# Superconductors with a Topological Gap

## Abstract

**:**

## 1. Introduction

## 2. BF Theory

## 3. (2 + 1)-Dimensional Case

## 4. Conclusions

## Funding

## Conflicts of Interest

## References

- Tinkham, M. Introduction to Superconductivity; Dover Publications: New York, NY, USA, 1996. [Google Scholar]
- Larkin, A.; Varlamov, A. Theory of Fluctuations in Superconductors; Clarendon Press: Oxford, UK, 2005. [Google Scholar]
- Palle, G.; Sunko, D.K. Physical limitations of the Hohenberg-Mermin-Wagner theorem. J. Phys. A Math. Theor.
**2021**, 54, 315001. [Google Scholar] [CrossRef] - Diamantini, M.C.; Sodano, P.; Trugenberger, C.A. Superconductors with topological order. Eur. Phys. J. B-Condens. Matter Complex Syst.
**2006**, 53, 19–22. [Google Scholar] [CrossRef] - Diamantini, M.C.; Trugenberger, C.A. Higgsless superconductivity from topological defects in compact BF terms. Nucl. Phys.
**2015**, 891, 401–419. [Google Scholar] [CrossRef] - Birmingham, D.; Blau, M.; Rakowski, M.; Thompson, G. Topological field theory. Phys. Rep.
**1991**, 209, 129. [Google Scholar] [CrossRef] - Diamantini, M.C.; Sodano, P.; Trugenberger, C.A. Gauge theories of Josephson junction arrays. Nucl. Phys. B
**1996**, 474, 641–677. [Google Scholar] [CrossRef] - Diamantini, M.C.; Trugenberger, C.A.; Vinokour, V.M. How planar superconductors cure their infrared divergences. JHEP
**2022**, 10, 100. [Google Scholar] [CrossRef] - Diamantini, M.C.; Trugenberger, C.A.; Chen, S.Z.; Lu, Y.J.; Liang, C.T.; Vinokur, V.M. Type-III Superconductivity. Adv. Sci.
**2023**, 2206523. [Google Scholar] [CrossRef] [PubMed] - Minnhagen, P. The two-dimensional Coulomb gas, vortex unbinding and superfluid-superconducting films. Rev. Mod. Phys.
**1987**, 59, 1001–1066. [Google Scholar] [CrossRef] - Zhou, P.; Chen, L.; Liu, Y.; Sochnikov, I.; Bollinger, A.T.; Han, M.-G.; Zhu, Y.; He, X.; Božović, I.; Natelson, D. Electron pairing in the pseudogap state revealed by shot noise in copper oxide junctions. Nature
**2019**, 572, 493–496. [Google Scholar] [CrossRef] - Goldman, A.M. Superconductor-insulator transitions. Int. J. Mod. Phys. B
**2010**, 24, 4081–4101. [Google Scholar] [CrossRef] - Fisher, M.P.A. Quantum phase transitions in disordered two-dimensional superconductors. Phys. Rev. Lett.
**1990**, 65, 923–926. [Google Scholar] [CrossRef] [PubMed] - Jackiw, R.; Templeton, S. How super-renormalizable interactions cure infrared divergences. Phys. Rev. D
**1981**, 23, 2291. [Google Scholar] [CrossRef] - Polyakov, A.M. Compact gauge fields and the infrared catastrophe. Phys. Lett.
**1975**, 59, 82–84. [Google Scholar] [CrossRef] - Deser, S.; Jackiw, R.; Templeton, S. Topologically massive gauge theories. Ann. Phys.
**1982**, 140, 372. [Google Scholar] [CrossRef] - Diamantini, M.C.; Trugenberger, C.A.; Vinokur, V.M. Confinement and asymptotic freedom with Cooper pairs. Comm. Phys.
**2018**, 1, 77. [Google Scholar] [CrossRef] - Diamantini, M.C.; Mironov, A.Y.; Postolova, S.V.; Liu, X.; Hao, Z.; Silevitch, D.M.; Kopelevich, Y.; Kim, P.; Trugenberger, C.A.; Vinokur, V.M. Bosonic topological intermediate state in the superconductor-insulator transition. Phys. Lett. A
**2020**, 384, 126570. [Google Scholar] [CrossRef] - Diamantini, M.C.; Vinokur, C.A.; Vinokur, V.M. The superconductor-insulator transition in absence of disorder. Phys. Rev. B
**2021**, 103, 174516. [Google Scholar] [CrossRef] - Kalb, M.; Ramond, P. Classical direct interstring action. Phys. Rev. D
**1974**, 9, 2273. [Google Scholar] [CrossRef] - Eguchi, T.; Gilkey, P.B.; Hanson, A.J. Gravitation, gauge theories and differential geometry. Phys. Rep.
**1980**, 66, 213. [Google Scholar] [CrossRef] - Polyakov, A.M. Gauge Fields and String; Harwood Academic Publisher Chur: London, UK, 1987. [Google Scholar]
- Trugenberger, C.A. Superinsulators, Bose Metals and High-T
_{C}-Superconductors: The Quantum Physics of Emergent Magnetic Monopoles; World Scientific: Singapore, 2022. [Google Scholar] - van Otterlo, A.; Fazio, R.; Schön, G. Quantum vortex dynamics in Josephson junction arrays. Physica
**1994**, B203, 504–512. [Google Scholar] [CrossRef] - van der Zant, H.; Fritschy, F.C.; Orlando, T.P.; Mooji, J.E. Ballistic motion of vortices in Josephson junction arrays. Europhys. Lett.
**1992**, 18, 343–512. [Google Scholar] [CrossRef] - Sacépé, B.; Chapelier, C.; Baturina, T.I.; Vinokur, V.M.; Baklanov, M.R.; Sanquer, M. Disorder-induced nhomogeneities of the superconducting state close to the superconductor-insulator transition. Phys. Rev. Lett.
**2008**, 101, 157006. [Google Scholar] [CrossRef] [PubMed] - Aharonov, Y.; Bohm, D. Significance of electromagnetic potentials in quantum theory. Phys. Rev.
**1961**, 115, 485–491. [Google Scholar] [CrossRef] - Aharonov, Y.; Casher, A. Topological Quantum Effects for Neutral Particles. Phys. Rev. Lett.
**1984**, 53, 319–321. [Google Scholar] [CrossRef] - Kaufmann, L.H. Formal Knot Theory; Princeton University Press, Princeton: Singapore, 1983. [Google Scholar]
- Wilczek, F. Disassembling Anyons. Phys. Rev. Lett.
**1992**, 69, 132–135. [Google Scholar] [CrossRef] - Dunne, G.; Jackiw, R.; Trugenberger, C.A. Topological (Chern-Simons) quantum mechanics. Phys. Rev.
**1990**, D41, 661–666. [Google Scholar] [CrossRef] - Banks, T.; Myerson, R.; Kogut, J. Phase transitions in Abelian lattice gauge theories. Nucl. Phys. B
**1977**, 129, 493–510. [Google Scholar] [CrossRef] - Campi, G.; Bianconi, A. Functional Nanoscale Phase Separation and Intertwined Order in Quantum Complex Materials. Condens. Matter
**2021**, 6, 40. [Google Scholar] [CrossRef] - Mazziotti, A.V.; Bianconi, A.; Raimondi, R.; Campi, G.; Valletta, A. Spinrbit coupling controlling the superconducting dome of artificial superlattices of quantum wells. J. Appl. Phys.
**2022**, 132, 193908. [Google Scholar] [CrossRef] - Trugenberger, C.A.; Diamantini, M.C.; Poccia, N.; Nogueira, F.S.; Vinokur, V.M. Magnetic monopoles and superinsulation in Josephson junction arrays. Quantum Rep.
**2020**, 2, 388–399. [Google Scholar] [CrossRef] - Diamantini, M.C.; Trugenberger, C.A.; Vinokur, V.M. Quantum magnetic monopole condensate. Nat. Comm. Phys.
**2021**, 4, 25. [Google Scholar] [CrossRef] - Diamantini, M.C.; Trugenberger, C.A.; Vinokur, V.M. Topological Nature of High Temperature Superconductivity. Adv. Quantum Technol.
**2021**, 4, 2000135. [Google Scholar] [CrossRef] - Parra, C.; Niemstemski, F.; Contryman, A.W.; Giraldo-Gallo, P.; Geballe, T.H.; Fisher, I.R.; Manoharan, H.C. Signatures of two-dimensional superconductivity emerging within a three-dimensional host superconductor. Proc. Natl. Acad. Sci.
**2021**, 118, e2017810118. [Google Scholar] [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Diamantini, M.C.
Superconductors with a Topological Gap. *Condens. Matter* **2023**, *8*, 46.
https://doi.org/10.3390/condmat8020046

**AMA Style**

Diamantini MC.
Superconductors with a Topological Gap. *Condensed Matter*. 2023; 8(2):46.
https://doi.org/10.3390/condmat8020046

**Chicago/Turabian Style**

Diamantini, Maria Cristina.
2023. "Superconductors with a Topological Gap" *Condensed Matter* 8, no. 2: 46.
https://doi.org/10.3390/condmat8020046