect and are,
thus, perfectly diamagnetic. The critical magnetic field HC separates the superconducting
and non-superconducting states of the materials. Type-I superconductors have, in general,
a critical temperature below 10 K and are referred to as low-temperature superconductors.
They also have a low critical magnetic field, below 1T. Type-I superconductors consist,
in general, of elementary metals such as mercury, lead, or aluminum, which become
superconductors below their critical temperature. They were discovered in mercury in
1911 by H.K. Onnes [7]. Type-II superconductors are characterized by two critical values
of the magnetic field, HC1 and HC2. The Meissner effect is not complete between the two
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critical magnetic fields. Here, there is the formation of a mixed state with a magnetic
field that penetrates in the form of Abrikosov vortices [8]. In type-II superconductors, the
critical temperature at which superconductivity is destroyed is, in general, greater than
10 K. This type of superconductivity is, in general, realized in metal alloys or complex oxide
ceramics. For critical temperatures below 30–40 K, type-I and type-II superconductivity are
successfully explained by the BCS theory [9].

In [10,11], a new type of superconductivity, later called type-III superconductivity [12],
was proposed. In type-III superconductors, there is only a gauge scale λ and no Higgs
core. At zero temperature, they are characterized by the vanishing of the lower critical
field Hc1 [12]. This is a crucial difference with respect to type-I superconductors, in which
magnetic flux never penetrates the sample, and type-II supeconductors, in which magnetic
flux penetrates above Hc1 ̸= 0. At high temperatures, superconductivity is destroyed by
the liberation of vortices, which are logarithmically confined in the superconducting state.
The fact that superconductivity is destroyed by the proliferation of vortices means that
the systems undergo a Berezinskii–Kosterlitz–Thouless (BKT) transition [13,14] in (2+1)
dimensions as experimentally confirmed in [1,15,16]. The BKT transition is the paradigm
of a topological phase transition. It is not due to spontaneous symmetry breaking; it cannot
be described by a local order parameter, and there is no true long-range order. It describes
the phase transition in the XY model: vortex-antivortex pairs, which are topological de-
fects with logarithmic interaction, break at a critical temperature. The system has, thus,
a phase transition between a quasi-long-range ordered state and a disordered one. Planar
superconductivity arises, thus, via a topological phase transition and is not destroyed by
the breaking of Cooper pairs like in type-I and type-II superconductors. Cooper pairs sur-
vive above the critical temperature in type-III superconductors. Moreover, as we showed
in [17], this is the only possible mechanism in (2+1) dimensions. This superconductivity
mechanism can be generalized to any dimension [10,11]. In (3+1) dimensions, the topo-
logical phase transition is the Vogel–Fulcher–Tamman (VFT) transition [18], which has
been experimentally confirmed in NbTin sample of 86 nm thickness [12]. BKT scaling in
(2+1) dimensions, VFT scaling in (3+1) dimensions, and the vanishing of Hc1 are, thus, the
hallmarks of type-III superconductivity.

In type-III superconductors, the superconducting gap is not opened through the Higgs
mechanism but through a topological mechanism [19]. As it has been shown in [10–12], the
infrared-dominant term in the effective action that describes type-II superconductors is the
topological Chern-Simons (CS) [19] term in 2D and the BF [20] term in 3D. In the effective
action for the electromagnetic field, the presence of these topological terms generates
a gauge-invariant mass for the photon, as we will show. The topological mass generation
mechanism is the generalization of the topologically massive gauge theories proposed first
in [19] to the coupling of two gauge fields (mixed CS term) in (2+1) dimensions and to the
coupling of a gauge field and a tensor field in (3+1) dimensions (BF term).

In the resistive state, due to the presence of the topological term, the interactions
between charges and vortices become screened Yukawa interactions. The superconducting
state is realized when the charges condense. The physics of systems that realize type-III
superconductivity is characterized by the competition of two quantum orders, charges
and vortices, and is realized in materials that exhibit the superconductor-to-insulators
transition (SIT) like Tin and NbTin superconducting films (for a review see: [21]). As shown
in [22,23], when charges condense, the materials become type-III superconductors, while
when vortices proliferate, the materials behave like superinsulators [22]. An intermediate
bosonic topological insulating state is possible between these two phases [24] when both
excitations are frozen. Topological insulators are a topological phase of matter characterized
by a new type of order not due to spontaneous symmetry breaking, called symmetry-
protected topological order [25,26]. They are materials that are insulating in bulk and have
conducting edge states protected by symmetries. The longitudinal conductance is mediated
by symmetry-protected U(1)⋊ ZT

2 edge modes, where ZT
2 denotes time-reversal symmetry.
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Their effective gauge theory description contains a topological term: a mixed CS term in
(2+1) dimensions and a BF term in (3+1) dimensions [27,28].

Type-III superconductors are also characterized by an emergent granularity. In 2D, this
emergent granularity can be explained in the following way. The electromagnetic coupling
is e2

eff = e2/d and has canonical dimension [mass] in natural units c = 1, h̄ = 1, ε0 = 1. In
the Ginzburg–Landau model, the coupling with electric and magnetic fluctuations cannot
be neglected for very thin materials (d → 0 ), and the theory that describes these supercon-
ductors becomes scalar QED [17], which is plagued by infrared divergences [29], since the
perturbative expansion parameter is ∝ log

(
e2L/d

)
, where L is the system size, representing

the necessary infrared cutoff. As a consequence, when decreasing d, a traditional super-
conductor will break up in islands of condensate of typical dimension O(d) [17], detected
in superconducting films in [30–32]. Granularity in superconducting films is now a gener-
ally accepted paradigm [33–35], and the films are modeled by Josephson junction arrays
(JJAs) [36,37] with random couplings (see, e.g., [38]). In 3D, type-III superconductors are
also characterized by emergent granularity. Bulk superconductors with emergent granular-
ity have been experimentally detected in [39], and emergent granularity is a characteristic
of high-Tc superconductors, especially in the underdoped regime [40].

Here, in Section 1, we will review the role of vortices in type-III superconductors
and show that the liberation of vortices leads, in 3D, to the VFT scaling of the resistance,
which is the hallmark of this new superconductivity. Section 2 is dedicated to reviewing
the effective gauge theory of these superconductors, which cannot be described by the
Ginzuburg-Landau model of superconductivity.

2. Vortices in Type-III Superconductors

What is the fundamental difference between homogeneous and granular superconduc-
tors in 3D? A granular superconductor can be modeled as an emergent 3D JJA, where the
individual grains, the superconducting islands, are local superconductors. As in JJA, global
superconductivity is realized when global phase coherence between the order parameters
on the islands is established. Type-III superconductors do not possess a global order pa-
rameter, and we refer to them as “Higgsless superconductors” [11], the only relevant scale
being the typical distance ℓ between grains, which plays the role of the ultraviolet cutoff in
the model. Vortex degrees of freedom appear when the phases on adjacent droplets realize
a non-trivial 2π circulation, as shown in Figure 1. Contrary to Abrikosov vortices, these
vortices have no dissipative core. Like for the vortices in the XY model, they are point
excitations associated with a site of the dual array [16]. In principle, there could also be
Abrikosov vortices within the individual islands, associated with local superconductivity,
but if the islands are small enough, local Abrikosov vortices are not even stable [41,42].

Figure 1. Formation of a vortex in a granular film.

The main characteristic of these coreless, point-like XY vortices is their extreme quan-
tum mobility. This is a crucial aspect that is regularly neglected when focusing only on the
classical statistical mechanics of the XY model. The point is that vortices are not Noether
charges but are topological ones, and, as such, at very low temperatures, they can freely
tunnel between different topological sectors. Let us consider, in particular, a quantum
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event in which all phases on a line ending in a particular island simultaneously flip by
2π, with alternating signs [43]. No phase degrees of freedom, neither small fluctuations
(like spin waves) nor vortices, are involved in such an event, except at the endpoint, where
it corresponds to the tunneling of one vortex from one plaquette to the neighboring one.
This is the 2D equivalent of the usual 1D quantum phase slips [44,45]. As a consequence
of quantum phase slips, XY vortices can tunnel over the dual array exactly as Cooper
pairs can tunnel between grains of the original array, as was originally pointed out in [27].
Again, we stress that no dissipative core is involved in this process, and the vortices that
are tunneling are the point excitations of the XY model. However, one might think that
the phase flip on one island might excite quasi-particles out of the local condensate there.
However, this is not so; at low temperatures, dissipation due to quasi-particle excitation is
negligible since the typical tunneling frequency is much smaller than the excitation gap for
quasi-particles. The dissipation picture of [46] is also not valid since it is fully predicated
on a vortex liquid in the Bose metal state, and the latest experiments have now confirmed
the original picture [24,27] in which vortices are mostly frozen in this state, and not in
a liquid phase [47]. Of course, however, vortex tunneling creates quantum dissipation
for charges in the orthogonal direction and vice versa. But these effects are represented
by effective Coulomb potentials (giving rise to related effective “electric fields”) for both
charges and vortices and can thus be incorporated dynamically into a gauge theory as
Gauss law constraints, giving rise exactly to the frozen topological state [27,48].

Global superconductivity is lost by a proliferation of vortices and not by the breaking
of Cooper pairs. In 2D, this leads to the BKT scaling, typical of the XY model, of the
sheet resistance:

R ∝ e
−
√

b
|T−TBKT | (1)

where TBKT is the transition temperature and b is a constant with dimension tempera-
ture [13,14]. In 3D, the scaling of the resistance is not the scaling of the 3D XY model.
Vortices are 1D-extended string-like objects, and vortex deconfinement is characterized
by the string becoming loose. The corresponding critical scaling of the resistance at the
transition is given by the VFT scaling [18],

R ∝ e
− b′

|T−TBKT | . (2)

This behavior has now been clearly detected in bulk samples of NbN and NbTiN [12] as
shown in Figure 2.

Figure 2. Scaling of the resistance. (a) Four-terminal dc resistance measurements resistance measure-
ments of the 20-nm-thick NbN film. The red and blue curves correspond to the BKT fitting and VFT
fitting of the experimental data, respectively. The gray points mark experimental data deviating from
the fits. The subfigure illustrates a sketch of the four-terminal dc resistance measurements of NbN
and NbTiN films. (b) Four-terminal DC resistance measurements of a 20-nm-thick NbN film. The red
and blue curves correspond to the BKT fitting and VFT fitting of the experimental data, respectively.
The three data points marked gray show a noticeable deviation from the fits. From Advance Science,
accessed on 25 March 2023, https://doi.org/10.1002/advs.202206523.

https://doi.org/10.1002/advs.202206523
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While in 2D, as we already explained, all superconducting films are type-III, the real
experimental challenge is in 3D. Granular superconductors are the ideal candidates for this
new type of superconductivity. The thickness of the sample will play a crucial role in the
experiments, as in the case of NbN and NbTiN. The hallmarks are the presence of Cooper
pairs above the transition, the vanishing of HC1, and the VFT scaling of the resistance when
the system is thick enough to be 3D.

3. Effective Gauge Theory Description of Type-III Superconductors

In this section, we will review the effective gauge theory description of type-III super-
conductors derived in [12]. We will concentrate on the 3D case. Granular superconductors
can be modeled by a cubic lattice, a 3D JJA, but, in what follows, for simplicity, we will
keep a continuous notation and use natural units c = 1, h̄ = 1, ε0 = 1.

The key point of this derivation is, as we said, the fact that the relevant degrees of
freedom in the resistive state of type-III superconductors are charges and vortices, which are
subject to mutual Aharonov–Bohm–Casher (ABC) statistical interactions [49–51]. Charge
degrees of freedom are described by a conserved current Qµ, representing the world-line
of charges (Greek letters standing for the space–time indices), with ∂µQµ = 0. The zero
component Q0 represents integer 2e charges located in the droplets. In 2D, vortices are
point-like objects with integer charge in units 2π/2e, described by a current Mµ, while,
in 3D, they are 1D extended objects, represented by an antisymmetric tensor Mµν which
describes the world-surface of vortices. We will be interested in vortices that form closed
loops ∂µ Mµ = 0 in 2D, and ∂µ Mµν = ∂ν Mµν = 0 in 3D (open vortices with magnetic
monopoles at their ends [52,53] are not relevant for what follows).

The ABC statistical interactions are given by the Gaussian linking of closed loops
in three Euclidean dimensions and closed loop and closed surfaces in four Euclidean
dimensions [54]. As shown by Wilczek [49], they can be written in local form by introducing
a vector gauge field aµ coupling to Qµ and either a pseudovector gauge field bµ coupling to
the vortex current, in 2D, or, in 3D, a pseudotensor antisymmetric gauge field bµν coupling
to Mµν [55]. These emergent gauge fields interact through a topological term: the CS
term [19] in 2D and the BF term [21] in 3D:

S =
∫

d3x
1

2π
aµϵµαν∂αbν − aµQµ − bµ Mµ , 2D , (3)

S =
∫

d4x
1

4π
aµϵµανρ∂αbνρ − aµQµ − 1

2
bµν Mµν , 3D .

We would like to stress that although a CS term is present in the effective action of type-III
superconductors in (2+1) dimensions, there is no relation between type-III superconduc-
tivity and anyon superconductivity [56]. The idea of anyon superconductivity, as it was
originally proposed as a mechanism for high TC superconductors, was based on the pos-
sibility of fractional statistics in 2 space dimensions. The interaction between a statistical
CS gauge field and fermions turns these into anyons by attaching magnetic flux to their
charge density. Anyon superconductivity is thus confined to (2+1) dimensions and is P
and T breaking since the CS term involving just one gauge field breaks these symmetries.
In type-III superconductivity, the CS term in (2+1) dimensions and its generalization to
(3+1) dimensions, the BF term couples a vector and a pseudo vector (pseudo tensor) gauge
fields and describes the ABC interactions between charges and vortices as described in
Equation (4) and the theory is P and T invariant.

We will now concentrate on the 3D case (four Euclidean dimensions) The actions in
Equation (4) need a regularization [49]. This is accomplished by adding the next-order
gauge-invariant terms for the two gauge fields, which are nothing else than the kinetic
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terms: the usual Maxwell term for aµ, quadratic in fµν = ∂µaν − ∂νaµ and the Kalb–Ramond
term for the tensor gauge field bµν, whose field strength is a three-tensor:

hµνα = ∂µbνα + ∂νbαµ + ∂αbµν . (4)

The regularized Euclidean effective action becomes:

S =
∫

d4x
1

4 f 2 fµν fµν +
i

4π
aµϵµναβ∂νbαβ +

1
12Λ2 hµναhµνα + iaµQµ + i

1
2

bµν Mµν , (5)

and is invariant under the (generalized) gauge transformations:

aµ → aµ + dµξ ,

bµν → bµν + dµλν − dνλµ . (6)

In 2D, the kinetic terms for both emergent gauge fields are infrared-irrelevant since both
coupling constants have the dimensions of [mass]. They must, however, be added due
to an anomaly for the CS term [57], and, for the description of physical systems, the pure
topological limit (topological mass → ∞) must be taken starting from the action with kinetic
terms. In 3D, instead, in Equation (5), the Maxwell term for the gauge field aµ is not simply
a regularization: the coupling constant f is dimensionless, so the Maxwell term is marginal
and must be added to the action, it co-determines the infrared behavior of the theory with
the BF term. Since Λ has the dimensions of a mass, the kinetic term for the Kalb–Ramond
tensor field is infrared-irrelevant, and it serves only as an ultraviolet regulator for Gaussian
integrals describing the massive modes on a scale:

1
m

≪ π

f Λ
.

It can be removed taking the limit Λ → ∞ after the integration. The BF term has the effect
of generating a topological mass for the emergent fields [20]:

m =
f Λ
2π

, (7)

so that, in the resistive state, the interactions between charges and vortices become Yukawa
interactions. As shown in [12,17], when charges condense in the superconducting phase,
the vortex interactions become long-range Coulomb interactions, and vortices are logarith-
mically confined [27]. The liberation of vortices destroys superconductivity with a VFT
scaling for the resistance [12].

In conventional superconductivity, due to spontaneous symmetry breaking, the photon
acquires a mass via the Anderson–Higgs mechanism, while in type-III superconductors, it
acquires a mass due to the BF mechanism. To see this, we will use the Julia and Toulouse
mechanism [58]. We start by noticing that Qµ and Mµν in Equation (4) have the effect of
making the BF term periodic (they are integers on the lattice) and can be seen as topological
defects arising from the compactness of the emergent gauge symmetries. Following [59],
they can be interpreted as singularities in the field strength. In a nutshell, the Julia–Toulouse
mechanism tells us that the condensation of topological defects, in our case Cooper pairs
and vortices, Qµ and Mµν, in solid-state media generates new hydrodynamical modes for
the low-energy effective theory. These hydrodynamical modes represent long wavelength
fluctuations over the continuous distribution of topological defects. In solid-state systems,
it is, in general, very difficult to derive the action for the phase with condensation of
topological defects, one of the causes being the lack of gauge invariance. In [60], it has been
shown, however, that in the case of compact antisymmetric field theories, as in our case,
the Julia–Toulouse prescription is sufficient to fully determine the low-energy action due
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to the condensation of topological defects. To see this we couple Equation (5) to the real
electromagnetic field Aµ

S −→ S+ = ie
∫

d4xAµ jµ , (8)

with jµ = 1
2π ϵµανρ∂αbνρ. Integrating over the emergent gauge fields and taking the limit

Λ → ∞, we obtain:

S =
∫

d4x
1
4

FµνFµν + ieIµαϵµανρFνρ , (9)

where Qµ = ϵµανρ∂α Iνρ and Fµν = ∂µAν − ∂νAµ. Following the Julia–Toulouse prescription,
due to the Cooper pair condensation in the superconducting phase, the proliferating point
charge singularities carrying the delta-like current densities Iνρ are promoted to a contin-
uous two-form antisymmetric field Bµν defined on the whole space, without singularities:
Iνρ → Bµν. Following [60], the action for this new mode is obtained by adding the kinetic
term for Bµν, the square of the three-form field strength: Hµνρ = ∂µBνρ + ∂νBρµ + ∂ρBµν

Seff =
∫

d4x
1
4

FµνFµν + iπBµαϵµανρFνρ +
1

12Λ̃2
HµνρHµνρ , (10)

where Λ̃ is the new emergent mass scale describing the average density of condensed
charges. Like Equation (5), Equation (10) contains a BF term which, in this case, generates a
topological mass for the photon:

m = 4πΛ̃ .

Due to gauge invariance, the antisymmetric Kalb–Ramond field embodies a single scalar
degree of freedom. This scalar degree of freedom is ”eaten” by the original photon, which
becomes massive. No symmetry-breaking is involved.

The essence of type-III superconductivity is that one single massless superfluid mode
can always be described in terms of a generalized gauge field in any dimension. When
vortices are structureless point particles, as in granular media, they couple directly to
this gauge field, and, as always in gauge theories, a Coulomb interaction is generated
by the Gauss law constraint. Furthermore, the vortex coupling automatically generates
a photon gap as a gauge-invariant topological mass. A single generalized gauge theory
accommodates all superconducting phenomena and replaces the Ginzburg–Landau theory,
which does not need a scalar field and the associated coherence length.

Type-III superconductors are granular materials with Cooper pairs that are localized
in granules [12]. We believe, thus, that they can be relevant for high TC superconductivity,
where emergent granularity appears [40,61]. The pairing mechanism, in this case, cannot
be the BCS one since Cooper pairs are localized, and a possible mechanism to account for
pairing in type-III superconductors is described in [62].
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