Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (529)

Search Parameters:
Keywords = grain zinc

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5283 KiB  
Article
Transcriptome Analysis Reveals Candidate Pathways and Genes Involved in Wheat (Triticum aestivum L.) Response to Zinc Deficiency
by Shoujing Zhu, Shiqi Zhang, Wen Wang, Nengbing Hu and Wenjuan Shi
Biology 2025, 14(8), 985; https://doi.org/10.3390/biology14080985 (registering DOI) - 2 Aug 2025
Viewed by 333
Abstract
Zinc (Zn) deficiency poses a major global health challenge, and wheat grains generally contain low Zn concentrations. In this study, the wheat cultivar ‘Zhongmai 175’ was identified as zinc-efficient. Hydroponic experiments demonstrated that Zn deficiency induced the secretion of oxalic acid and malic [...] Read more.
Zinc (Zn) deficiency poses a major global health challenge, and wheat grains generally contain low Zn concentrations. In this study, the wheat cultivar ‘Zhongmai 175’ was identified as zinc-efficient. Hydroponic experiments demonstrated that Zn deficiency induced the secretion of oxalic acid and malic acid in root exudates and significantly increased total root length in ‘Zhongmai 175’. To elucidate the underlying regulatory mechanisms, transcriptome profiling via RNA sequencing was conducted under Zn-deficient conditions. A total of 2287 and 1935 differentially expressed genes (DEGs) were identified in roots and shoots, respectively. Gene Ontology enrichment analysis revealed that these DEGs were primarily associated with Zn ion transport, homeostasis, transmembrane transport, and hormone signaling. Key DEGs belonged to gene families including VIT, NAS, DMAS, ZIP, tDT, HMA, and NAAT. KEGG pathway analysis indicated that phenylpropanoid biosynthesis, particularly lignin synthesis genes, was significantly downregulated in Zn-deficient roots. In shoots, cysteine and methionine metabolism, along with plant hormone signal transduction, were the most enriched pathways. Notably, most DEGs in shoots were associated with the biosynthesis of phytosiderophores (MAs, NA) and ethylene. Overall, genes involved in Zn ion transport, phytosiderophore biosynthesis, dicarboxylate transport, and ethylene biosynthesis appear to play central roles in wheat’s adaptive response to Zn deficiency. These findings provide a valuable foundation for understanding the molecular basis of Zn efficiency in wheat and for breeding Zn-enriched varieties. Full article
Show Figures

Figure 1

24 pages, 3888 KiB  
Article
Agronomic Biofortification: Enhancing the Grain Nutritional Composition and Mineral Content of Winter Barley (Hordeum vulgare L.) Through Foliar Nutrient Application Under Different Soil Tillage Methods
by Amare Assefa Bogale, Zoltan Kende, István Balla, Péter Mikó, Boglárka Bozóki and Attila Percze
Agriculture 2025, 15(15), 1668; https://doi.org/10.3390/agriculture15151668 - 1 Aug 2025
Viewed by 234
Abstract
Enhancing the nutritional content of crops is crucial for safeguarding human health and mitigating global hunger. A viable method for attaining this goal is the planned implementation of various agronomic practices, including tillage and nutrient provision. A field experiment was executed at the [...] Read more.
Enhancing the nutritional content of crops is crucial for safeguarding human health and mitigating global hunger. A viable method for attaining this goal is the planned implementation of various agronomic practices, including tillage and nutrient provision. A field experiment was executed at the Hungarian University of Agriculture and Life Sciences in Gödöllő in the 2023 and 2024 growing seasons. The study aimed to assess the effects of foliar nutrient supply and soil tillage methods on the grain nutritional composition and mineral content of winter barley. Employing a split-plot design with three replications, the experiment included four nutrient treatments (control, bio-cereal, bio-algae, and MgSMnZn blend) and two soil tillage types (i.e., plowing and cultivator). The results indicated that while protein content was not influenced by the main effects of nutrients and tillage, the levels of β-glucan, starch, crude ash, and moisture content were significantly (p < 0.05) affected by the nutrient treatments and by growing year, treated as a random factor. Notably, bio-algae and bio-cereal nutrients, combined with cultivator tillage, enhanced β-glucan content. All applied nutrient treatments increased the level of starch compared to the control. With regard to grain mineral content, the iron and zinc content responded to the nutrient supply, tillage, and growing year. However, applying a multiple-nutrient composition-based treatment did not increase iron and zinc levels, suggesting that individual applications may be more effective for increasing the content of these minerals in grains. Cultivator tillage improved iron and zinc levels. Moreover, manganese (Mn) and copper (Cu) were predominantly affected by nutrient availability and by growing seasons as a random factor. Therefore, to improve grain quality, this study emphasizes the significance of proper nutrient and tillage methods by focusing on the intricate relationships between agronomic techniques and environmental factors that shape barley’s nutritional profile. Full article
Show Figures

Figure 1

14 pages, 2802 KiB  
Article
Interactions of Fe, Mn, Zn, and Cd in Soil–Rice Systems: Implications for Reducing Cd Accumulation in Rice
by Yan Zhang, Su Jiang, Han Wang, Linfei Yu, Chunfu Li, Liqun Ding and Guosheng Shao
Toxics 2025, 13(8), 633; https://doi.org/10.3390/toxics13080633 - 28 Jul 2025
Viewed by 469
Abstract
Cadmium (Cd) contamination in rice (Oryza sativa L.) poses serious health risks for human, necessitating effective mitigation strategies. This study investigated the effects of Cd stress on iron (Fe), manganese (Mn), zinc (Zn), and Cd accumulation and translocation in rice varieties with [...] Read more.
Cadmium (Cd) contamination in rice (Oryza sativa L.) poses serious health risks for human, necessitating effective mitigation strategies. This study investigated the effects of Cd stress on iron (Fe), manganese (Mn), zinc (Zn), and Cd accumulation and translocation in rice varieties with high (MY46) or low (ZS97B) Cd accumulation capacities grown in acidic and alkaline soils. Results demonstrated that Cd stress significantly inhibited plant growth, reducing plant height, shoot biomass, and grain yield in both soil types. Cd accumulation increased in roots, shoots, and grains, while Fe, Mn, and Zn concentrations decreased markedly. Molecular analysis revealed upregulation of metal transporter genes (OsIRT1, OsNRAMP1, OsNRAMP5) and the vacuolar sequestration gene (OsHMA3) in roots under Cd exposure. The translocation factor (TF) values of Mn and Zn from root to shoot were reduced in acidic soils, whereas Mn and Zn TFs exhibited an increasing trend in alkaline soils despite Cd exposure. Furthermore, correlation analyses indicated Mn and Zn play crucial roles in suppressing Cd accumulation in both acidic and alkaline soils. These findings provide critical insights for developing soil-specific strategies to reduce Cd accumulation in rice through micronutrient management. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Figure 1

12 pages, 933 KiB  
Article
Foliar Application of Zinc Improves Safflower Yields More than Glycine Betaine
by Jianglong Liu, Guiqing Hu, Wentai Zhang, Jinghu Wu and Qingyun Geng
Agronomy 2025, 15(8), 1770; https://doi.org/10.3390/agronomy15081770 - 23 Jul 2025
Viewed by 281
Abstract
In arid regions, yields from safflower plants are appreciably lower than normal. Foliar application of zinc or glycine betaine has been reported to increase yields in other grown crops. A field experiment was conducted to compare the specific effects and mechanisms of foliar-applied [...] Read more.
In arid regions, yields from safflower plants are appreciably lower than normal. Foliar application of zinc or glycine betaine has been reported to increase yields in other grown crops. A field experiment was conducted to compare the specific effects and mechanisms of foliar-applied zinc or glycine betaine on safflower yield in this study. Seven foliar spraying treatments were implemented, including a control (spraying water), three concentrations of zinc sulfate (Zn1: 0.6 g L−1, Zn2: 0.8 g L−1, Zn3: 1.0 g L−1), and three concentrations of glycine betaine (GB1: 0.23 g L−1, GB2: 0.47 g L−1, GB3: 0.70 g L−1). Results showed that Zn1 treatment had the highest grain yield at 2197 kg ha−1, which was 45.4% higher than the control. GB3 treatment resulted in a grain yield at 2127 kg ha−1, which was 40.8% higher than the control. The yield increase mechanism for the zinc treatment was primarily due to optimized plant morphology and improved photosynthetic performance, while glycine betaine improved yield mainly through antioxidant regulation. This study has important implications for water-saving and sustainable agriculture development in arid regions. Full article
(This article belongs to the Special Issue Role of Mineral Nutrition in Alleviation of Abiotic Stress in Crops)
Show Figures

Figure 1

15 pages, 3899 KiB  
Article
Transcriptome and Metabolome Revealed Impacts of Zn Fertilizer Application on Flavonoid Biosynthesis in Foxtail Millet
by Ke Ma, Xiangyu Li, Xiangyang Chen, Chu Wang, Zecheng Zhang, Xiangyang Yuan, Fu Chen and Xinya Wen
Agronomy 2025, 15(8), 1767; https://doi.org/10.3390/agronomy15081767 - 23 Jul 2025
Viewed by 227
Abstract
To explore the effects of various zinc (Zn) fertilizer application methods and concentrations on foxtail millet quality and flavonoid biosynthesis, we used Zhangzagu 13 as the experimental material. The transcriptome and metabolome were used to examine variations in flavonoid biosynthesis and metabolism in [...] Read more.
To explore the effects of various zinc (Zn) fertilizer application methods and concentrations on foxtail millet quality and flavonoid biosynthesis, we used Zhangzagu 13 as the experimental material. The transcriptome and metabolome were used to examine variations in flavonoid biosynthesis and metabolism in foxtail millet under different Zn application methods. The results showed that different Zn application methods significantly increased the total polyphenol, carotenoid, total flavonoid, and Zn contents in the grains of foxtail millet. Under the basal soil application (S3) and foliar spray (F2) treatments, the total flavonoid content significantly increased by 45.87% and 64.40%, respectively, compared with that of CK. Basal soil Zn fertilization increased the flavonoid content of foxtail millet by up-regulating genes related to flavonoid metabolism and biosynthesis, including flavanone-3-hydroxylase, chalcone isomerase, and leucoanthocyanidin reductase. Foliar Zn application enhanced flavonoid content by up-regulating genes involved in flavonoid metabolic and biosynthetic processes and chalcone isomerase. In conclusion, using Zn fertilizer can improve the synthesis and metabolism of foxtail millet flavonoids, effectively increase the content of functional substances in grains, and realize the biofortification of foxtail millet grains. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

14 pages, 9617 KiB  
Article
Disruption of FW2.2-like Genes Enhances Metallic Micronutrient Accumulation in Brown Rice
by Qingsong Gao, Rumeng Sun, Jiayi Ding, Xingdang Xu, Xun Ma, Xi Liu and Hao Zhang
Agronomy 2025, 15(7), 1747; https://doi.org/10.3390/agronomy15071747 - 20 Jul 2025
Viewed by 314
Abstract
Micronutrient deficiencies adversely affect human health and pose a significant global threat. Enhancing the accumulation of micronutrients in the edible parts of crops through genetic breeding is a promising strategy to mitigate micronutrient deficiencies in humans. FW2.2-like (FWL) genes play [...] Read more.
Micronutrient deficiencies adversely affect human health and pose a significant global threat. Enhancing the accumulation of micronutrients in the edible parts of crops through genetic breeding is a promising strategy to mitigate micronutrient deficiencies in humans. FW2.2-like (FWL) genes play crucial roles in regulating heavy metal homeostasis in plants. We previously obtained two allelic mutants for each of the rice OsFWL1 (osfwl1a and osfwl1b) and OsFWL2 (osfwl2a and osfwl2b) genes. In this study, we showed that disruption of either OsFWL1 or OsFWL2 significantly enhanced the accumulation of metallic micronutrients in brown rice. Compared with that in the wild type, the iron (Fe) concentration in brown rice was higher in the osfwl1a (+166.7%), osfwl1b (+24.3%), and osfwl2a (+99.2%) mutants; the manganese (Mn) concentration was elevated in all four mutants (+25.1% to 35.6%); the copper (Cu) concentration increased in osfwl2a (+31.0%) and osfwl2b (+29.0%); and the zinc (Zn) concentration increased in osfwl2a (+10.2%). Additionally, disruption of OsFWL1 or OsFWL2 affected the homeostasis of metallic micronutrients in seedlings. Transcriptome analysis suggested that OsFWL1 and OsFWL2 might regulate cell wall polysaccharide metabolism and the expression of heavy metal transporter genes. Protein interaction analysis revealed that OsFWL1 interacted with OsFWL2 on the cell membrane. These findings suggest that OsFWL1 and OsFWL2 can serve as genetic biofortification tools to increase the concentrations of metallic micronutrients in rice grains. Full article
(This article belongs to the Special Issue Innovative Research on Rice Breeding and Genetics)
Show Figures

Figure 1

20 pages, 542 KiB  
Article
Elucidation of Nutritional Quality, Antinutrients, and Protein Digestibility of Dehulled and Malted Flours Produced from Three Varieties of Bambara Groundnut (Vigna subterranean)
by Mpho Edward Mashau, Thakhani Takalani, Oluwaseun Peter Bamidele and Shonisani Eugenia Ramashia
Foods 2025, 14(14), 2450; https://doi.org/10.3390/foods14142450 - 12 Jul 2025
Viewed by 410
Abstract
Bambara groundnut (Vigna subterranean) is an important legume grain in sub-Saharan Africa, including South Africa. Nevertheless, the peculiarity of being hard to cook and mill and the availability of antinutritional factors often limit Bambara groundnut (BGN) use in food applications. This [...] Read more.
Bambara groundnut (Vigna subterranean) is an important legume grain in sub-Saharan Africa, including South Africa. Nevertheless, the peculiarity of being hard to cook and mill and the availability of antinutritional factors often limit Bambara groundnut (BGN) use in food applications. This study investigated the impact of dehulling and malting on the nutritional composition, antinutritional factors, and protein digestibility of flours obtained from three BGN varieties (red, cream, and brown). Dehulling and malting significantly enhanced the moisture and protein content of BGN flours (dry basis), with values varying from 6.01% (control brown variety) to 8.71% (malted cream and brown varieties), and from 18.63% (control red variety) to 21.87% (dehulled brown), respectively. Dehulling increased the fat content from 5.82% (control red variety) to 7.84% (dehulled cream), whereas malting decreased the fat content. Nevertheless, malting significantly increased (p < 0.05) the fiber content from 4.78% (control cream) to 8.28% (malted brown variety), while dehulling decreased the fiber content. Both processing methods decreased the ash and carbohydrate contents of the BGN flours. Dehulling and malting significantly enhanced the amino acids of BGN flours, except for tryptophan and asparagine. Dehulling and malting notably increased the phosphorus, magnesium, potassium, and sulfur contents of the BGN flours, while calcium and zinc were reduced. Malting significantly enhanced the iron content of BGN flour, whereas dehulling reduced it. Both processing methods significantly enhanced palmitic, arachidic, and y-Linolenic acids. Nonetheless, processing methods significantly reduced phytic acid and oxalate, and dehulling achieved the most significant reductions. Dehulling and malting significantly enhanced the protein digestibility of the BGN flours from 69.38 (control red variety) to 83.29 g/100 g (dehulled cream variety). Overall, dehulling and malting enhanced the nutritional quality and decreased the antinutritional factors of BGN flours. Full article
Show Figures

Figure 1

19 pages, 2167 KiB  
Review
Grain Boundary Engineering for Reversible Zn Anodes in Rechargeable Aqueous Zn-Ion Batteries
by Yu-Xuan Liu, Jun-Zhe Wang, Lei Cao, Hao Wang, Zhen-Yu Cheng, Li-Feng Zhou and Tao Du
Metals 2025, 15(7), 784; https://doi.org/10.3390/met15070784 - 11 Jul 2025
Viewed by 342
Abstract
Rechargeable aqueous zinc-ion batteries (AZIBs) have garnered significant research attention in the energy storage field owing to their inherent safety, cost-effectiveness, and environmental sustainability. Nevertheless, critical challenges associated with zinc anodes—including dendrite formation, hydrogen evolution corrosion, and mechanical degradation—substantially impede their practical implementation. [...] Read more.
Rechargeable aqueous zinc-ion batteries (AZIBs) have garnered significant research attention in the energy storage field owing to their inherent safety, cost-effectiveness, and environmental sustainability. Nevertheless, critical challenges associated with zinc anodes—including dendrite formation, hydrogen evolution corrosion, and mechanical degradation—substantially impede their practical implementation. Grain boundary engineering (GBE) emerges as an innovative solution for zinc anode optimization through the precise regulation of grain boundary density, crystallographic orientation, and chemical states in metallic materials. This study comprehensively investigates the fundamental mechanisms and application prospects of GBE in zinc-based anodes, providing pivotal theoretical insights and technical methodologies for designing highly stable electrode architectures. The findings are expected to promote the development of aqueous zinc batteries toward a high energy density and long cycle life. Full article
Show Figures

Figure 1

22 pages, 2944 KiB  
Article
From Wastewater to Soil Amendment: A Case Study on Sewage Sludge Composting and the Agricultural Application of the Compost
by Csilla Almási, Zoltán Veres, Ibolya Demeter, Viktória Orosz, Tímea Tóth, Mostafa M. Mansour, István Henzsel, Zsolt Bogdányi, Tamás András Szegi and Marianna Makádi
Water 2025, 17(13), 2026; https://doi.org/10.3390/w17132026 - 5 Jul 2025
Viewed by 583
Abstract
The treatment of wastewater and the utilization of the by-products of these processes are an important part of the circular economy. The sewage sludge, a result of wastewater treatment, could be used as a material for plant nutrient supply and/or soil-improving products. The [...] Read more.
The treatment of wastewater and the utilization of the by-products of these processes are an important part of the circular economy. The sewage sludge, a result of wastewater treatment, could be used as a material for plant nutrient supply and/or soil-improving products. The city of Nyíregyháza, Hungary, with 120,000 citizens, has a well-planned water treatment plant operated by Nyírségvíz Ltd., which, in cooperation with the Research Institute of Nyíregyháza, developed a municipal sewage sludge compost (SSC). The closed loop of sewage water treatment and the agricultural utilization of its by-product has been developed and managed. The compost product called Nyírkomposzt was planned for acidic sandy soils. Beyond the agronomic benefits, the sustainable and environmentally sound utilization of SSC reduces sewage sludge disposal. This active involvement of a water utility company demonstrates the potential of cross-sectoral cooperation in solving environmental problems. The quality of the compost fits the Hungarian legislation. To study the effects of 0, 9, 18, and 27 t ha−1 doses of compost on acidic sandy soil, a long-term small plot experiment was started in 2003. The cumulative effects of the regular (every third year, last treatment before sampling in 2021) application of the SSC showed positive changes in basic soil properties, depending on the doses used. Increasing values were found in the case of pH from 4.5 to 6, plant available P2O5 from 240 to 690 ppm, and plant available K2O from 180 to 200 ppm. The plant-available zinc and copper content also increased. Soil organic matter and total N content stabilized at around 0.9% and 0.08%, respectively. The grain yields of winter rye also increased in both investigated years. The yields of 18 t ha−1 treatment were about two times higher compared to the control, but only in 2022 was the difference significant. Our findings underscore the potential of well-planned SSC applications to improve the fertility of ploughed, acidic sandy soil, taking into account the theory of the circular economy by utilizing wastes and decreasing landfilling. Full article
(This article belongs to the Special Issue Treatment and Resource Utilization of Urban Sewage Sludge)
Show Figures

Figure 1

18 pages, 1689 KiB  
Article
Evaluation of Blast Resistance in Zinc-Biofortified Rice
by Anita Nunu, Maina Mwangi, Nchore Bonuke, Wagatua Njoroge, Mwongera Thuranira, Emily Gichuhi, Ruth Musila, Rosemary Murori and Samuel K. Mutiga
Plants 2025, 14(13), 2016; https://doi.org/10.3390/plants14132016 - 1 Jul 2025
Viewed by 1767
Abstract
Rice is a staple food for over half of the world’s population, and it is grown in over 100 countries. Rice blast disease can cause 10% to 30% crop loss, enough to feed 60 million people. Breeding for resistance can help farmers avoid [...] Read more.
Rice is a staple food for over half of the world’s population, and it is grown in over 100 countries. Rice blast disease can cause 10% to 30% crop loss, enough to feed 60 million people. Breeding for resistance can help farmers avoid costly fungicides. This study assessed the relationship between rice blast disease and zinc or anthocyanin content in biofortified rice. Susceptibility to foliar and panicle blast was assessed in a rice panel which differed on grain zinc content and pigmentation. A rice panel (n = 23) was challenged with inoculum of two isolates of Magnaporthe oryzae in a screenhouse-based assay. The zinc content with foliar blast severity was analyzed in the leaves and grain of a subset of non-inoculated rice plants. The effect of foliar zinc supplementation on seedlings was assessed by varying levels of zinc fertilizer solution on four blast susceptible cultivars at 14 days after planting (DAP), followed by inoculation with the blast pathogen at 21 DAP. Foliar blast severity was scored on a 0–9 scale at 7 days after inoculation. The rice panel was scored for anthocyanin content, and the data were correlated with foliar blast severity. The panel was grown in the field, and panicle blast, grain yield and yield-related agronomic traits were measured. Significant differences were observed in foliar blast severity among the rice genotypes, with IRBLK-KA and IR96248-16-2-3-3-B having mean scores greater than 4, as well as BASMATI 370 (a popular aromatic variety), while the rest of the genotypes were resistant. Supplementation with foliar zinc led to a significant decrease in susceptibility. A positive correlation was observed between foliar and panicle blast. The Zn in the leaves was negatively correlated with foliar blast severity, and had a marginally positive correlation with panicle blast. There was no relationship between foliar blast severity and anthocyanin content. Grain yield had a negative correlation with panicle blast, but no correlation was observed between Zn in the grain and grain yield. This study shows that Zn biofortification in the grain may not enhance resistance to foliar and panicle blast. Furthermore, the zinc-biofortified genotypes were not agronomically superior to the contemporary rice varieties. There is a need to apply genomic selection to combine promising alleles into adapted rice genetic backgrounds. Full article
(This article belongs to the Special Issue Rice-Pathogen Interaction and Rice Immunity)
Show Figures

Figure 1

21 pages, 10536 KiB  
Article
Synthesis, Phase Formation, and Raman Spectroscopy of Ni and Zn(Mg) Codoped Bismuth Stibate Pyrochlore
by Nadezhda A. Zhuk, Sergey V. Nekipelov, Olga V. Petrova, Boris A. Makeev, Sergey I. Isaenko, Maria G. Krzhizhanovskaya, Kristina N. Parshukova, Roman I. Korolev and Ruslana A. Simpeleva
Chemistry 2025, 7(4), 110; https://doi.org/10.3390/chemistry7040110 - 30 Jun 2025
Cited by 1 | Viewed by 464
Abstract
Complex antimony pyrochlores Bi2.7M0.46Ni0.70Sb2O10+Δ (M = Zn, Mg) were synthesized from oxide precursors, using the solid-state reaction method. For each composition variant, the pyrochlore phase formation process was studied during solid-state synthesis in the [...] Read more.
Complex antimony pyrochlores Bi2.7M0.46Ni0.70Sb2O10+Δ (M = Zn, Mg) were synthesized from oxide precursors, using the solid-state reaction method. For each composition variant, the pyrochlore phase formation process was studied during solid-state synthesis in the range of 500–1050 °C. The influence of zinc and magnesium on the phase formation process was established. The interaction of oxide precursors occurs at a temperature of 600 °C and higher, resulting in the formation of bismuth stibate (Bi3SbO7) as a binary impurity phase. Oxide precursors, including bismuth(III) and antimony(III,V) oxides, are fixed in the samples up to 750 °C, at which point the intermediate cubic phase Bi3M2/3Sb7/3O11 (sp. gr. Pn-3, M = Zn, Ni) is formed in the zinc system. Interacting with transition element oxides, it is transformed into pyrochlore. An intermediate phase with the Bi4.66Ca1.09VO10.5 structure (sp. gr. Pnnm) was found in the magnesium system. The unit cell parameter of pyrochlore for two samples has a minimum value at 800 °C, which is associated with the onset of high-temperature synthesis of pyrochlore. The synthesis of phase-pure pyrochlores is confirmed by high-resolution Raman spectroscopy. The data interpretation showed that the cations in Ni/Zn pyrochlore are more likely to be incorporated into bismuth positions than in Ni/Mg pyrochlore. The nickel–magnesium pyrochlore is characterized by a low-porosity microstructure, with grain sizes of up to 3 μm, according to SEM data. Zinc oxide has a sintering effect on ceramics. Therefore, the grain size in ceramics is large and varies from 2 to 7 μm. Full article
(This article belongs to the Section Inorganic and Solid State Chemistry)
Show Figures

Figure 1

15 pages, 1963 KiB  
Article
Zinc Translocation from Coastal Soil to Wheat as Mediated by Zinc Supply Levels and Soil Properties
by Deyong Zhao, Jie Dong and Yan Li
Plants 2025, 14(13), 1971; https://doi.org/10.3390/plants14131971 - 27 Jun 2025
Viewed by 330
Abstract
The association between soil properties and zinc (Zn) availability, as well as how soil properties affect the Zn translocation from coastal soil to wheat grain, was not well understood. A pot study and field trial were conducted to examine the effects of soil [...] Read more.
The association between soil properties and zinc (Zn) availability, as well as how soil properties affect the Zn translocation from coastal soil to wheat grain, was not well understood. A pot study and field trial were conducted to examine the effects of soil properties and Zn application on grain yield and grain Zn concentration (Zn-conc) in wheat grown under coastal soils. Soil DTPA-Zn content positively correlated with concentrations of total Zn, total P, Olsen-P, and ammonia-N in soil. Zn-conc in aboveground plants negatively correlated with soil pH and Olsen-P. Total Zn accumulation (Zn-acc) in aboveground plants varied greatly among different soil treatments. Zn-acc positively correlated with soil DTPA-Zn content, Zn-conc in aboveground plants, aboveground biomass, and root weight. PLS-PM model analysis suggested that soil Zn supply and plant growth had direct effects on Zn utilization in wheat, while soil properties, soil nutrients, and soil available nutrients had indirect effects on Zn utilization in wheat by affecting soil Zn supply and/or plant growth. Grain yield and grain Zn-conc were increased by Zn application under low soil salinity, while Zn application under higher soil salinity did not increase grain Zn-conc. Soil Zn application increased both grain yield and grain Zn-conc of 20 wheat genotypes, while foliar Zn application further increased the average grain Zn-conc without an increase in grain yield. Adjusting the Zn supply tailored to suitable genotypes according to soil properties is promising to reach the Zn biofortification target and a satisfactory wheat grain yield under coastal saline soils. Full article
(This article belongs to the Special Issue Crop and Soil Management for Sustainable Agriculture)
Show Figures

Figure 1

18 pages, 1697 KiB  
Article
Zinc Application Enhances Biomass Production, Grain Yield, and Zinc Uptake in Hybrid Maize Cultivated in Paddy Soil
by Phanuphong Khongchiu, Arunee Wongkaew, Jun Murase, Kannika Sajjaphan, Apidet Rakpenthai, Orawan Kumdee and Sutkhet Nakasathien
Agronomy 2025, 15(7), 1501; https://doi.org/10.3390/agronomy15071501 - 20 Jun 2025
Viewed by 565
Abstract
Zinc (Zn) fertilization is widely used in maize (Zea mays L.) production to alleviate Zn deficiency and improve biomass and grain yield. However, limited research exists on Zn management in maize cultivated in high-pH paddy soils following rice-based systems, where altered soil [...] Read more.
Zinc (Zn) fertilization is widely used in maize (Zea mays L.) production to alleviate Zn deficiency and improve biomass and grain yield. However, limited research exists on Zn management in maize cultivated in high-pH paddy soils following rice-based systems, where altered soil chemistry may affect Zn availability and plant uptake. This study aimed to evaluate the effects of Zn application rates on growth, yield, and Zn uptake in two hybrid maize varieties under such conditions. Field experiments were conducted during the 2019 and 2020 dry seasons in Phetchabun Province, Thailand, using a randomized complete block design with a 4 × 2 factorial arrangement and four replications. Treatments included four Zn rates (0, 5, 10, and 20.6 kg of Zn/ha), applied as Zn sulfate monohydrate (ZnSO4·H2O, 36% Zn) by soil banding at the V6 stage, and two hybrid varieties, Suwan 5731 (SW5731) and Suwan 5819 (SW5819). In 2019, significant Zn × variety interactions were observed for biomass, crop growth rate (CGR), and grain yield. SW5819 at 10 kg of Zn/ha produced the highest biomass (31.6 t/ha) and CGR (25.6 g/m2/day), increasing by 15.3% and 39.1%, respectively, compared to its own no Zn treatment. In contrast, 20.6 kg of Zn/ha reduced SW5819 biomass by 6.6% and 13.1% relative to SW5731 and its own no-Zn treatment, respectively. Grain yield in SW5819 peaked at 14.7 t/ha under 5 and 10 kg of Zn/ha, significantly higher than SW5731 under 0 and 5 kg of Zn/ha by 16.7%, while SW5731 showed no significant response. In SW5819, shoot and grain Zn uptake significantly increased under 5 and 10 kg of Zn/ha by up to 36.8% and 33.3%, respectively, compared to no Zn treatment. The lowest shoot Zn uptake was found in SW5819 under 20.6 kg of Zn/ha (264.1 ± 43.9 g/ha), which was lower than all its Zn treatments and all SW5731 treatments, showing a reduction of 19.4–43.6%. Zn application improved soil Zn availability, and Zn partitioning among plant organs varied with Zn rate and season. A moderate Zn rate (10 kg of Zn/ha) optimized maize performance under high-pH, rice-based conditions, emphasizing the need for variety-specific Zn management. Full article
(This article belongs to the Special Issue Plant Nutrition Eco-Physiology and Nutrient Management)
Show Figures

Figure 1

11 pages, 5145 KiB  
Article
Island-like Perovskite Photoelectric Synaptic Transistor with ZnO Channel Layer Deposited by Low-Temperature Atomic Layer Deposition
by Jiahui Liu, Yuliang Ye and Zunxian Yang
Materials 2025, 18(12), 2879; https://doi.org/10.3390/ma18122879 - 18 Jun 2025
Viewed by 365
Abstract
Artificial photoelectric synapses exhibit great potential for overcoming the Von Neumann bottleneck in computational systems. All-inorganic halide perovskites hold considerable promise in photoelectric synapses due to their superior photon-harvesting efficiency. In this study, a novel wavy-structured CsPbBr3/ZnO hybrid film was realized [...] Read more.
Artificial photoelectric synapses exhibit great potential for overcoming the Von Neumann bottleneck in computational systems. All-inorganic halide perovskites hold considerable promise in photoelectric synapses due to their superior photon-harvesting efficiency. In this study, a novel wavy-structured CsPbBr3/ZnO hybrid film was realized by depositing zinc oxide (ZnO) onto island-like CsPbBr3 film via atomic layer deposition (ALD) at 70 °C. Due to the capability of ALD to grow high-quality films over small surface areas, dense and thin ZnO film filled the gaps between the island-shaped CsPbBr3 grains, thereby enabling reduced light-absorption losses and efficient charge transport between the CsPbBr3 light absorber and the ZnO electron-transport layer. This ZnO/island-like CsPbBr3 hybrid synaptic transistor could operate at a drain-source voltage of 1.0 V and a gate-source voltage of 0 V triggered by green light (500 nm) pulses with low light intensities of 0.035 mW/cm2. The device exhibited a quiescent current of ~0.5 nA. Notably, after patterning, it achieved a significantly reduced off-state current of 10−11 A and decreased the quiescent current to 0.02 nA. In addition, this transistor was able to mimic fundamental synaptic behaviors, including excitatory postsynaptic currents (EPSCs), paired-pulse facilitation (PPF), short-term to long-term plasticity (STP to LTP) transitions, and learning-experience behaviors. This straightforward strategy demonstrates the possibility of utilizing neuromorphic synaptic device applications under low voltage and weak light conditions. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Graphical abstract

24 pages, 664 KiB  
Review
Technologies in Agronomic Biofortification with Zinc in Brazil: A Review
by Ana Beatriz Pires Silva, Lidiane Fátima Santos Borges, Fabíola Lucini, Gutierres Nelson Silva and Elcio Ferreira Santos
Plants 2025, 14(12), 1828; https://doi.org/10.3390/plants14121828 - 14 Jun 2025
Cited by 1 | Viewed by 617
Abstract
Zinc deficiency is a major contributor to hidden hunger, affecting billions of people worldwide, particularly in vulnerable populations. Agronomic biofortification with zinc is a promising strategy to increase both crop productivity and the nutritional quality of food, especially in countries like Brazil, where [...] Read more.
Zinc deficiency is a major contributor to hidden hunger, affecting billions of people worldwide, particularly in vulnerable populations. Agronomic biofortification with zinc is a promising strategy to increase both crop productivity and the nutritional quality of food, especially in countries like Brazil, where tropical soils are often deficient in this micronutrient. This review analyzes the main technologies applied in the zinc biofortification of edible crops in Brazil, including fertilizer types, application methods, doses, and the use of innovative approaches such as nano-fertilizers and biofertilizers. The results show that the foliar application of zinc sulfate at doses of 600 g ha−1 increased zinc concentration in grains by 25–40% without reducing crop yields. Additionally, the use of zinc nanoparticles increased wheat grain zinc content by up to 30% and biomass production, while biofertilizer application with diazotrophic bacteria raised zinc concentration in maize grains by 12.7–18.2%. These technologies demonstrate potential for enhancing zinc use efficiency and improving the nutritional quality of crops. Standardizing biofortification practices is essential to maximize their impact on food and nutritional security, contributing to the prevention of zinc deficiency in human populations. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

Back to TopTop