Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,793)

Search Parameters:
Keywords = grain size effects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 13393 KB  
Article
Effect of Gd Alloying on Magnetic Properties of Direct-Quenched Fe-Gd-B Nanocrystalline Alloys
by Linli Wang, Yuanyuan Wang, Zhongao Wang, Ming Nie, Feng Huang, Wangyan Lv, Huameng Fu, Haifeng Zhang and Zhengwang Zhu
Materials 2026, 19(3), 561; https://doi.org/10.3390/ma19030561 - 30 Jan 2026
Abstract
Nanocrystalline Fe-Gd-B alloys were successfully synthesized via Gd alloying in a binary Fe-B system using a single-roller melt-spinning technique. A systematic investigation of Gd content variation (0–4.35 at.%) reveals its critical role in tuning microstructure evolution, thermal stability, and magnetic properties. Crucially, the [...] Read more.
Nanocrystalline Fe-Gd-B alloys were successfully synthesized via Gd alloying in a binary Fe-B system using a single-roller melt-spinning technique. A systematic investigation of Gd content variation (0–4.35 at.%) reveals its critical role in tuning microstructure evolution, thermal stability, and magnetic properties. Crucially, the Fe90.70Gd2.32B6.98 alloy ribbon exhibits optimized magnetic performance, achieving a high saturation magnetic induction (Bs) of 1.67 T and a low coercivity (Hc) of 2.737 kA/m. This enhancement is attributed to the suppression α-Fe grain growth through Gd-induced elevation of the thermal stability of the amorphous matrix, which confines the average crystallite size to 26.3 nm. The refined α-Fe phase contributes to elevated Bs through an increased ferromagnetic fraction, while its nanoscale grain structure, combined with wide magnetic domain configurations, effectively reduces Hc by limiting domain wall pinning sites. These findings establish that the synergistic effect of Gd alloying and Fe/B ratio adjustment is a viable strategy for designing high-performance Fe-based magnetic alloys. Full article
(This article belongs to the Special Issue Physical Metallurgy of Metals and Alloys (4th Edition))
13 pages, 1557 KB  
Article
Improvement of Resistance to Rice Blast and Bacterial Blight by CRISPR/Cas9-Mediated Mutagenesis of OsERF922 and Xa41 in Rice
by Liyong Zhang, Zhiying Zhou, Ruomin Wu, Yanhua Chen, Shixun Huang, Cirenqunzong, Yan Yue, Bin Wang, Minfeng Song, Huabin Xie, Tao Guo, Chun Chen, Zhaxiluobu and Jiafeng Wang
Agronomy 2026, 16(3), 349; https://doi.org/10.3390/agronomy16030349 - 30 Jan 2026
Abstract
Rice blast and bacterial blight are two major diseases that seriously threaten rice production. Developing rice germplasm with enhanced resistance to multiple diseases while maintaining favorable agronomic traits is essential for sustainable breeding. In this study, two rice landraces from Motuo County, Xizang [...] Read more.
Rice blast and bacterial blight are two major diseases that seriously threaten rice production. Developing rice germplasm with enhanced resistance to multiple diseases while maintaining favorable agronomic traits is essential for sustainable breeding. In this study, two rice landraces from Motuo County, Xizang Autonomous Region, China, Benglinba and Gare, were used to simultaneously edit OsERF922 and Xa41 using a structurally optimized dual-target CRISPR/Cas9 vector, pRGEB32-2T. A total of 32 and 28 T0 transgenic plants were generated in the Benglinba and Gare backgrounds, respectively. Targeted mutagenesis generated eight homozygous oserf922 mutants and three homozygous xa41 mutants in Benglinba, and four and five homozygous mutants in Gare. Twelve double homozygous mutant lines (nine Benglinba and three Gare) were selected for further analysis. Disease resistance assays showed that these double mutants exhibited significantly enhanced resistance to the rice blast fungus strain GDYJ7 and the bacterial blight pathogen strain GDXO-1, with markedly reduced lesion size or lesion length compared with wild-type plants (p < 0.001, Student’s t-test). Importantly, three independent T-DNA-free double mutant lines from each genetic background displayed no significant differences from their corresponding wild types in major agronomic traits, including plant height, effective panicle number, panicle length, seed-setting rate, or thousand-grain weight (p > 0.05). Grain quality parameters, such as brown rice rate, milled rice rate, amylose content, and gel consistency, were also unaffected. Overall, this study generated rice materials with enhanced resistance to rice blast and bacterial blight while maintaining elite agronomic and quality traits, providing valuable germplasm resources and a feasible strategy for the precise improvement of disease resistance in rice landraces from Xizang Autonomous Region. Full article
(This article belongs to the Section Agricultural Biosystem and Biological Engineering)
Show Figures

Figure 1

25 pages, 8004 KB  
Article
Effects of Discharge and Tailwater Depth on Local Scour of Multi-Grain Beds by Circular Wall Jets
by Amir H. Azimi and Homero Hernandez
Fluids 2026, 11(2), 42; https://doi.org/10.3390/fluids11020042 - 30 Jan 2026
Abstract
The scour process of sand particles and multi-grain size and density particles were studied to investigate the segregation process of different particles in a confined channel. The effects of jet intensity and submergence as two controlling parameters were studied, and scour characteristics and [...] Read more.
The scour process of sand particles and multi-grain size and density particles were studied to investigate the segregation process of different particles in a confined channel. The effects of jet intensity and submergence as two controlling parameters were studied, and scour characteristics and profiles were measured. The time history of the scouring process was measured and the results were compared with the scour process in a uniform sand bed as benchmark tests. Experimental data revealed that the eroded area of different particle types increased with the jet intensity, but the erosion of relatively heavier particles was limited due to jet diffusion. The local erosion was affected by the level of submergence and more erosion occurred near the nozzle at low submergence. Increasing the jet Froude number increased the area of deposition, while submergence reduced the overall area of deposition. As submergence increased from 4 to 12, the area of sand particles reduced by more than 50% while the jet intensity was constant. In shallow submergence, increasing jet intensity from 1.46 to 2.11 increased the area of lead balls by 120%, whereas in relatively deep submergence, incrementing jet intensity increased the area of lead balls by more than five times. The effect of flow intensity on variations of scour dimensions was quantified by the densimetric Froude number. While a densimetric Froude number based on mean particle size, D50, was found to be suitable to estimate maximum scour bed in uniform sand beds, experimental data indicated that the best fit is achievable to predict maximum scour depth in multi-grain size and density once D95 is used. Semi-empirical models were proposed to predict scour dimensions as a function of the densimetric Froude number. Full article
(This article belongs to the Topic Advances in Environmental Hydraulics, 2nd Edition)
Show Figures

Figure 1

22 pages, 4589 KB  
Article
Evaluation of the Relationship Between Fracture Toughness and Hydrogen-Induced Damage in X70 Line Pipe Steel for Low-Temperature Service
by Reza Khatib Zadeh Davani, Enyinnaya George Ohaeri, Sandeep Yadav, Ehsan Entezari, Jerzy A. Szpunar, Michael J. Gaudet and Muhammad Rashid
Materials 2026, 19(3), 552; https://doi.org/10.3390/ma19030552 - 30 Jan 2026
Abstract
In this study, X70 line pipe steels were subjected to different hot rolling treatments under three conditions with varying roughing (R) and finishing (F) reductions while maintaining the same total reduction to investigate the effect on drop weight tear test (DWTT) toughness and [...] Read more.
In this study, X70 line pipe steels were subjected to different hot rolling treatments under three conditions with varying roughing (R) and finishing (F) reductions while maintaining the same total reduction to investigate the effect on drop weight tear test (DWTT) toughness and hydrogen-induced damage as assessed through electrochemical charging. Scanning Electron Microscope (SEM) images were used to analyze microstructure phases and their volume fractions, while Electron Backscatter Diffraction (EBSD) provided quantitative microscopy, and X-ray analysis examined crystallographic texture. Although all steels exhibited similar microstructure phases, the effective grain size and morphology varied slightly across the thickness. As these variations were minor, the focus shifted to other microstructural features such as textural characteristics. Overall, the steel with the medium R/F reduction demonstrated improved DWTT performance and greater hydrogen cracking and blistering resistance. This was attributed to stronger Transformed Brass (TBr) and Transformed Copper (TC) components, weaker Rotated-Cube (RC) texture, and lower Kernel Average Misorientation (KAM) values. Across the three steels in this work, this study demonstrates that increased fraction of blocky austenite/martensite as secondary phases, high geometrically necessary dislocation (GND) density, and RC texture negatively affect both DWTT and hydrogen damage resistance, whereas gamma (γ)-fiber and {332}<113> textures have positive effects. Improving these metallurgical factors can therefore boost toughness and reduce hydrogen-induced damage in line-pipe steels. Full article
(This article belongs to the Special Issue Corrosion and Mechanical Behavior of Metal Materials (3rd Edition))
Show Figures

Graphical abstract

19 pages, 13179 KB  
Article
Processing Characteristics of Ultra-Precision Cutting of 4H-SiC Wafers by Dicing Blade
by Yufang Wang, Zhixiong Li, Fengjun Chen and Zhiqiang Xu
Micromachines 2026, 17(2), 187; https://doi.org/10.3390/mi17020187 - 30 Jan 2026
Abstract
Dicing is an important process in the packaging segment of the semiconductor manufacturing process, and due to the high hardness and brittleness of 4H-SiC wafers, they are prone to crack propagation and severe chipping during the dicing process. To reduce chipping defects, this [...] Read more.
Dicing is an important process in the packaging segment of the semiconductor manufacturing process, and due to the high hardness and brittleness of 4H-SiC wafers, they are prone to crack propagation and severe chipping during the dicing process. To reduce chipping defects, this study investigates the effects of key process parameters on the chipping behavior of 4H-SiC wafers, as well as the associated chipping formation and material removal mechanisms during dicing. Firstly, a spindle current measurement scheme was designed to indirectly reflect changes in grinding force during the cutting process, and the change in the cutting process in a single pass was analyzed. Secondly, experiments controlling single-factor variables were designed to explore the influence of laws of process parameters, including depth of cut, spindle speed, feed speed, and the dicing blade parameter, abrasive grain size, on the quality of chipping, and the optimal process parameters were obtained. Thirdly, the morphology of the 4H-SiC cutting contact arc area, front–back chipping, and sidewalls was analyzed in order to investigate the chipping formation and material removal mechanism. This study contributes to a fundamental understanding of material removal mechanisms during the cutting of 4H-SiC wafers and other advanced semiconductor materials and provides guidance for optimizing cutting process parameters. Full article
Show Figures

Figure 1

15 pages, 1113 KB  
Article
Spatial Distribution and Sedimentology Implications of Man-Made Flood Deposits in the Lowermost Reach of the Yellow River, China
by Shuai Gao, Yijun Xu, Weihan Cao, Yan Liu, Yiming Tang, Hongwei Wang, Dexin Kong and Shuwei Zheng
Water 2026, 18(3), 330; https://doi.org/10.3390/w18030330 - 28 Jan 2026
Abstract
Man-made floods from dams are intentional for different purposes, e.g., spreading sediment and helping deltaic development. Less is known about their effects on slack-water deposits (SWDs) in downstream channels. Since the implementation of the Water and Sediment Regulation Project (WSRP) through a large [...] Read more.
Man-made floods from dams are intentional for different purposes, e.g., spreading sediment and helping deltaic development. Less is known about their effects on slack-water deposits (SWDs) in downstream channels. Since the implementation of the Water and Sediment Regulation Project (WSRP) through a large dam on China’s Yellow River (YR) in 2002, the dynamic sedimentary environment of the river has undergone significant changes. To understand the sedimentary responses of the downstream channels to the man-made floods, this study was conducted following a 24-day man-made flood period in 2021 to investigate SWDs on the floodplains. Sediment samples were collected from four floodplain sites in the lowermost reach of the YR. The study showed that the median grain size (D50) of the man-made flood SWDs on the floodplains ranges from 17 to 131 μm, with an average of 44.14 μm, classifying them as fine-grained deposits. Spatially, D50 of 57.2% of the sampled SWDs exhibited an increasing trend from the riverbank to the main channel. This finding indicates that during the deposition process of floodplain floods, differences may exist in the direction perpendicular to the riverbank. Along the upstream-to-downstream direction, no obvious regularity was observed. Moreover, there is no positive correlation between sediment discharge and the average grain size of suspended sediment. These findings indicate that large man-made floods by a dam will not allow finer particles to settle. Such changes in sediment transport may have a long-term effect on Yellow River deltaic development and stability. Full article
14 pages, 2948 KB  
Article
Grain Size Characteristics of Coastal Sediments Along the Jiangsu Coast of the Yellow Sea with Environmental Implications
by Yanbin Fan, Lili Xue, Fujun Shi, Zhengchun Zhong, Jinshan Zhao, Qiang Fu, Kaichao Wan, Kai Ouyang, Yuanfeng Zhou, Gongxu Yang, Deting Jiang, Jiayue Zong and Jianping Cai
Water 2026, 18(3), 323; https://doi.org/10.3390/w18030323 - 28 Jan 2026
Viewed by 38
Abstract
Jiangsu Province is home to the largest area of coastal tidal flat wetlands in China. Impacted by climate change, human activities and other factors, the physicochemical properties and ecological functions of coastal sediments at specific sites have undergone significant changes. Grain size is [...] Read more.
Jiangsu Province is home to the largest area of coastal tidal flat wetlands in China. Impacted by climate change, human activities and other factors, the physicochemical properties and ecological functions of coastal sediments at specific sites have undergone significant changes. Grain size is a key indicator reflecting the physicochemical properties of sediments. However, our current understanding of the grain size distribution characteristics of coastal sediments in Jiangsu and their environmental impacts remains relatively limited. In this study, coastal sediment samples from Jiangsu were systematically collected. The proportion of different components was analyzed, and grain size parameters including mean grain size, kurtosis and sorting coefficient were calculated. Our results showed that the coastal sediments in Jiangsu were dominated by silt, accounting for an average of as high as 85.5%; in comparison, the contents of clay and sand were relatively low, with average proportions of 12.2% and 2.3%, respectively. Among the three coastal cities in Jiangsu, Yancheng exhibited the highest silt content in sediments, but the lowest proportions of sand and clay. Grain size data analysis of the monitoring sections indicates that all three coastal cities in Jiangsu are facing varying degrees of marine erosion. Among them, Lianyungang exhibits a greater extent of marine erosion, whereas specific sites in Yancheng and Nantong are more severely impacted by this process. Analysis of the relationship between grain size and element migration indicated that Nantong, with the highest clay content, has stronger carbon sequestration and pollutant interception capabilities. The results obtained through this large-scale systematic analysis of the grain size of coastal sediments in Jiangsu provide important insights into marine erosion dynamics and support for tidal flat conservation efforts in Jiangsu Province. Full article
Show Figures

Figure 1

19 pages, 2136 KB  
Article
Transformer-Based Multi-Class Classification of Bangladeshi Rice Varieties Using Image Data
by Israt Tabassum and Vimala Nunavath
Appl. Sci. 2026, 16(3), 1279; https://doi.org/10.3390/app16031279 - 27 Jan 2026
Viewed by 81
Abstract
Rice (Oryza sativa L.) is a staple food for over half of the global population, with significant economic, agricultural, and cultural importance, particularly in Asia. Thousands of rice varieties exist worldwide, differing in size, shape, color, and texture, making accurate classification essential [...] Read more.
Rice (Oryza sativa L.) is a staple food for over half of the global population, with significant economic, agricultural, and cultural importance, particularly in Asia. Thousands of rice varieties exist worldwide, differing in size, shape, color, and texture, making accurate classification essential for quality control, breeding programs, and authenticity verification in trade and research. Traditional manual identification of rice varieties is time-consuming, error-prone, and heavily reliant on expert knowledge. Deep learning provides an efficient alternative by automatically extracting discriminative features from rice grain images for precise classification. While prior studies have primarily employed deep learning models such as CNN, VGG, InceptionV3, MobileNet, and DenseNet201, transformer-based models remain underexplored for rice variety classification. This study addresses this gap by applying two deep learning models such as Swin Transformer and Vision Transformer for multi-class classification of rice varieties using the publicly available PRBD dataset from Bangladesh. Experimental results demonstrate that the ViT model achieved an accuracy of 99.86% with precision, recall, and F1-score all at 0.9986, while the Swin Transformer model obtained an accuracy of 99.44% with a precision of 0.9944, recall of 0.9944, and F1-score of 0.9943. These results highlight the effectiveness of transformer-based models for high-accuracy rice variety classification. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

25 pages, 8880 KB  
Article
On the Peculiar Hydrological Behavior of Sediments Trapped Behind the Terraces of Petra, Jordan
by Catreena Hamarneh and Nizar Abu-Jaber
Land 2026, 15(2), 212; https://doi.org/10.3390/land15020212 - 26 Jan 2026
Viewed by 171
Abstract
The archaeological terraces of Petra (southern Jordan) have long been recognized for their role in agriculture and flood mitigation. Despite the dominance of fine-grained sediments behind many terrace walls, these systems exhibit high infiltration capacity and remarkable resistance to erosion. This study investigates [...] Read more.
The archaeological terraces of Petra (southern Jordan) have long been recognized for their role in agriculture and flood mitigation. Despite the dominance of fine-grained sediments behind many terrace walls, these systems exhibit high infiltration capacity and remarkable resistance to erosion. This study investigates the hydrological behavior of terrace-trapped sediments through detailed soil texture, aggregate stability, salinity, and chemical analyses across eight representative sites in and around Petra. Grain-size distributions derived from dry and wet sieving, supplemented by laser diffraction, reveal that dry sieving substantially overestimates sand content due to aggregation of fine particles into unstable peds. Wet analyses demonstrate that many terrace soils are clay- or sandy-clay-dominated yet remain highly permeable. Chemical indicators (nitrate, phosphate, potassium, pH, and salinity) further suggest that terracing enhances downward water movement and salt leaching irrespective of clay content. The nature of the terrace settings and their sediment structure (especially the coarse-grained framework) exerts a stronger control on hydrological functioning than texture alone. The results have direct implications for understanding ancient land management in Petra and for informing sustainable terracing practices in modern arid and semi-arid landscapes, as they are effective both in harvesting water and reducing sediment mobilization. Full article
(This article belongs to the Special Issue Archaeological Landscape and Settlement (Third Edition))
Show Figures

Figure 1

20 pages, 6075 KB  
Article
Synergistic Optimization of Microstructure and Mechanical Properties of 7075 Aluminum Alloy Sheet via Controlling Rolling Passes and Pass Reduction
by Xiaodong Zhang, Jufu Jiang, Jian Dong, Ying Wang, Jingbo Cui and Lingbo Kong
Materials 2026, 19(3), 479; https://doi.org/10.3390/ma19030479 - 25 Jan 2026
Viewed by 147
Abstract
The pass reduction in hot rolling significantly influences the properties of 7075 alloy sheets, yet its quantitative effect requires systematic investigation. Multi-pass hot rolling experiments with 11% and 16% pass reductions were conducted on forged 7075 alloy. The microstructure, texture evolution, and mechanical [...] Read more.
The pass reduction in hot rolling significantly influences the properties of 7075 alloy sheets, yet its quantitative effect requires systematic investigation. Multi-pass hot rolling experiments with 11% and 16% pass reductions were conducted on forged 7075 alloy. The microstructure, texture evolution, and mechanical properties were analyzed using SEM, EBSD, and mechanical testing. As the total thickness reduction increased, a clear correlation was observed with the enhanced mechanical properties of the hot-rolled 7075 alloy, demonstrated by the concurrent rise in both ultimate tensile strength (UTS) and yield strength (YS). When the total reduction exceeded 60%, the strengthening effect was most pronounced, with UTS and YS reaching 367.09 MPa and 332.82 MPa, respectively. The average grain sizes of 31.49 μm and 27.56 μm were achieved at the 12th pass (11% reduction per pass) and the 8th pass (16% reduction per pass), respectively. Under the condition of 11% reduction per pass, the texture intensity exhibited a non-monotonic trend with increasing passes. T6, T7, and RRA heat treatments were applied to the final rolled plates, and the maximum mechanical properties obtained in the hot-rolled 7075 plate following T6 heat treatment were UTS of 607.5 MPa, YS of 580.9 MPa, and elongation of 13.6%. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

12 pages, 8403 KB  
Article
Effects of Two-Way Cold Rolling and Subsequent Annealing on the Microstructure and Tensile Properties of Low-Carbon Steel with Different Initial Microstructures
by Toshio Ogawa, Hidetomo Hayashi and Hiroyuki Dannoshita
Materials 2026, 19(3), 466; https://doi.org/10.3390/ma19030466 - 24 Jan 2026
Viewed by 135
Abstract
We investigated the effects of two-way cold rolling and subsequent annealing on the microstructure and tensile properties of low-carbon steel with different initial microstructures. Two types of hot-rolled sheet specimens were prepared: specimen P, consisting of ferrite and pearlite, and specimen M, consisting [...] Read more.
We investigated the effects of two-way cold rolling and subsequent annealing on the microstructure and tensile properties of low-carbon steel with different initial microstructures. Two types of hot-rolled sheet specimens were prepared: specimen P, consisting of ferrite and pearlite, and specimen M, consisting of martensite. The hot-rolled sheets were cold-rolled in two directions and subsequently annealed. Two-way cold rolling promoted shear-band formation compared with one-way cold rolling. Furthermore, the two-way cold-rolled specimens showed higher strain homogeneity than the one-way cold-rolled specimens. When annealed below the Ac1 temperature, two-way cold rolling accelerated recrystallization in specimen P, but not in specimen M. In the intercritically annealed specimen P, two-way cold rolling increased the average size of recrystallized ferrite grains while reducing their aspect ratio. In addition, the strength–ductility balance of the two-way cold-rolled specimen P was similar to that of the one-way cold-rolled specimen P. In contrast, in the intercritically annealed specimen M, two-way cold rolling reduced the average size and the aspect ratio of recrystallized ferrite grains. As a result, the strength–ductility balance of the two-way cold-rolled specimen M was improved by approximately 15% compared with that of the one-way cold-rolled specimen. This improvement was attributed to the formation of fine and equiaxed recrystallized ferrite grains. The present findings provide a basis for applying two-way cold rolling as a microstructure-control strategy in high-strength steels. Full article
Show Figures

Graphical abstract

19 pages, 17087 KB  
Article
Microstructural and Wear Characterisation of Aluminium 7075-Based Metal Matrix Composites Reinforced with High-Entropy Alloy Particles and Manufactured via Friction Stir Processing
by Leire Garcia-Sesma, Javier Vivas, Iban Quintana and Egoitz Aldanondo
Metals 2026, 16(2), 132; https://doi.org/10.3390/met16020132 - 23 Jan 2026
Viewed by 121
Abstract
This study investigates the microstructural evolution and wear behaviour of aluminium 7075-based metal matrix composites (MMCs) reinforced with high-entropy alloy (HEA) particles and fabricated via friction stir processing (FSP). A detailed characterisation of the grain refinement in the 7075 matrix was conducted, revealing [...] Read more.
This study investigates the microstructural evolution and wear behaviour of aluminium 7075-based metal matrix composites (MMCs) reinforced with high-entropy alloy (HEA) particles and fabricated via friction stir processing (FSP). A detailed characterisation of the grain refinement in the 7075 matrix was conducted, revealing significant dynamic recrystallization and grain size reduction induced by the severe plastic deformation inherent to FSP. The interaction between the matrix and HEA particles was analysed, showing strong interfacial bonding, which was further influenced by post-processing heat treatments. These microstructural modifications were correlated with the wear performance of the composites, demonstrating enhanced resistance due to the synergistic effect of precipitates and particle reinforcement. The findings highlight the potential of FSP as a viable route for tailoring surface properties in advanced MMCs for demanding tribological applications. Full article
(This article belongs to the Special Issue Surface Treatments and Coating of Metallic Materials (2nd Edition))
Show Figures

Figure 1

22 pages, 51561 KB  
Article
Effect of V Content on Microstructure and Properties of TiNbZrVx Medium-Entropy Alloy Coatings on TC4 Substrate by Laser Cladding
by Wen Zhang, Ying Wu, Chuan Yang, Yongsheng Zhao, Zhenhong Wang, Jia Yang, Wei Feng, Yang Deng, Junjie Zhang, Qingfeng Xian, Xingcheng Long, Zhirong Liang and Hui Chen
Coatings 2026, 16(1), 141; https://doi.org/10.3390/coatings16010141 - 22 Jan 2026
Viewed by 67
Abstract
In order to improve the wear resistance of titanium alloy and apply it to the high-speed train brake disc, TiNbZrVx (x = 0, 0.2, 0.4, 0.6, 0.8) refractory medium-entropy alloy coatings were prepared on Ti-6Al-4V (TC4) substrate. The effect of V content [...] Read more.
In order to improve the wear resistance of titanium alloy and apply it to the high-speed train brake disc, TiNbZrVx (x = 0, 0.2, 0.4, 0.6, 0.8) refractory medium-entropy alloy coatings were prepared on Ti-6Al-4V (TC4) substrate. The effect of V content on the microstructure, mechanical properties, and friction and wear properties of the coatings was studied. TiNbZrVx coatings achieved good metallurgical bonding with the substrate, forming BCC and B2 phases and AlZr3 intermetallic compound (IMC). From TiNbZr coating to TiNbZrV0.8 coating, V promotes element segregation and new phase formation, which decreased the average grain size from 85.055 μm to 56.515 μm, increased the average hardness from 265.5 HV to 343.4 HV, and reduced the room temperature (RT) wear rate by 97.8%. However, the ductility of the coatings decreased from 15.7% to 5.8% because the grain boundary precipitates changed the dislocation arrangement, and the tensile fracture mode changed from ductile fracture to brittle fracture. Abrasive wear was the main wear mode at RT, and adhesive wear and oxidation wear were the main wear modes at elevated temperature. The COF at elevated temperature was lower than that at RT, because a large number of friction pair components were transferred to the coating surface at high temperature and were repeatedly rolled to form a dense film, which played a certain lubricating role. Full article
(This article belongs to the Section Laser Coatings)
Show Figures

Figure 1

20 pages, 13461 KB  
Article
Multi-View 3D Reconstruction of Ship Hull via Multi-Scale Weighted Neural Radiation Field
by Han Chen, Xuanhe Chu, Ming Li, Yancheng Liu, Jingchun Zhou, Xianping Fu, Siyuan Liu and Fei Yu
J. Mar. Sci. Eng. 2026, 14(2), 229; https://doi.org/10.3390/jmse14020229 - 21 Jan 2026
Viewed by 115
Abstract
The 3D reconstruction of vessel hulls is crucial for enhancing safety, efficiency, and knowledge in the maritime industry. Neural Radiance Fields (NeRFs) are an alternative to 3D reconstruction and rendering from multi-view images; particularly, tensor-based methods have proven effective in improving efficiency. However, [...] Read more.
The 3D reconstruction of vessel hulls is crucial for enhancing safety, efficiency, and knowledge in the maritime industry. Neural Radiance Fields (NeRFs) are an alternative to 3D reconstruction and rendering from multi-view images; particularly, tensor-based methods have proven effective in improving efficiency. However, existing tensor-based methods typically suffer from a lack of spatial coherence, resulting in gaps in the reconstruction of fine-grained geometric structures. This paper proposes a spatial multi-scale weighted NeRF (MDW-NeRF) for accurate and efficient surface reconstruction of vessel hulls. The proposed method develops a novel multi-scale feature decomposition mechanism that models 3D space by leveraging multi-resolution features, facilitating the integration of high-resolution details with low-resolution regional information. We designed separate color and density weighting, using a coarse-to-fine strategy, for density and a weighted matrix for color to decouple feature vectors from appearance attributes. To boost the efficiency of 3D reconstruction and rendering, we implement a hybrid sampling point strategy for volume rendering, selecting sample points based on volumetric density. Extensive experiments on the SVH dataset confirm MDW-NeRF’s superiority: quantitatively, it outperforms TensoRF by 1.5 dB in PSNR and 6.1% in CD, and shrinks the model size by 9%, with comparable training times; qualitatively, it resolves tensor-based methods’ inherent spatial incoherence and fine-grained gaps, enabling accurate restoration of hull cavities and realistic surface texture rendering. These results validate our method’s effectiveness in achieving excellent rendering quality, high reconstruction accuracy, and timeliness. Full article
Show Figures

Figure 1

10 pages, 212 KB  
Article
The Effect of Sintering Protocols and Resin Cement Shades on the Optical Properties of Monolithic Zirconia Restorations
by Ayşe Demir Canbulut, Çağlayan Sayla Çelik, Merve Çakırbay Tanış, Emre Tokar, Serdar Polat and Kürşat Eser
Appl. Sci. 2026, 16(2), 1001; https://doi.org/10.3390/app16021001 - 19 Jan 2026
Viewed by 97
Abstract
This study investigates the influence of different sintering protocols and resin cement shades on the optical properties of monolithic zirconia restorations. Zirconia, widely used in dentistry for its superior mechanical strength and esthetic potential, demonstrates phase transformations influenced by stabilizing oxides and processing [...] Read more.
This study investigates the influence of different sintering protocols and resin cement shades on the optical properties of monolithic zirconia restorations. Zirconia, widely used in dentistry for its superior mechanical strength and esthetic potential, demonstrates phase transformations influenced by stabilizing oxides and processing conditions. While increasing yttria content enhances translucency, it compromises mechanical durability. Factors such as sintering temperature, grain size, porosity, and cement selection further affect translucency parameter, contrast ratio, and opalescence. In this research, 36 zirconia samples were divided into three groups according to sintering procedure performed; conventional, fast, and super-fast sintering. Each was tested with two shades of dual-cure resin cement (yellow and transparent). Optical parameters including translucency parameter (TP), contrast ratio (CR), and opalescence parameter (OP) were measured using a spectrophotometer under controlled conditions. Statistically significant differences in OP values between the conventional sintering protocol and both the rapid and super-fast sintering protocols were found. A statistically significant difference was observed in OP values between the yellow and transparent cement groups. Neither the main effects of the sintering protocol nor the cement type were statistically significant on TP and CR values. However, a statistically significant interaction effect between the sintering protocol and cement type was observed for CR values. The findings highlight that both processing parameters and cement selection interaction play crucial roles in optimizing the TP and CR values of zirconia restorations, enabling improved esthetic outcomes in clinical practice. Full article
Back to TopTop