Effects of Cover Crop Mixtures on Soil Health and Spring Oat Productivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Meteorological Conditions
2.4. Research Methods with Measurements and Determinations
2.5. Statistical Analysis
3. Results
3.1. Productivity of Cover Crop Mixtures and Nutrients Accumulated in Their Aboveground Biomass
3.2. Soil Agrochemical Properties
3.3. Soil Agrophysical Properties
3.4. Productivity of Spring Oats
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Baraibar, B.; Hunter, M.C.; Schipanski, M.E.; Hamilton, A.; Mortensen, D.A. Weed suppression in cover crop monocultures and mixtures. Weed Sci. 2018, 66, 121–133. [Google Scholar] [CrossRef]
- Lavergne, S.; Vanasse, A.; Thivierge, M.N.; Halde, C. Using fall-seeded cover crop mixtures to enhance agroecosystem services: A review. Agrosyst. Geosci. Environ. 2021, 4, e20161. [Google Scholar] [CrossRef]
- Schipanski, M.E.; Barbercheck, M.; Douglas, M.R.; Finney, D.M.; Haider, K.; Kaye, J.P.; Kemanian, A.R.; Mortensen, D.A.; Ryan, M.R.; Tooker, J.; et al. A framework for evaluating ecosystem services provided by cover crops in agroecosystems. Agric. Syst. 2014, 125, 12–22. [Google Scholar] [CrossRef]
- Groff, S. The past, present, and future of the cover crop industry. J. Soil Water Conserv. 2015, 70, 130–133. [Google Scholar] [CrossRef]
- Moreno-Cadena, P.; Salmeron, M.; Canisares, L.P.; Poffenbarger, H.J. Productivity benefits of cereal-legume cover crop mixtures under variable soil nitrogen and termination times. Eur. J. Agron. 2024, 155, 127114. [Google Scholar] [CrossRef]
- Wortman, S.E.; Francis, C.A.; Lindquist, J.L. Cover Crop Mixtures for the Western Corn Belt: Opportunities for Increased Productivity and Stability. J. Agron. 2012, 104, 699–705. [Google Scholar] [CrossRef]
- Kramberger, B.; Gselman, A.; Podvršnik, M.; Kristl, J.; Lešnik, M. Environmental advantages of binary mixtures of Trifolium incarnatum and Lolium multiflorum over individual pure stands. Plant Soil Environ. 2013, 59, 22–28. [Google Scholar] [CrossRef]
- Elhakeem, A.; van der Werf, W.; Ajal, J.; Lucà, D.; Claus, S.; Vico, R.A.; Bastiaans, L. Cover crop mixtures result in a positive net biodiversity effect irrespective of seeding configuration. Agric. Ecosyst. Environ. 2019, 285, 106627. [Google Scholar] [CrossRef]
- Khan, Q.A.; McVay, K.A. Productivity and stability of multi-species cover crop mixtures in the northern great plains. Agron. J. 2019, 111, 1817–1827. [Google Scholar] [CrossRef]
- Gentsch, N.; Boy, J.; Batalla, J.D.K.; Heuermann, D.; von Wirén, N.; Schweneker, D.; Feuerstein, U.; Groß, J.; Bauer, B.; Reinhold-Hurek, B.; et al. Catch crop diversity increases rhizosphere carbon input and soil microbial biomass. Biol. Fertil. Soils 2020, 56, 943–957. [Google Scholar] [CrossRef]
- Mommer, L.; Van Ruijven, J.; De Caluwe, H.; Smit-Tiekstra, A.E.; Wagemaker, C.A.M.; Joop Ouborg, N.; Bögemann, G.M.; Van Der Weerden, G.M.; Berendse, F.; De Kroon, H. Unveiling below-ground species abundance in a biodiversity experiment: A test of vertical niche differentiation among grassland species. J. Ecol. 2010, 98, 1117–1127. [Google Scholar] [CrossRef]
- Yu, P.; He, X.; Baer, M.; Beirinckx, S.; Tian, T.; Moya, Y.A.T.; Zhang, X.; Deichmann, M.; Frey, F.P.; Bresgen, V.; et al. Plant flavones enrich rhizosphere Oxalobacteraceae to improve maize performance under nitrogen deprivation. Nat. Plants 2021, 7, 481–499. [Google Scholar] [CrossRef]
- Bavec, M.; Narodoslawsky, M.; Bavec, F.; Turinek, M. Ecological impact of wheat and spelt production under industrial and alternative farming systems. Renew. Agric. Food Syst. 2011, 27, 242–250. [Google Scholar] [CrossRef]
- Kwiatkowski, C.A.; Harasim, E.; Pawłowski, L. Can catch crops be an important factor in carbon dioxide sequestration? Int. J. Conserv. Sci. 2020, 11, 1005–1018. [Google Scholar]
- Harasim, E.; Antonkiewicz, J.; Kwiatkowski, C.A. The effects of catch crops and tillage systems on selected physical properties and enzymatic activity of loess soil in a spring wheat monoculture. Agronomy 2020, 10, 334. [Google Scholar] [CrossRef]
- Kwiatkowski, C.A.; Harasim, E.; Staniak, M. Effect of catch crops and tillage systems on some chemical properties of loess soil in a short-term monoculture of spring wheat. J. Elem. 2020, 25, 35–43. [Google Scholar]
- Heuermann, D.; Gentsch, N.; Guggenberger, G.; Reinhold-Hurek, B.; Schweneker, D.; Feuerstein, U.; Heuermann, M.C.; Groß, J.; Kümmerer, R.; Bauer, B.; et al. Catch crop mixtures have higher potential for nutrient carry-over than pure stands under changing environments. Eur. J. Agron. 2022, 136, 126504. [Google Scholar] [CrossRef]
- Koudahe, K.; Allen, S.C.; Djaman, K. Critical review of the impact of cover crops on soil properties. Int. Soil Water Conserv. Res. 2022, 10, 343–354. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Shaver, T.M.; Lindquist, J.L.; Shapiro, C.A.; Elmore, R.W.; Francis, C.A.; Hergert, G.W. Cover crops and ecosystem services: Insights from studies in temperate soils. J. Agron. 2015, 107, 2449–2474. [Google Scholar] [CrossRef]
- Ehrmann, J.; Ritz, K. Plant: Soil interactions in temperate multi-cropping production systems. Plant Soil 2013, 366, 503–523. [Google Scholar] [CrossRef]
- Dong, F.; Zeng, W. Effects of fall and winter cover crops on weed suppression in the United States: A Meta-analysis. Sustainability 2024, 16, 3192. [Google Scholar] [CrossRef]
- Ma, B.L.; Zheng, Z.M.; Pageau, D.; Vera, C.; Fregeau-Reid, J.; Xue, A.; Yan, W. Nitrogen and phosphorus uptake, yield and agronomic traits of oat cultivars as affected by fertilizer N rates under diverse environments. Nutr. Cycl. Agroecosyst. 2017, 108, 245–265. [Google Scholar] [CrossRef]
- Official Statistics Portal. 2024. Available online: https://osp.stat.gov.lt/statistiniu-rodikliu-analize?hash=1c60de45-f3c7-4cb1-95db-4b5e4ca4d976#/ (accessed on 2 June 2025).
- Løes, A.K.; Henriksen, T.M.; Eltun, R.; Sjursen, H. Repeated use of green-manure catch crops in organic cereal production—grain yields and nitrogen supply. Acta Agric. Scand.–B Soil Plant Sci. 2011, 61, 164–175. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Staugaitis, G.; Vaišvila, Z.J. Soil Agrochemical Research. In Scientific-Methodical Material; The Lithuanian Research Centre for Agriculture and Forestry Agrochemical Research Laboratory: Kėdainiai District, Lithuanian, 2019; p. 112. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef]
- LST ISO 751:2000; Fruit and Vegetable Products—Determination of Water-Insoluble Solids. Lithuanian Standards Board: Vilnius, Lithuania, 2000.
- ISO 10694:1995; Soil Quality—Determination of Organic and Total Carbon After Dry Combustion (Elementary Analysis). International Organization for Standardization: Geneva, Switzerland, 1995.
- Raudonius, S. Application of statistics in plant and crop research: Important issues. Zemdirb. Agric. 2017, 104, 377–382. [Google Scholar] [CrossRef]
- Finney, D.M.; White, C.M.; Kaye, J.P. Biomass production and carbon/nitrogen ratio influence ecosystem services from cover crop mixtures. Agron. J. 2016, 108, 39–52. [Google Scholar] [CrossRef]
- Hooper, D.U.; Chapin, F.S., III; Ewel, J.J.; Hector, A.; Inchausti, P.; Lavorel, S.; Lawton, J.H.; Lodge, D.M.; Loreau, M.; Naeem, S.; et al. Effects of biodiversity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr. 2005, 75, 3–35. [Google Scholar] [CrossRef]
- Baraibar, B.; Murrell, E.G.; Bradley, B.A.; Barbercheck, M.E.; Mortensen, D.A.; Kaye, J.P.; White, C.M. Cover crop mixture expression is influenced by nitrogen availability and growing degree days. PLoS ONE 2020, 15, e0235868. [Google Scholar] [CrossRef]
- Heuermann, D.; Gentsch, N.; Boy, J.; Schweneker, D.; Feuerstein, U.; Groß, J.; Bauer, B.; Guggenberger, G.; von Wirén, N. Interspecific competition among catch crops modifies vertical root biomass distribution and nitrate scavenging in soils. Sci. Rep. 2019, 9, 11531. [Google Scholar] [CrossRef]
- Sieling, K. Improved N transfer by growing catch crops-a challenge. J. Cultiv. Plants 2019, 71, 145–160. [Google Scholar]
- Liu, J.; Ulén, B.; Bergkvist, G.; Aronsson, H. Freezing–thawing effects on phosphorus leaching from catch crops. Nutr. Cycl. Agroecosyst. 2014, 99, 17–30. [Google Scholar] [CrossRef]
- Wendling, M.; Büchi, L.; Amossé, C.; Sinaj, S.; Walter, A.; Charles, R. Influence of root and leaf traits on the uptake of nutrients in cover crops. Plant Soil 2016, 409, 419–434. [Google Scholar] [CrossRef]
- Selzer, T.; Schubert, S. Nutrient uptake of catch crops under non-limiting growth conditions. J. Plant Nutr. Soil Sci. 2021, 184, 709–722. [Google Scholar] [CrossRef]
- Nakajima, T.; Nakamura, R.; Kawamura, R.; Mihara, M. Cover crop mixtures effects on soil physical and chemical properties in Japan. Int. J. Environ. Rural Dev. 2020, 11, 182–186. [Google Scholar]
- Khan, R.; Farooque, A.A.; Brown, H.C.P.; Zaman, Q.U.; Acharya, B.; Abbas, F.; McKenzie-Gopsill, A. The role of cover crop types and residue incorporation in improving soil chemical properties. Agronomy 2021, 11, 2091. [Google Scholar] [CrossRef]
- Wittwer, R.A.; Dorn, B.; Jossi, W.; van der Heijden, M.G.A. Cover crops support ecological intensification of arable cropping systems. Sci. Rep. 2017, 7, 41911. [Google Scholar] [CrossRef]
- Kebede, G.; Worku, W.; Jifar, H.; Feyissa, F. Effects of fertilizer levels and varieties on fodder yield productivity, nutrient use efficiency, and profitability of oat (Avena sativa L.) in the central highlands of Ethiopia. J. Agric. Food Res. 2024, 16, 101161. [Google Scholar] [CrossRef]
- Güngör, H.; Çakir, M.F.; Kantar, B.H.; Gedіk, B.; Dumlupinar, Z. Evaluation of some oat cultivars for grain yield, yield components and quality traits in Düzce ecological conditions. J. Agric. Sci. 2023, 7, 718–729. [Google Scholar]
- Zorovski, P. Development, productivity and quality of naked oat grain after treatment with biofertilizers in the conditions of organic agriculture. Sci. Pap. Ser. A Agron. 2021, 64, 758–765. [Google Scholar]
Treatment | Cover Crop Mixture Name | Species Composition | Plant Family | Seeding Rate (kg ha−1) | Sowing Time |
---|---|---|---|---|---|
1. | – | Without cover crops | – | – | – |
2. | TGS BIOM 1 | Italian ryegrass (70%), | Poaceae | 45 | Undersown |
Egyptian clover (15%), | Fabaceae | ||||
Persian clover (15%) | Fabaceae | ||||
3. | TGS D STRUKT 1 | Black oat (20%) | Poaceae | 45 | Post-harvest |
Buckwheat (15%) | Polygonaceae | ||||
Flax (15%) | Linaceae | ||||
Egyptian clover (15%) | Fabaceae | ||||
Tillage radish (10%) | Brassicaceae | ||||
Sunflower (10%) | Asteraceae | ||||
Persian clover (5%) | Fabaceae | ||||
Lacy phacelia (5%) | Boraginaceae | ||||
Serradella (5%) | Fabaceae | ||||
4. | TGS GYVA 365 | Red clover (25%) | Fabaceae | 30 | Post-harvest |
Perennial ryegrass (20%) | Poaceae | ||||
White mustard (10%) | Brassicaceae | ||||
Flax (10%) | Linaceae | ||||
Pea (10%) | Fabaceae | ||||
Squarrose clover (5%) | Fabaceae | ||||
False flax (5%) | Brassicaceae | ||||
Buckwheat (5%) | Polygonaceae | ||||
Tillage radish (5%) | Brassicaceae | ||||
Radish (5%) | Brassicaceae |
Cover Crop Mixtures | Total Nitrogen, kg ha−1 | Total Phosphorus, kg ha−1 | Total Potassium, kg ha−1 | Organic Carbon, kg ha−1 |
---|---|---|---|---|
Undersown TGS BIOM 1 | 76.8 ± 6.62 b | 8.06 ± 0.98 b | 88.4 ± 9.98 a | 758.2 ± 56.8 a |
Post-harvest TGS D STRUKT 1 | 95.9 ± 3.75 ab | 13.3 ± 1.30 a | 91.0 ± 11.8 a | 777.9 ± 76.5 a |
Post-harvest TGS GYVA 365 | 103.4 ± 30.1 a | 12.2 ± 3.78 a | 102.3 ± 34.5 a | 782.0 ± 177.3 a |
Cover Crop Mixtures | Mineral Nitrogen, % | Available Phosphorus, mg kg−1 | Available Potassium, mg kg−1 | Organic Carbon, % |
---|---|---|---|---|
Without cover crops | 9.64 ± 0.78 a | 232.7 ± 15.8 a | 145.0 ± 10.0 a | 1.99 ± 0.17 ab |
Undersown TGS BIOM 1 | 8.51 ± 0.41 a | 238.2 ± 42.8 a | 162.3 ± 4.18 a | 2.16 ± 0.08 a |
Post-harvest TGS D STRUKT 1 | 9.71 ± 1.09 a | 150.0 ± 23.8 b | 149.7 ± 11.6 a | 1.76 ± 0.13 b |
Post-harvest TGS GYVA 365 | 6.88 ± 0.33 b | 136.3 ± 25.6 b | 140.3 ± 18.1 a | 2.18 ± 0.06 a |
Cover Crop Mixtures | Soil Aggregate–Size Distribution, % | ||
---|---|---|---|
Mega >10 mm | Macro 0.25–10 mm | Micro <0.25 mm | |
Without cover crops | 43.2 ± 4.24 a | 52.3 ± 4.05 a | 4.50 ± 0.75 a |
Undersown TGS BIOM 1 | 30.7 ± 7.15 a | 64.3 ± 6.32 a | 5.00 ± 0.86 a |
Post-harvest TGS D STRUKT 1 | 40.6 ± 14.0 a | 54.2 ± 12.4 a | 5.20 ± 2.18 a |
Post-harvest TGS GYVA 365 | 43.6 ± 0.90 a | 50.4 ± 1.12 a | 6.00 ± 0.24 a |
Cover Crop Mixtures | Chlorophyll Concentration in the Oat Leaves, µmol m−2 | Aboveground Absolute DM Biomass at the Flowering Stage, Mg ha−1 | Crop Density, pcs. m−2 |
---|---|---|---|
Without cover crops | 267.8 ± 28.4 b | 9.66 ± 1.36 b | 427 ± 34.1 a |
Undersown TGS BIOM 1 | 553.1 ± 59.3 a | 11.7 ± 0.30 ab | 516 ± 28.0 a |
Post-harvest TGS D STRUKT 1 | 474.5 ± 16.6 a | 13.0 ± 0.35 a | 506 ± 10.7 a |
Post-harvest TGS GYVA 365 | 465.9 ± 73.8 a | 10.6 ± 1.40 ab | 479 ± 34.2 a |
Parameters | Cover crop mixtures | |||
---|---|---|---|---|
Without Cover Crops | TGS BIOM 1 | Post-Harvest TGS D STRUKT 1 | Post-Harvest TGS GYVA 365 | |
Plant height, cm | 66.4 ± 2.54 a | 80.8 ± 2.08 a | 80.3 ± 4.00 a | 74.1 ± 4.16 a |
Number of grains per panicle, pcs. | 23.8 ± 1.71 b | 29.6 ± 0.12 a | 31.5 ± 2.79 a | 24.3 ± 2.58 b |
Mass of grains per panicle, g | 0.82 ± 0.06 a | 1.05 ± 0.06 a | 1.08 ± 0.13 a | 0.88 ± 0.08 a |
Mass of 1000 grains, g | 34.3 ± 1.85 a | 35.1 ± 1.94 a | 34.3 ± 1.01 a | 36.3 ± 1.01 a |
Grain yield, Mg ha−1 | 3.50 ± 0.41 b | 5.40 ± 0.58 a | 5.47 ± 0.56 a | 4.16 ± 0.15 ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marcinkevičienė, A.; Butkevičienė, L.M.; Skinulienė, L.; Rudinskienė, A. Effects of Cover Crop Mixtures on Soil Health and Spring Oat Productivity. Sustainability 2025, 17, 5566. https://doi.org/10.3390/su17125566
Marcinkevičienė A, Butkevičienė LM, Skinulienė L, Rudinskienė A. Effects of Cover Crop Mixtures on Soil Health and Spring Oat Productivity. Sustainability. 2025; 17(12):5566. https://doi.org/10.3390/su17125566
Chicago/Turabian StyleMarcinkevičienė, Aušra, Lina Marija Butkevičienė, Lina Skinulienė, and Aušra Rudinskienė. 2025. "Effects of Cover Crop Mixtures on Soil Health and Spring Oat Productivity" Sustainability 17, no. 12: 5566. https://doi.org/10.3390/su17125566
APA StyleMarcinkevičienė, A., Butkevičienė, L. M., Skinulienė, L., & Rudinskienė, A. (2025). Effects of Cover Crop Mixtures on Soil Health and Spring Oat Productivity. Sustainability, 17(12), 5566. https://doi.org/10.3390/su17125566