Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (241)

Search Parameters:
Keywords = grain post-harvest

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2187 KiB  
Article
Long-Term Rotary Tillage and Straw Mulching Enhance Dry Matter Production, Yield, and Water Use Efficiency of Wheat in a Rain-Fed Wheat-Soybean Double Cropping System
by Shiyan Dong, Ming Huang, Junhao Zhang, Qihui Zhou, Chuan Hu, Aohan Liu, Hezheng Wang, Guozhan Fu, Jinzhi Wu and Youjun Li
Plants 2025, 14(15), 2438; https://doi.org/10.3390/plants14152438 - 6 Aug 2025
Abstract
Water deficiency and low water use efficiency severely constrain wheat yield in dryland regions. This study aimed to identify suitable tillage methods and straw management to improve dry matter production, grain yield, and water use efficiency of wheat in the dryland winter wheat–summer [...] Read more.
Water deficiency and low water use efficiency severely constrain wheat yield in dryland regions. This study aimed to identify suitable tillage methods and straw management to improve dry matter production, grain yield, and water use efficiency of wheat in the dryland winter wheat–summer bean (hereafter referred to as wheat-soybean) double-cropping system. A long-term located field experiment (onset in October 2009) with two tillage methods—plowing (PT) and rotary tillage (RT)—and two straw management—no straw mulching (NS) and straw mulching (SM)—was conducted at a typical dryland in China. The wheat yield and yield component, dry matter accumulation and translocation characteristics, and water use efficiency were investigated from 2014 to 2018. Straw management significantly affected wheat yield and yield components, while tillage methods had no significant effect. Furthermore, the interaction of tillage methods and straw management significantly affected yield and yield components except for the spike number. RTSM significantly increased the spike number, grains per spike, 1000-grain weight, harvest index, and grain yield by 12.5%, 8.4%, 6.0%, 3.4%, and 13.4%, respectively, compared to PTNS. Likewise, RTSM significantly increased the aforementioned indicators by 14.8%, 10.1%, 7.5%, 3.6%, and 20.5%, compared to RTNS. Mechanistic analysis revealed that, compared to NS, SM not only significantly enhanced pre-anthesis and post-anthesis dry matter accumulation, and pre-anthesis dry matter tanslocation to grain, but also significantly improved pre-sowing water storage, water consumption during wheat growth, water use efficiency, and water-saving for produced per kg grain yield, with the greatest improvements obtained under RT than PT. Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) analysis confirmed RTSM’s yield superiority was mainly ascribed to straw-induced improvements in dry matter and water productivity. In a word, rotary tillage with straw mulching could be recommended as a suitable practice for high-yield wheat production in a dryland wheat-soybean double-cropping system. Full article
(This article belongs to the Special Issue Emerging Trends in Alternative and Sustainable Crop Production)
Show Figures

Figure 1

21 pages, 3832 KiB  
Article
Effects of Water Use Efficiency Combined with Advancements in Nitrogen and Soil Water Management for Sustainable Agriculture in the Loess Plateau, China
by Hafeez Noor, Fida Noor, Zhiqiang Gao, Majed Alotaibi and Mahmoud F. Seleiman
Water 2025, 17(15), 2329; https://doi.org/10.3390/w17152329 - 5 Aug 2025
Abstract
In China’s Loess Plateau, sustainable agricultural end products are affected by an insufficiency of water resources. Rising crop water use efficiency (WUE) through field management pattern improvement is a crucial plan of action to address this issue. However, there is no agreement among [...] Read more.
In China’s Loess Plateau, sustainable agricultural end products are affected by an insufficiency of water resources. Rising crop water use efficiency (WUE) through field management pattern improvement is a crucial plan of action to address this issue. However, there is no agreement among researchers on the most appropriate field management practices regarding WUE, which requires further integrated quantitative analysis. We conducted a meta-analysis by quantifying the effect of agricultural practices surrounding nitrogen (N) fertilizer management. The two experimental cultivars were Yunhan–20410 and Yunhan–618. The subplots included nitrogen 0 kg·ha−1 (N0), 90 kg·ha−1 (N90), 180 kg·ha−1 (N180), 210 kg·ha−1 (N210), and 240 kg·ha−1 (N240). Our results show that higher N rates (up to N210) enhanced water consumption during the node-flowering and flowering-maturity time periods. YH–618 showed higher water use during the sowing–greening and node-flowering periods but decreased use during the greening-node and flowering-maturity periods compared to YH–20410. The N210 treatment under YH–618 maximized water use efficiency (WUE). Increased N rates (N180–N210) decreased covering temperatures (Tmax, Tmin, Taver) during flowering, increasing the level of grain filling. Spike numbers rose with N application, with an off-peak at N210 for strong-gluten wheat. The 1000-grain weight was at first enhanced but decreased at the far end of N180–N210. YH–618 with N210 achieved a harvest index (HI) similar to that of YH–20410 with N180, while excessive N (N240) or water reduced the HI. Dry matter accumulation increased up to N210, resulting in earlier stabilization. Soil water consumption from wintering to jointing was strongly correlated with pre-flowering dry matter biological process and yield, while jointing–flowering water use was linked to post-flowering dry matter and spike numbers. Post-flowering dry matter accumulation was critical for yield, whereas spike numbers positively impacted yield but negatively affected 1000-grain weight. In conclusion, our results provide evidence for determining suitable integrated agricultural establishment strategies to ensure efficient water use and sustainable production in the Loess Plateau region. Full article
(This article belongs to the Special Issue Soil–Water Interaction and Management)
Show Figures

Figure 1

22 pages, 1271 KiB  
Article
Toxigenic Fungi and Co-Occurring Mycotoxins in Maize (Zea mayz L.) Samples from the Highlands and Coast of Ecuador
by Héctor Palacios-Cabrera, Juliana Fracari, Marina Venturini Copetti, Carlos Augusto Mallmann, Marcelo Almeida, María Raquel Meléndez-Jácome and Wilson Vásquez-Castillo
Foods 2025, 14(15), 2630; https://doi.org/10.3390/foods14152630 - 26 Jul 2025
Viewed by 404
Abstract
Maize is a key crop in Ecuador for both human and animal consumption. Its vulnerability to fungal contamination and mycotoxins poses risks to food safety. The aim of this study was to analyze the occurrence of fungi and mycotoxins in maize grown in [...] Read more.
Maize is a key crop in Ecuador for both human and animal consumption. Its vulnerability to fungal contamination and mycotoxins poses risks to food safety. The aim of this study was to analyze the occurrence of fungi and mycotoxins in maize grown in different regions of Ecuador (29 localities) and postharvest factors influencing contamination. Fungal identification was performed through culturing and morphological analysis. Analysis of multi-toxins was carried out using liquid chromatography coupled with mass spectrometry (LC-MS/MS). Statistical analyses included PCA and linear regression models. Fungal contamination was found in 93.3% of samples; mycotoxins were present in 90%. Fusarium and Aspergillus were dominant. Fumonisins (66.6%), zearalenone (30%), aflatoxins (16.7%), and trichothecenes B (13.3%) were the most prevalent. Co-occurrence of up to three mycotoxins per sample was observed, more frequent on the coast. Grain moisture and temperature were strongly correlated with contamination levels. The study reveals widespread contamination of Ecuadorian maize, with environmental and postharvest factors playing key roles. This poses a food safety concern, highlighting the need for improved storage and monitoring systems. Full article
(This article belongs to the Special Issue Mycotoxins in Foods: Occurrence, Detection, and Control)
Show Figures

Figure 1

22 pages, 3480 KiB  
Article
Comprehensive DEM Calibration Using Face Central Composite Design and Response Surface Methodology for Rice–PLA Interactions in Enhanced Bucket Elevator Performance
by Pirapat Arunyanart, Nithitorn Kongkaew and Supattarachai Sudsawat
AgriEngineering 2025, 7(7), 240; https://doi.org/10.3390/agriengineering7070240 - 17 Jul 2025
Viewed by 396
Abstract
This research presents a comprehensive methodology for calibrating Discrete Element Method (DEM) parameters governing rice grain interactions with biodegradable Polylactic Acid (PLA) components in agricultural bucket elevator systems. Rice grains, a critical global food staple requiring efficient post-harvest handling, were modeled as three-sphere [...] Read more.
This research presents a comprehensive methodology for calibrating Discrete Element Method (DEM) parameters governing rice grain interactions with biodegradable Polylactic Acid (PLA) components in agricultural bucket elevator systems. Rice grains, a critical global food staple requiring efficient post-harvest handling, were modeled as three-sphere clusters to accurately represent their physical dimensions (6.5 mm length), while the Hertz–Mindlin contact model provided the theoretical framework for particle interactions. The calibration process employed a multi-phase experimental design integrating Plackett–Burmann screening, steepest ascent method, and Face Central Composite Design to systematically identify and optimize critical micro-mechanical parameters for agricultural material handling. Statistical analysis revealed the coefficient of static friction between rice and PLA as the dominant factor, contributing 96.49% to system performance—significantly higher than previously recognized in conventional agricultural processing designs. Response Surface Methodology generated predictive models achieving over 90% correlation with experimental results from 3D-printed PLA shear box tests. Validation through comparative velocity profile analysis during bucket elevator discharge operations confirmed excellent agreement between simulated and experimental behavior despite a 20% discharge velocity variance that warrants further investigation into agricultural material-specific phenomena. The established parameter set enables accurate virtual prototyping of sustainable agricultural handling equipment, offering post-harvest processing engineers a powerful tool for optimizing bulk material handling systems with reduced environmental impact. This integrated approach bridges fundamental agricultural material properties with sustainable engineering design principles, providing a scalable framework applicable across multiple agricultural processing operations using biodegradable components. Full article
Show Figures

Graphical abstract

4 pages, 170 KiB  
Correction
Correction: Rodrigues et al. Applying Remote Sensing, Sensors, and Computational Techniques to Sustainable Agriculture: From Grain Production to Post-Harvest. Agriculture 2024, 14, 161
by Dágila Melo Rodrigues, Paulo Carteri Coradi, Newiton da Silva Timm, Michele Fornari, Paulo Grellmann, Telmo Jorge Carneiro Amado, Paulo Eduardo Teodoro, Larissa Pereira Ribeiro Teodoro, Fábio Henrique Rojo Baio and José Luís Trevizan Chiomento
Agriculture 2025, 15(14), 1490; https://doi.org/10.3390/agriculture15141490 - 11 Jul 2025
Viewed by 181
Abstract
The authors have recognized several errors in the original publication [...] Full article
(This article belongs to the Special Issue Agricultural Products Processing and Quality Detection)
15 pages, 917 KiB  
Article
Effects of Cover Crop Mixtures on Soil Health and Spring Oat Productivity
by Aušra Marcinkevičienė, Lina Marija Butkevičienė, Lina Skinulienė and Aušra Rudinskienė
Sustainability 2025, 17(12), 5566; https://doi.org/10.3390/su17125566 - 17 Jun 2025
Viewed by 399
Abstract
Growing cover crop mixtures is a sustainable agriculture tool that helps to reduce fertilizer use and, at the same time, ensures lower environmental pollution. The aim of this research is to assess the biomass of the aboveground part of cover crop mixtures and [...] Read more.
Growing cover crop mixtures is a sustainable agriculture tool that helps to reduce fertilizer use and, at the same time, ensures lower environmental pollution. The aim of this research is to assess the biomass of the aboveground part of cover crop mixtures and the nutrients accumulated in it and to determine their influence on the soil properties and productivity of spring oats (Avena sativa L.). The biomass of the aboveground part of cover crop mixtures of different botanical compositions varied from 2.33 to 2.67 Mg ha−1. As the diversity of plant species in cover crop mixtures increased, the accumulation of nutrients in the aboveground part biomass increased, and the risk of nutrient leaching was reduced. The post-harvest cover crop mixture TGS GYVA 365, consisting of eight short-lived and two perennial plant species, significantly reduced the mineral nitrogen content in the soil in spring and had the strongest positive effect on organic carbon content. Post-harvest cover crop mixtures TGS GYVA 365 and TGS D STRUKT 1 did not affect the content of available potassium in the soil but significantly reduced the content of available phosphorus. All tested cover crop mixtures, including the undersown TGS BIOM 1 and the post-harvest mixtures TGS D STRUKT 1 and TGS GYVA 365, reduced soil shear strength and improved soil structure, although the reduction was not statistically significant for TGS D STRUKT 1. Cover crop mixtures left on the soil surface as mulch had a positive effect on the chlorophyll concentration in oat leaves, number of grains per panicle, and oat grain yield. A significant positive correlation was found between oat grain yield and several yield components, including crop density, plant height, number of grains per panicle, and grain mass per panicle. These findings highlight the potential of diverse cover crop mixtures to reduce fertilizer dependency and improve oat productivity under temperate climate conditions. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

14 pages, 978 KiB  
Article
Physical Classification of Soybean Grains Based on Physicochemical Characterization Using Near-Infrared Spectroscopy
by Marisa Menezes Leal, Nairiane dos Santos Bilhalva, Rosana Santos de Moraes and Paulo Carteri Coradi
AgriEngineering 2025, 7(6), 194; https://doi.org/10.3390/agriengineering7060194 - 17 Jun 2025
Viewed by 485
Abstract
The study aimed to determine the physical and physicochemical properties of soybean grains using NIR spectroscopy coupled with multivariate data analysis. The experiment was carried out in two stages: first, individual characterization of defects and healthy grains; then, analyses of samples classified into [...] Read more.
The study aimed to determine the physical and physicochemical properties of soybean grains using NIR spectroscopy coupled with multivariate data analysis. The experiment was carried out in two stages: first, individual characterization of defects and healthy grains; then, analyses of samples classified into different types (type I, type II, basic standard, and out of type). The centesimal composition of the grains (crude protein, lipids, water content, crude fiber, starch, and ash) was determined by NIR spectroscopy, and the data were analyzed by ANOVA, Scott-Knott test, principal component analysis (PCA), k-means clustering, and Pearson correlation. The results showed significant variations between defects and commercial types in all the variables evaluated (p < 0.05), with an emphasis on germinated grains (higher protein content) and broken grains (higher fiber content). The PCA explained 66.6% of the total variance in the defect sets and 52.2% of the types, allowing the formation of groups defined by the clustering algorithms. Pearson correlations indicated important interactions between the chemical variables, such as the negative correlation between protein and crude fiber (r = −0.73) and between lipids and water content (r = −0.66). It is concluded that the NIR method combined with multivariate modeling allows for the rapid assessment of soybean grain quality in real time, optimizing, reducing waste in, and increasing the efficiency of post-harvest processes. Full article
(This article belongs to the Special Issue Latest Research on Post-Harvest Technology to Reduce Food Loss)
Show Figures

Figure 1

26 pages, 3529 KiB  
Article
Synergistic Insecticidal Activity of Plant Volatile Compounds: Impact on Neurotransmission and Detoxification Enzymes in Sitophilus zeamais
by Leidy J. Nagles Galeano, Juliet A. Prieto-Rodríguez and Oscar J. Patiño-Ladino
Insects 2025, 16(6), 609; https://doi.org/10.3390/insects16060609 - 9 Jun 2025
Viewed by 974
Abstract
Sitophilus zeamais, a major pest of stored grains, causes significant post-harvest losses and challenges effective control. While synthetic insecticides pose risks of resistance and toxicity, essential oils (EOs) offer a safer alternative. However, the insecticidal potential of their individual volatile constituents (VCs) [...] Read more.
Sitophilus zeamais, a major pest of stored grains, causes significant post-harvest losses and challenges effective control. While synthetic insecticides pose risks of resistance and toxicity, essential oils (EOs) offer a safer alternative. However, the insecticidal potential of their individual volatile constituents (VCs) remains largely unexplored. This study evaluated the insecticidal activity of 51 EO-derived volatile compounds (VCs) against S. zeamais, identifying the most toxic ones, optimizing 15 synergistic mixtures, and assessing their effects on key insect enzymes. A structure–activity relationship (SAR) analysis determined functional groups associated with insecticidal activity, while a cluster analysis pre-selected 29 ternary mixtures, later refined using response surface methodology (RSM). Additionally, enzymatic assays explored their impact on detoxification and nervous system enzymes, providing insights into potential mechanisms of action. Among the 51 VCs tested, 37 exhibited significant toxicity, with 11 acting as fumigants and 13 displaying contact toxicity. Monocyclic monoterpenoids with ketone or alcohol functional groups and exocyclic unsaturation demonstrated the highest insecticidal activity via both exposure routes. Notably, pulegone enantiomers were particularly effective (LC50 < 0.1 mg/L, LD50 < 7.5 µg/adult). Among the optimized mixtures, 10 displayed strong insecticidal effects, 8 were active through both routes, and 5 exhibited synergistic fumigant interactions. The most effective formulations were M2 (R-pulegone + S-pulegone + S-carvone, LC50 0.48 mg/L) and M20 (isopulegone + δ-3-carene, LC50 2.06 mg/L), showing the strongest fumigant and synergistic effects, respectively. Enzymatic assays revealed that while some compounds mildly inhibited GST and CAT, others, such as δ-3-carene (IC50 0.19 mg/L), significantly inhibited AChE. Five mixtures exhibited synergistic neurotoxicity, with M20 (IC50 0.61 mg/L) and M12 (IC50 0.81 mg/L) emerging as the most potent AChE inhibitors. These findings highlight the potential of plant-derived volatile compounds as bioinsecticides, leveraging synergistic interactions to enhance efficacy, disrupt enzymatic pathways, and mitigate resistance. Full article
Show Figures

Graphical abstract

13 pages, 1844 KiB  
Article
Adaptation of Grain Cleaning Equipment for Kalonji and Sesame Seeds
by Ramadas Narayanan, Vu Hoan Tram, Tieneke Trotter, Charissa Rixon, Gowrishankaran Raveendran, Federico Umansky and Surya P. Bhattarai
AgriEngineering 2025, 7(6), 179; https://doi.org/10.3390/agriengineering7060179 - 6 Jun 2025
Viewed by 828
Abstract
Threshing and cleaning are crucial for efficient harvest procedures that are carried out to separate the grains from the biomass and eliminate any potential contaminants or foreign debris. This study examines the cleaning capabilities of the grain cleaning equipment Kimseed Cleaner MK3, a [...] Read more.
Threshing and cleaning are crucial for efficient harvest procedures that are carried out to separate the grains from the biomass and eliminate any potential contaminants or foreign debris. This study examines the cleaning capabilities of the grain cleaning equipment Kimseed Cleaner MK3, a vibratory sieve and air-screen device, for tiny oilseed crops, particularly kalonji (Nigella sativa) and sesame (Sesamum indicum L.), which are valued for their industrial, medicinal, and nutritional properties. These crops frequently provide post-harvest cleaning issues because of their tiny size and vulnerability to contamination from weed seeds, plant residues, and immature or damaged conditions. In order to determine the ideal operating parameters, 0.5 kg of threshed seed samples with 10% moisture content were utilised in the experiment. A variety of shaker frequencies (0.1–10 Hz) and airflow speeds (0.1–10 m/s) were assessed. A two-stage cleaning method was applied for sesame: the first stage targeted larger contaminants (6.5–7.0 Hz and 1.25–1.5 m/s), while the second stage targeted finer impurities (5.25–5.5 Hz and 1.75–2.0 m/s). With a single-stage procedure (5.5–6.0 Hz and 1.0–1.5 m/s), kalonji was successfully cleaned. The findings demonstrated that sesame attained 98.5% purity at the output rate of 200.6 g/min (12.03 kg/h) while kalonji reached 97.6% seed purity at an output rate of 370.2 g/min (22.2 kg/h). These results demonstrate how important carefully regulated shaker frequency and airflow speed are for improving output quality and cleaning effectiveness. The study shows that the Kimseed MK3 is a suitable low-cost, scalable option for research operations and smallholder farmers, providing better seed quality and processing efficiency for underutilised yet economically valuable oilseed crops. Full article
(This article belongs to the Section Agricultural Mechanization and Machinery)
Show Figures

Figure 1

16 pages, 1890 KiB  
Article
Evaluation of Hybrid Sorghum Parents for Morphological, Physiological and Agronomic Traits Under Post-Flowering Drought
by Kadiatou Touré, MacDonald Bright Jumbo, Sory Sissoko, Baloua Nebie, Hamidou Falalou, Madina Diancoumba, Harou Abdou, Joseph Sékou B. Dembele, Boubacar Gano and Bernard Sodio
Agronomy 2025, 15(6), 1399; https://doi.org/10.3390/agronomy15061399 - 6 Jun 2025
Viewed by 497
Abstract
Sorghum (Sorghum bicolor, (L.) Moench.), is one of the most important cereals in semi-arid and subtropical regions of Africa. However, in these regions, sorghum cultivation is often faced with several constraints. In Mali, terminal or post-flowering drought, caused by the early [...] Read more.
Sorghum (Sorghum bicolor, (L.) Moench.), is one of the most important cereals in semi-arid and subtropical regions of Africa. However, in these regions, sorghum cultivation is often faced with several constraints. In Mali, terminal or post-flowering drought, caused by the early cessation of rains towards the end of the rainy season, is one of the most common constraints. Sorghum is generally adapted to harsh conditions. However, drought combined to heat reduce its yield and production in tropical and subtropical regions. To identify parents of sorghum hybrids tolerant to post-flowering drought for commercial hybrids development and deployment, a total of 200 genotypes, including male and female parents of the hybrids, were evaluated in 2022 by lysimeters under two water regimes, well-irrigated and water-stressed, at ICRISAT in Niger. Agronomic traits such as phenological stages, physiological traits including transpiration efficiency, and morphological traits such as green leaf number were recorded. Genotype × environment (G × E) interaction was significant for harvest index (HI), green leaf number (GLN), and transpiration efficiency (TE), indicating different responses of genotypes under varying water conditions. Transpiration efficiency (TE) was significantly and positively correlated with total biomass (BT), harvest index (HI), and grain weight (GW) under both stress conditions. Genotypes ICSV216094, ICSB293, ICSV1049, ICSV1460016, and ICSV216074 performed better under optimal and stress conditions. The Principal Component Analysis (PCA) results led to the identification of three groups of genotypes. The Groups 1 and 3 are characterized by their yield stability and better performance under stress and optimal conditions. These two groups could be used by breeding programs to develop high yield and drought tolerant hybrids. Full article
Show Figures

Figure 1

14 pages, 10283 KiB  
Article
Improving Leaf GOGAT Activity After the Post-Silking Period Contributes to High Grain Yield with Reduced Nitrogen in N-Efficient Maize
by Haoyu Li, Yanbing Wang, Jian Wang, Meng Zhang, Wenbo Liu, Xiangling Li and Xiaohu Lin
Agronomy 2025, 15(6), 1379; https://doi.org/10.3390/agronomy15061379 - 4 Jun 2025
Viewed by 382
Abstract
Breeding and cultivating low-N-efficient maize varieties to obtain high yields with less N fertilizer is important for addressing food demands and environmental pollution. However, few studies have investigated the physiological characteristics of low-N-efficient maize varieties. Therefore, we performed an experiment over four years [...] Read more.
Breeding and cultivating low-N-efficient maize varieties to obtain high yields with less N fertilizer is important for addressing food demands and environmental pollution. However, few studies have investigated the physiological characteristics of low-N-efficient maize varieties. Therefore, we performed an experiment over four years to test two maize varieties (low-N-efficient variety: JNK728, and high-N-efficient variety: XY335) and five N application rates (N120: 120 kg·ha−1, N180: 180 kg·ha−1, N240: 240 kg·ha−1, N300: 300 kg·ha−1, and N360: 360 kg·ha−1). The optimal N application rates for JNK728 and XY335 were N180 and N300, which obtained the highest yields (11,754 and 12,752 kg·ha−1, respectively), N uptake efficiencies (1.32 and 0.93 kg·kg−1), and N harvest index (67.94% and 61.98%), compared with other N application rates. The key period for plant N accumulation was the R1–R6 stage, which contributed 35.2–49.7% and 40.8–53.8% to plant N accumulation at the maturation stage in JNK728 and XY335, respectively. In addition, N accumulation in the grain accounted for more than half (51.8–63.2%) of the total N accumulation in plants, and the leaf N transport amount after the post-silking stage was the primary source of grain N accumulation in both JNK728 and XY335. We also explored the key enzymes and genes related to the N transport amount and efficiency in leaves in the two maize varieties, and found that GOGAT was the key enzyme and GOGAT2 was the key gene for JNK728, whereas the AS enzyme and AS1 and AS3 genes were most important for XY335. Therefore, we suggest that molecular breeding programs should focus on the GOGAT2 gene in low-N-efficient maize varieties, and cultivation techniques should aim to improve the GOGAT enzyme activity after the post-silking period to achieve high yields and N utilization efficiencies with less N fertilizer. Full article
Show Figures

Figure 1

19 pages, 1585 KiB  
Article
Antibacterial and Antifungal Activity of Extracts from Five Portuguese Cowpea (Vigna unguiculata) Accessions
by Acácio Salamandane, Mariana Candeias, Susana Lourenço, Emília Joana F. Vieira, Elsa Mecha, Ricardo Gomes, Rosário Bronze, Cátia Nunes and Luisa Brito
Molecules 2025, 30(11), 2348; https://doi.org/10.3390/molecules30112348 - 28 May 2025
Viewed by 482
Abstract
Under the principles of the circular economy and sustainability, consumers, the food industry and health authorities have interest in new natural food preservatives to prevent foodborne diseases and increase produce shelf life. This work aimed to evaluate the antimicrobial properties of cowpea plant [...] Read more.
Under the principles of the circular economy and sustainability, consumers, the food industry and health authorities have interest in new natural food preservatives to prevent foodborne diseases and increase produce shelf life. This work aimed to evaluate the antimicrobial properties of cowpea plant extracts. Grain, pod and leaf extracts from five Portuguese cowpea accessions were characterized in terms of their phenolic content. The values of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined against pathogenic and non-pathogenic bacteria, as well as on post-harvest pathogenic filamentous fungi. In general, the phenolic content of pod extracts was higher than that of grains and leaves, although leaf extracts had the highest content of a broad-spectrum antibacterial flavonoid, quercetin. Grain extracts exhibited no detectable antimicrobial activity. In contrast, leaf and pod extracts from all five accessions generally displayed bactericidal effects. For bacteria, pod extracts showed MICs ranging from 5.1 to 87.7 mg/mL and MBCs from 20.3 to 87.7 mg/mL. Leaf extracts showed the most promising results, with MICs and MBCs ranging from 1.1 to 9.1 mg/mL. The results against fungi were not so expressive; nevertheless, P. expansum was inhibited by 9 L leaf extract even if at a higher concentration (MIC = 18 mg/mL) than those obtained for bacteria. The Portuguese variety Fradel (1E) showed very promising antibacterial activity, with leaf extracts showing low MBC values (from 2.3 to 9.1 mg/mL). The obtained results indicate that cowpea pods and leaves have antimicrobial properties and could potentially be used as a source of compounds for food preservation. Full article
(This article belongs to the Special Issue Biological Activity of Plant Compounds and Extract, 3rd Edition)
Show Figures

Figure 1

20 pages, 1768 KiB  
Article
Unlocking Nitrogen Use Efficiency in Tritordeum: A Holistic Evaluation of Enhanced-Efficiency Fertilisers Under Mediterranean Conditions
by George Papadopoulos, Ioannis Zafeiriou, Evgenia Georgiou, Sotirios Papanikolaou, Antonios Mavroeidis, Panteleimon Stavropoulos, Ioannis Roussis, Ioanna Kakabouki and Dimitrios Bilalis
Sustainability 2025, 17(11), 4919; https://doi.org/10.3390/su17114919 - 27 May 2025
Viewed by 381
Abstract
Improving nitrogen use efficiency (NUE) is critical to advancing sustainable cereal production, particularly under Mediterranean conditions where environmental pressures challenge input-intensive practises. This study evaluates NUE in Tritordeum, a climate-resilient wheat–barley hybrid, using a holistic experimental approach that integrates pre- and post-harvest soil [...] Read more.
Improving nitrogen use efficiency (NUE) is critical to advancing sustainable cereal production, particularly under Mediterranean conditions where environmental pressures challenge input-intensive practises. This study evaluates NUE in Tritordeum, a climate-resilient wheat–barley hybrid, using a holistic experimental approach that integrates pre- and post-harvest soil analyses, including an electrical conductivity (EC) assessment, plant and seed nutrient profiling, and an evaluation of yield performance and nitrogen ratio dynamics. Four treatments were tested: conventional urea (T1), urea with an urease inhibitor (NBPT) (T2), urea with a nitrification inhibitor (DCD) (T3), and an unfertilised control (C). While conventional urea achieved the highest yield (1366 kg ha−1), enhanced-efficiency fertilisers (EEFs) improved nutrient synchronisation and seed nutritional quality. Specifically, EEFs increased seed zinc (T2: 34.93 mg/kg), iron (T1: 33.77 mg/kg), and plant potassium (T2: 1.66%; T3: 1.61%) content, and also improved nitrogen remobilisation (elevated Nplant/Nseed ratios). EEFs also influenced soil properties, increasing organic matter (T3: 2.75%) and EC (T3: 290.78 μS/cm). These findings suggest that while EEFs may not always boost yield in the short term, they contribute to long-term soil fertility and nutrient density in grain. This study underscores the importance of synchronising nitrogen availability with Tritordeum’s phenological stages and highlights the crop’s suitability for sustainable, low-input agriculture under climate variability. Full article
Show Figures

Figure 1

7 pages, 171 KiB  
Proceeding Paper
Assessment of Local Rice Processing, Packaging and Storage Among Rice Processors in Southwestern Nigeria, West Africa
by Sikiru Banjo, Timothy Olawumi, Abiala Abiala, John Jolayemi, Oye Ogunyanwo and Yemisi Asamu
Proceedings 2025, 118(1), 15; https://doi.org/10.3390/proceedings2025118015 - 26 May 2025
Viewed by 574
Abstract
Among the factors threatening food security in Nigeria are poor access to credit facilities, the high cost of inputs, and poor processing and storage. Cereals and grains are among the staple food crops highly consumed by Nigerians. In this study, multi-stage sampling procedure [...] Read more.
Among the factors threatening food security in Nigeria are poor access to credit facilities, the high cost of inputs, and poor processing and storage. Cereals and grains are among the staple food crops highly consumed by Nigerians. In this study, multi-stage sampling procedure was used to select 1200 registered rice processors from Agricultural Development Programme zones in the Nigerian states of Lagos, Oyo, Ogun, Ondo, Osun, and Ekiti, and a structured questionnaire was used to obtain data on primary, secondary, and tertiary postharvest operations. The data were analyzed using descriptive statistics and Pearson Product Moment Correlation. The results showed that the majority (65.1%) of the respondents were male, 54.5% were 30–60 years old, 86.9% were married, 96.3% had been formally educated, and 99.9% processed, 71.5% packaged, and 79.4% stored more than 5001 kg of rice monthly. The majority (85.9%) of the respondents had no knowledge of rice moisture content and still used local means of rice processing, while 14.1% of the respondents used modern means of rice processing. We concluded that stored local rice was still subject to more wastage, spoilage, and losses due to the poor processing, packaging, and storage methods used in the study area. We recommend the adoption of modern and suitable rice technologies for processing, packaging, and storage. Furthermore, credit facilities should be made available, and inputs should be subsidized for rice farmers and processors. Full article
20 pages, 1734 KiB  
Article
Fate of Mycotoxins in Local-Race Populations of Maize Collected in the Southwest of France, from the Field to the Flour and Meal in Organic Farms
by Jean-Michel Savoie, Laetitia Pinson-Gadais, Rodolphe Vidal and Camille Vindras-Fouillet
Agriculture 2025, 15(10), 1064; https://doi.org/10.3390/agriculture15101064 - 15 May 2025
Viewed by 468
Abstract
Both organic and conventional farmers are confronted with the issue of mycotoxin contamination of maize, but organic farming is considered by the public to present a higher risk. There are also concerns about the sanitary quality of maize processed as a foodstuff and [...] Read more.
Both organic and conventional farmers are confronted with the issue of mycotoxin contamination of maize, but organic farming is considered by the public to present a higher risk. There are also concerns about the sanitary quality of maize processed as a foodstuff and marketed on farms through short distribution channels, and there is a need for data on mycotoxin contamination in such a farming system. With the objective to assess the diversity of contamination levels at harvest and to track the post-harvest fate of mycotoxins, maize grain samples were collected at organic farms from southwest France after harvest, storage and milling. There was a wide range of levels of contamination by trichothecenes A and B, zearalenone, and fumonisins. The presence of ochratoxin A and aflatoxins was scarce. In some farms, but not all, the technique of drying and initial storage in cribs resulted in increased levels of contamination by Fusarium toxins, but not aflatoxins. The transfer of mycotoxins in milling products was higher for flour than for meal. Data are discussed in terms of mycotoxin co-occurrence, correlations between concentrations, and compliance with European Union regulations. Full article
(This article belongs to the Section Agricultural Product Quality and Safety)
Show Figures

Figure 1

Back to TopTop