Improvement of Resistance to Rice Blast and Bacterial Blight by CRISPR/Cas9-Mediated Mutagenesis of OsERF922 and Xa41 in Rice
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Design of Knockout Targets and Vector Construction
2.3. Detection of T0 Positive Plants
2.4. Screening of Transgene-Free T1 Plants
2.5. Evaluation of Resistance to Rice Blast and Bacterial Blight
2.6. Measurement of Major Agronomic Traits
2.7. Rice Grain Quality Analysis
2.8. Statistical Analysis
3. Results
3.1. Design of Knockout Targets for OsERF922 and Xa41 and Construction of the Gene-Editing Vector
3.2. Generation of OsERF922 and Xa41 Mutant Lines
3.3. Resistance of Mutant Lines to Rice Blast and Bacterial Blight
3.4. Agronomic Performance of the Mutant Lines
3.5. Grain Quality Analysis of the Mutant Lines
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gu, F.; Han, Z.; Zou, X.; Xie, H.; Chen, C.; Huang, C.; Guo, T.; Wang, J.; Wang, H. Unveiling the role of RNA recognition motif proteins in orchestrating Nucleotide-Binding site and Leucine-Rich repeat protein gene pairs and chloroplast immunity pathways: Insights into plant defense mechanisms. Int. J. Mol. Sci. 2024, 25, 5557. [Google Scholar] [CrossRef]
- Liu, W.; Liu, J.; Triplett, L.; Leach, J.E.; Wang, G. Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu. Rev. Phytopathol. 2014, 52, 213–241. [Google Scholar] [CrossRef]
- Jiang, N.; Yan, J.; Liang, Y.; Shi, Y.; He, Z.; Wu, Y.; Zeng, Q.; Liu, X.; Peng, J. Resistance Genes and their Interactions with Bacterial Blight/Leaf Streak Pathogens (Xanthomonas oryzae) in Rice (Oryza sativa L.)—An Updated Review. Rice 2020, 13, 3. [Google Scholar] [CrossRef] [PubMed]
- Younas, M.U.; Ahmad, I.; Qasim, M.; Ijaz, Z.; Rajput, N.; Parveen, M.S.; UL Zaman, W.; Jiang, X.; Zhang, Y.; Zuo, S. Progress in the management of rice blast disease: The role of avirulence and resistance genes through Gene-for-Gene interactions. Agronomy 2024, 14, 163. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, L.; Shi, H.; Chern, M.; Yu, H.; Yi, H.; He, M.; Yin, J.; Zhu, X.; Li, Y.; et al. A single transcription factor promotes both yield and immunity in rice. Science 2018, 361, 1026–1028. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Chen, X.; Liu, J.; Ye, J.; Guo, Z. The rice ERF transcription factor OsERF922 negatively regulates resistance to Magnaporthe oryzae and salt tolerance. J. Exp. Bot. 2012, 63, 3899–3911. [Google Scholar] [CrossRef]
- Chen, S.; Wang, C.; Yang, J.; Chen, B.; Wang, W.; Su, J.; Feng, A.; Zeng, L.; Zhu, X. Identification of the novel bacterial blight resistance gene Xa46(t) by mapping and expression analysis of the rice mutant H120. Sci. Rep. 2020, 10, 12642. [Google Scholar] [CrossRef]
- Hu, K.; Cao, J.; Zhang, J.; Xia, F.; Ke, Y.; Zhang, H.; Xie, W.; Liu, H.; Cui, Y.; Cao, Y.; et al. Improvement of multiple agronomic traits by a disease resistance gene via cell wall reinforcement. Nat. Plants 2017, 3, 17009. [Google Scholar] [CrossRef]
- Ercoli, M.F.; Luu, D.D.; Rim, E.Y.; Shigenaga, A.; Teixeira, D.A.J.A.; Chern, M.; Jain, R.; Ruan, R.; Joe, A.; Stewart, V. Plant immunity: Rice XA21-mediated resistance to bacterial infection. Proc. Natl. Acad. Sci. USA 2022, 119, e2121568119. [Google Scholar] [CrossRef]
- Banerjee, A.; Roy, S.; Bag, M.K.; Bhagat, S.; Kar, M.K.; Mandal, N.P.; Mukherjee, A.K.; Maiti, D. Phenotypic and molecular analysis of bacterial blight resistance in rice cultivars from eastern and northeastern India. In Extended Summaries; Association of Rice Research Workers: Odisha, India, 2020; p. 251. [Google Scholar]
- Yoshihisa, A.; Yoshimura, S.; Shimizu, M.; Sato, S.; Matsuno, S.; Mine, A.; Yamaguchi, K.; Kawasaki, T. The rice OsERF101 transcription factor regulates the NLR Xa1-mediated immunity induced by perception of TAL effectors. New Phytol. 2022, 236, 1441–1454. [Google Scholar] [CrossRef]
- He, Q.; Li, D.; Zhu, Y.; Tan, M.; Zhang, D.; Lin, X. Fine mapping of Xa2, a bacterial blight resistance gene in rice. Mol. Breed. 2006, 17, 1–6. [Google Scholar] [CrossRef]
- Kim, Y.; Moon, H.; Park, C. CRISPR/Cas9-targeted mutagenesis of Os8N3 in rice to confer resistance to Xanthomonas oryzae pv. Oryzae. Rice 2019, 12, 67. [Google Scholar] [CrossRef] [PubMed]
- Zaka, A.; Grande, G.; Coronejo, T.; Quibod, I.L.; Chen, C.; Chang, S.; Szurek, B.; Arif, M.; Cruz, C.V.; Oliva, R. Natural variations in the promoter of OsSWEET13 and OsSWEET14 expand the range of resistance against Xanthomonas oryzae pv. Oryzae. PLoS ONE 2018, 13, e203711. [Google Scholar] [CrossRef] [PubMed]
- Hutin, M.; Sabot, F.; Ghesquière, A.; Koebnik, R.; Szurek, B. A knowledge-based molecular screen uncovers a broad-spectrum OsSWEET14 resistance allele to bacterial blight from wild rice. Plant J. 2015, 84, 694–703. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, P.; Mei, L.; He, X.; Chen, L.; Liu, H.; Shen, S.; Ji, Z.; Zheng, X.; Zhang, Y. Xa7, a new executor R gene that confers durable and broad-spectrum resistance to bacterial blight disease in rice. Plant Commun. 2021, 2, 100143. [Google Scholar] [CrossRef]
- Gui, Y.; Tian, D.; Ong, K.H.; Teo, J.C.Y.; Yin, Z. TAL effector-dependent Bax gene expression in transgenic rice confers disease resistance to Xanthomonas oryzae pv. Oryzae. Transgenic Res. 2022, 31, 119–130. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, X.; Fan, Y.; Gao, Y.; Zhu, Q.; Zheng, C.; Qin, T.; Li, Y.; Che, J.; Zhang, M. XA23 is an executor R protein and confers broad-spectrum disease resistance in rice. Mol. Plant 2015, 8, 290–302. [Google Scholar] [CrossRef]
- Das, P.P.; Bhandari, K.P.; Bhati, K.; Gireesh, C.; Laha, G.S.; Sundaram, R.M.; Ghazi, I.A. Analysis of nucleotide diversity among alleles of intronless bacterial blight resistant genes Xa27 and Xa23 in rice. Biocatal. Agric. Biotechnol. 2025, 63, 103477. [Google Scholar] [CrossRef]
- Antony, G.; Zhou, J.; Huang, S.; Li, T.; Liu, B.; White, F.; Yang, B. Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. Plant Cell 2010, 22, 3864–3876. [Google Scholar] [CrossRef]
- Tao, H.; Shi, X.; He, F.; Wang, D.; Xiao, N.; Fang, H.; Wang, R.; Zhang, F.; Wang, M.; Li, A.; et al. Engineering broad-spectrum disease-resistant rice by editing multiple susceptibility genes. J. Integr. Plant Biol. 2021, 63, 1639–1648. [Google Scholar] [CrossRef]
- Xie, K.; Minkenberg, B.; Yang, Y. Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system. Proc. Natl. Acad. Sci. USA 2015, 112, 3570–3575. [Google Scholar] [CrossRef]
- Zhao, C.; Cong, S.; Liang, S.; Xie, H.; Lu, W.; Xiao, W.; Huang, M.; Guo, T.; Wang, J. Development and application of KASP marker for rice blast resistance gene Pi2. J. South China Agric. Univ. 2023, 44, 725–734. [Google Scholar]
- GB/T 17891-2017; High Quality Paddy. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, China Standards Press: Beijing, China, 2018.
- Qiu, J.; Liu, Z.; Xie, J.; Lan, B.; Shen, Z.; Shi, H.; Lin, F.; Shen, X.; Kou, Y. Dual impact of ambient humidity on the virulence of Magnaporthe oryzae and basal resistance in rice. Plant Cell Environ. 2022, 45, 3399–3411. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Luo, Y.; Vu, N.T.Q.; Shen, S.; Xia, K.; Zhang, M. CRISPR/Cas9-mediated mutation of OsSWEET14 in rice cv. Zhonghua11 confers resistance to Xanthomonas oryzae pv. Oryzae without yield penalty. BMC Plant Biol. 2020, 20, 313. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Zhang, K.; Chen, K.; Gao, C. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system. J. Genet. Genom. 2014, 41, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, S.K.; Kumar, J.; Alok, A.; Tuli, R. RNA-guided genome editing for target gene mutations in wheat. G3 Genes Genomes Genet. 2013, 3, 2233–2238. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, X.; Shan, Q.; Zhang, Y.; Liu, J.; Gao, C.; Qiu, J. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat. Biotechnol. 2014, 32, 947–951. [Google Scholar] [CrossRef]
- Shan, Q.; Wang, Y.; Li, J.; Zhang, Y.; Chen, K.; Liang, Z.; Zhang, K.; Liu, J.; Xi, J.J.; Qiu, J. Targeted genome modification of crop plants using a CRISPR-Cas system. Nat. Biotechnol. 2013, 31, 686–688. [Google Scholar] [CrossRef]
- Jiang, W.; Zhou, H.; Bi, H.; Fromm, M.; Yang, B.; Weeks, D.P. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 2013, 41, e188. [Google Scholar] [CrossRef]
- Long, Q.; Huang, Y.; Tang, X.; Wang, H.; Lu, M.; Yuan, L.; Wan, J. Creation of low-Cd-accumulating indica rice by disruption of OsNramp5 gene via CRISPR/Cas9. Chin. J. Rice Sci. 2019, 33, 407. [Google Scholar]
- Santosh Kumar, V.V.; Verma, R.K.; Yadav, S.K.; Yadav, P.; Watts, A.; Rao, M.V.; Chinnusamy, V. CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010. Physiol. Mol. Biol. Plants 2020, 26, 1099–1110. [Google Scholar] [CrossRef]
- Wang, F.; Wang, C.; Liu, P.; Lei, C.; Hao, W.; Gao, Y.; Liu, Y.; Zhao, K. Enhanced rice blast resistance by CRISPR/Cas9-Targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE 2016, 11, e154027. [Google Scholar] [CrossRef]
- Streubel, J.; Pesce, C.; Hutin, M.; Koebnik, R.; Boch, J.; Szurek, B. Five phylogenetically close rice SWEET genes confer TAL effector-mediated susceptibility to Xanthomonas oryzae pv. Oryzae. New Phytol. 2013, 200, 808–819. [Google Scholar] [CrossRef]
- Li, C.; Liu, B.; Dong, H.; Yang, B. Enhancing resistance to bacterial blight in rice using CRISPR-based base editing technology. Crop J. 2025, 13, 115–124. [Google Scholar] [CrossRef]




| Primer Name | Primer Sequence (5′–3′) | Application |
|---|---|---|
| Cas9-OsERF922-F | TTCCCGGCTGGTGCAGACAGAGACACGTCCACGCGGTTTTAGAGCTAGAA | Vector constructs |
| Cas9-Xa41-R | TTCTAGCTCTAAAACAAGGCGAAGGCCCAGGGATGTGCACCAGCCGGGAA | Vector constructs |
| OsERF922-seq-F | ATGTCTCTCTCCTTGGGGTT | Target sequencing |
| OsERF922-seq-R | CCTACGCGCTGTACATGTCA | Target sequencing |
| Xa41-seq-F | ATCAAGCCTTCAAGCAAAGCAAACT | Target sequencing |
| Xa41-seq-R | GCTTTGCAATAATGAGGGTGGTGG | Target sequencing |
| Hyg-F | CAATGCGGAGCATATACGCCC | Hygromycin Detection |
| Hyg-R | GGCTATGGATGCGATCGCTG | Hygromycin Detection |
| Cas9-F | ATCCTGTCTGCCAGACTGAGC | Cas9 detection |
| Cas9-R | CTCCCAGGTGGATCTGGTGG | Cas9 detection |
| Mutant Gene | Putative Off-Target Site | The Sequence of the Putative Off-Target Site |
|---|---|---|
| OsERF922 | chr07:28684353 | AGCAGAGACGCGCCCATGCG TGG |
| chr05:24001095 | GACGCAGACAAGGCCACGCG TGG | |
| chr03:21260136 | GGCATAGCCGCGTTCACGCG TGG | |
| chr08:6802477 | GACATCGCCACATCCACGAG TGG | |
| chr08:7099591 | GACATCGCCACATCCACGAG TGG | |
| Xa41 | chr07:17324522 | CAACCCAAGGTCATCGCCTT TGG |
| chr12:2436323 | CATGGCTGGTCCATCGACTT TGG | |
| chr07:10370691 | GATGCCTCGGCCTCCGCTTT TGG | |
| chr12:17305091 | CATCCCTGGGCTTTTGCCTT CGG | |
| chr06:26986420 | CCTAGCTGGGCCTTGGCCTT TGG |
| Traits | Benglinba | b-4 | b-5 | b-9 | Gare | g-1 | g-2 | g-3 |
|---|---|---|---|---|---|---|---|---|
| Plant height (cm) | 167.80 ± 6.0 | 166.63 ± 3.2 | 165.10 ± 2.1 | 168.37 ± 2.9 | 115.42 ± 2.5 | 115.90 ± 1.1 | 115.97 ± 1.6 | 115.37 ± 1.5 |
| Flag leaf length (cm) | 40.30 ± 2.3 | 39.43 ± 2.4 | 39.87 ± 2.3 | 40.17 ± 1.0 | 46.20 ± 3.2 | 43.30 ± 2.3 | 43.73 ± 3.3 | 45.80 ± 2.3 |
| Flag leaf width (cm) | 2.00 ± 0.0 | 2.00 ± 0.0 | 2.03 ± 0.05 | 2.00 ± 0.0 | 2.10 ± 0.0 | 2.10 ± 0.0 | 2.10 ± 0.0 | 2.10 ± 0.0 |
| Number of effective panicles | 8.00 ± 0.8 | 7.67 ± 0.5 | 8.33 ± 0.9 | 8.33 ± 0.5 | 9.00 ± 0.8 | 9.33 ± 0.5 | 9 ± 0.0 | 9.33 ± 0.5 |
| Panicle length (cm) | 21.40 ± 0.7 | 22.73 ± 1.3 | 21.47 ± 0.85 | 21.4 ± 0.75 | 25.30 ± 1.7 | 24.37 ± 0.8 | 24.80 ± 1.0 | 25.60 ± 0.7 |
| Seed-setting rate (%) | 83.20 ± 2.4 | 82.53 ± 2.1 | 82.67 ± 2.6 | 82.8 ± 1.02 | 86.30 ± 3.2 | 85.30 ± 2.2 | 83.73 ± 0.6 | 83.87 ± 1.3 |
| Thousand-grain weight (g) | 27.60 ± 0.2 | 27.57 ± 0.05 | 27.53 ± 0.09 | 27.53 ± 0.09 | 31.80 ± 0.1 | 31.73 ± 0.1 | 31.73 ± 0.1 | 31.73 ± 0.1 |
| Grain length (cm) | 8.84 ± 0.01 | 8.83 ± 0.02 | 8.83 ± 0.01 | 8.83 ± 0.01 | 8.73 ± 0.06 | 8.70 ± 0.04 | 8.71 ± 0.04 | 8.73 ± 0.02 |
| Grain width (cm) | 3.08 ± 0.005 | 3.07 ± 0.02 | 3.06 ± 0.01 | 3.08 ± 0.01 | 3.74 ± 0.02 | 3.74 ± 0.02 | 3.74 ± 0.02 | 3.74 ± 0.02 |
| Traits | Benglinba | b-4 | b-5 | b-9 | Gare | g-1 | g-2 | g-3 |
|---|---|---|---|---|---|---|---|---|
| Brown rice rate (%) | 77.45 ± 3.2 | 74.33 ± 2.9 | 76.60 ± 1.3 | 75.93 ± 2.6 | 79.51 ± 1.0 | 78.20 ± 3.4 | 78.63 ± 2.1 | 79.07 ± 3.6 |
| Milled rice rate (%) | 61.76 ± 1.4 | 61.77 ± 1.2 | 61.80 ± 1.2 | 62.07 ± 0.5 | 60.31 ± 0.8 | 60.70 ± 2.2 | 60.30 ± 0.9 | 60.30 ± 1.6 |
| Head rice rate (%) | 49.42 ± 1.2 | 48.90 ± 1.2 | 49.67 ± 1.0 | 49.40 ± 0.8 | 43.85 ± 3.0 | 43.33 ± 2.4 | 44.00 ± 1.0 | 44.77 ± 1.4 |
| Chalky grain rates (%) | 30.51 ± 2.0 | 30.47 ± 1.2 | 30.00± 0.5 | 30.57 ± 1.4 | 48.00 ± 0.8 | 43.67 ± 1.7 | 46.67 ± 3.4 | 44.33 ± 3.3 |
| Chalkiness degree (%) | 10.16 ± 0.3 | 10.23 ± 0.9 | 10.3 0± 0.5 | 10.10 ± 0.5 | 9.48 ± 0.2 | 9.50 ± 0.3 | 9.50 ± 0.5 | 9.33 ± 0.2 |
| Amylose content (%) | 16.30 ± 0.6 | 16.13 ± 0.1 | 16.17 ± 0.9 | 16.07 ± 0.9 | 16.70 ± 0.7 | 16.23 ± 0.2 | 16.57 ± 0.3 | 16.40 ± 0.6 |
| Alkali spreading value | 4.33 ± 0.5 | 4.00 ± 0.0 | 4.33 ± 0.5 | 4.00 ± 0.0 | 4.33 ± 0.5 | 4.00 ± 0.0 | 4.00 ± 0.0 | 4.00 ± 0.0 |
| Gel consistency (mm) | 62.50 ± 2.4 | 61.47 ± 1.9 | 63.00 ± 2.2 | 62.93 ± 1.6 | 58.00 ± 4.4 | 57.90 ± 3.5 | 57.23 ± 2.1 | 59.40 ± 1.1 |
| Crude protein content (%) | 9.80 ± 0.4 | 9.73 ± 0.2 | 9.57 ± 0.6 | 9.87 ± 0.2 | 11.20 ± 1.5 | 10.97 ± 0.4 | 11.70 ± 0.6 | 11.40 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Zhang, L.; Zhou, Z.; Wu, R.; Chen, Y.; Huang, S.; Cirenqunzong; Yue, Y.; Wang, B.; Song, M.; Xie, H.; et al. Improvement of Resistance to Rice Blast and Bacterial Blight by CRISPR/Cas9-Mediated Mutagenesis of OsERF922 and Xa41 in Rice. Agronomy 2026, 16, 349. https://doi.org/10.3390/agronomy16030349
Zhang L, Zhou Z, Wu R, Chen Y, Huang S, Cirenqunzong, Yue Y, Wang B, Song M, Xie H, et al. Improvement of Resistance to Rice Blast and Bacterial Blight by CRISPR/Cas9-Mediated Mutagenesis of OsERF922 and Xa41 in Rice. Agronomy. 2026; 16(3):349. https://doi.org/10.3390/agronomy16030349
Chicago/Turabian StyleZhang, Liyong, Zhiying Zhou, Ruomin Wu, Yanhua Chen, Shixun Huang, Cirenqunzong, Yan Yue, Bin Wang, Minfeng Song, Huabin Xie, and et al. 2026. "Improvement of Resistance to Rice Blast and Bacterial Blight by CRISPR/Cas9-Mediated Mutagenesis of OsERF922 and Xa41 in Rice" Agronomy 16, no. 3: 349. https://doi.org/10.3390/agronomy16030349
APA StyleZhang, L., Zhou, Z., Wu, R., Chen, Y., Huang, S., Cirenqunzong, Yue, Y., Wang, B., Song, M., Xie, H., Guo, T., Chen, C., Zhaxiluobu, & Wang, J. (2026). Improvement of Resistance to Rice Blast and Bacterial Blight by CRISPR/Cas9-Mediated Mutagenesis of OsERF922 and Xa41 in Rice. Agronomy, 16(3), 349. https://doi.org/10.3390/agronomy16030349
