Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (496)

Search Parameters:
Keywords = grafted copolymer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 11599 KiB  
Article
Dual pH- and Temperature-Responsive Fluorescent Hybrid Materials Based on Carbon Dot-Grafted Triamino-Tetraphenylethylene/N-Isopropylacrylamide Copolymers
by Huan Liu, Yuxin Ding, Longping Zhou, Shirui Xu and Bo Liao
C 2025, 11(3), 53; https://doi.org/10.3390/c11030053 - 22 Jul 2025
Abstract
Carbon dots (CDs), a class of carbon-based fluorescent nanomaterials, have garnered significant attention due to their tunable optical properties and functional versatility. In this study, we developed a hybrid material by grafting pH- and temperature-responsive copolymers onto CDs via reversible addition-fragmentation chain-transfer (RAFT) [...] Read more.
Carbon dots (CDs), a class of carbon-based fluorescent nanomaterials, have garnered significant attention due to their tunable optical properties and functional versatility. In this study, we developed a hybrid material by grafting pH- and temperature-responsive copolymers onto CDs via reversible addition-fragmentation chain-transfer (RAFT) polymerization. Triamino-tetraphenylethylene (ATPE) and N-isopropylacrylamide (NIPAM) were copolymerized at varying ratios and covalently linked to CDs, forming a dual-responsive system. Structural characterization using FTIR, 1H NMR, and TEM confirmed the successful grafting of the copolymers onto CDs. The hybrid material exhibited pH-dependent fluorescence changes in acidic aqueous solutions, with emission shifting from 450 nm (attributed to CDs) to 500 nm (aggregation-induced emission, AIE, from ATPE) above a critical pH threshold. Solid films of the hybrid material demonstrated reversible fluorescence quenching under HCl vapor and recovery/enhancement under NH3 vapor, showing excellent fatigue resistance over multiple cycles. Temperature responsiveness was attributed to the thermosensitive poly(NIPAM) segments, with fluorescence intensity increasing above 35 °C due to polymer chain collapse and ATPE aggregation. This work provides a strategy for designing multifunctional hybrid materials with potential applications in recyclable optical pH/temperature sensors. Full article
Show Figures

Graphical abstract

13 pages, 3561 KiB  
Article
Preparing Surface-Functionalized Polymer Films with Hierarchically Ordered Structure by a Combination of Nanoimprinting and Controlled Graft Polymerization
by Masahiko Minoda, Daichi Shimizu, Tatsuya Nohara and Jin Motoyanagi
Surfaces 2025, 8(3), 48; https://doi.org/10.3390/surfaces8030048 - 11 Jul 2025
Viewed by 230
Abstract
It is widely recognized that fine surface structures found in nature contribute to surface functionality, and studies on the design of functional materials based on biomimetics have been actively conducted. In this study, polymer thin films with hierarchically ordered surface structure were prepared [...] Read more.
It is widely recognized that fine surface structures found in nature contribute to surface functionality, and studies on the design of functional materials based on biomimetics have been actively conducted. In this study, polymer thin films with hierarchically ordered surface structure were prepared by combining both nanoimprinting using anodically oxidized porous alumina (AAO) as a template and surface-initiated atom transfer radical polymerization (SI-ATRP). To prepare such polymer films, we designed a new copolymer (poly{[2-(4-methyl-2-oxo-2H-chromen-7-yloxy)ethyl methacrylate]-co-[2-(2-bromo-2-methylpropionyloxy)ethyl methacrylate]}; poly(MCMA-co-HEMABr)) with coumarin moieties and α-haloester moieties in the pendants. The MCMA repeating units function to fix the pillar structure by photodimerization, and the HEMABr ones act as the polymerization initiation sites for SI-ATRP on the pillar surfaces. Surface structures consisting of vertically oriented multiple pillars were fabricated on the spin-coated poly(MCMA-co-HEMABr) thin films by nanoimprinting using an AAO template. Then, the coumarin moieties inside each pillar were crosslinked by UV light irradiation to fix the pillar structure. SEM observation confirmed that the internally crosslinked pillar structures were maintained even when immersed in organic solvents such as 1,2-dichloroethane and anisole, which are employed as solvents under SI-ATRP conditions. Finally, poly(2,2,2-trifluoroethyl methacrylate) and poly(N-isopropylacrylamide) chains were grafted onto the thin film by SI-ATRP, respectively, to prepare the hierarchically ordered surface structure. Furthermore, in this study, the surface properties as well as the thermoresponsive hydrophilic/hydrophobic switching of the obtained polymer films were investigated. The surface morphology and chemistry of the films with and without pillar structures were compared, especially the interfacial properties expressed as wettability. Grafting poly(TFEMA) increased the static contact angle for both flat and pillar films, and the con-tact angle of the pillar film surface increased from 104° for the flat film sample to 112°, suggesting the contribution of the pillar structure. Meanwhile, the pillar film surface grafted with poly(NIPAM) brought about a significant change in wettability when changing the temperature between 22 °C and 38 °C. Full article
(This article belongs to the Special Issue Surface Science: Polymer Thin Films, Coatings and Adhesives)
Show Figures

Graphical abstract

23 pages, 1189 KiB  
Article
Hyaluronic Acid-Graft-Poly(L-Lysine): Synthesis and Evaluation as a Gene Delivery System
by Viktor Korzhikov-Vlakh, Polina Teterina, Nina Gubina, Apollinariia Dzhuzha, Tatiana Tennikova and Evgenia Korzhikova-Vlakh
Polysaccharides 2025, 6(3), 60; https://doi.org/10.3390/polysaccharides6030060 - 5 Jul 2025
Viewed by 357
Abstract
The synthesis of novel biodegradable polymers as non-viral vectors remains one of the challenging tasks in the field of gene delivery. In this study, the synthesis of the polysaccharide-g-polypeptide copolymers, namely, hyaluronic acid-g-polylysine (HA-g-PLys), using a copper-free [...] Read more.
The synthesis of novel biodegradable polymers as non-viral vectors remains one of the challenging tasks in the field of gene delivery. In this study, the synthesis of the polysaccharide-g-polypeptide copolymers, namely, hyaluronic acid-g-polylysine (HA-g-PLys), using a copper-free strain-promoted azide-alkyne cycloaddition reaction was proposed. For this purpose, hyaluronic acid was modified with dibenzocyclooctyne moieties, and poly-L-lysine with a terminal azido group was obtained using ring-opening polymerization of N-carboxyanhydride of the corresponding protected amino acid, initiated with the amino group azido-PEG3-amine. Two HA-g-PLys samples with different degrees of grafting were synthesized, and the structures of all modified and synthesized polymers were confirmed using 1H NMR and FTIR spectroscopy. The HA-g-PLys samples obtained were able to form nanoparticles in aqueous media due to self-assembly driven by electrostatic interactions. The binding of DNA and model siRNA by copolymers to form polyplexes was analyzed using ethidium bromide, agarose gel electrophoresis, and SybrGreen I assays. The hydrodynamic diameter of polyplexes was ˂300 nm (polydispersity index, PDI ˂ 0.3). The release of a model fluorescently-labeled oligonucleotide in the complex biological medium was significantly higher in the case of HA-g-PLys as compared to that in the case of PLys-based polyplexes. In addition, the cytotoxicity in normal and cancer cells, as well as the ability of HA-g-PLys to facilitate intracellular delivery of anti-GFP siRNA to NIH-3T3/GFP+ cells, were evaluated. Full article
Show Figures

Figure 1

14 pages, 1220 KiB  
Article
Viscoelastic Response of Double Hydrophilic Block Copolymers for Drug Delivery Applications
by Achilleas Pipertzis, Angeliki Chroni, Stergios Pispas and Jan Swenson
Polymers 2025, 17(13), 1857; https://doi.org/10.3390/polym17131857 - 2 Jul 2025
Viewed by 318
Abstract
This study investigates the mechanical properties of double hydrophilic block copolymers (DHBCs) based on poly[oligo(ethylene glycol) methacrylate] (POEGMA) and poly(vinyl benzyl trimethylammonium chloride) (PVBTMAC) blocks by employing small amplitude oscillatory shear (SAOS) rheological measurements. We report that the mechanical properties of DHBCs are [...] Read more.
This study investigates the mechanical properties of double hydrophilic block copolymers (DHBCs) based on poly[oligo(ethylene glycol) methacrylate] (POEGMA) and poly(vinyl benzyl trimethylammonium chloride) (PVBTMAC) blocks by employing small amplitude oscillatory shear (SAOS) rheological measurements. We report that the mechanical properties of DHBCs are governed by the interfacial glass transition temperature (Tginter), verifying the disordered state of these copolymers. An increase in zero shear viscosity can be observed by increasing the VBTMAC content, yielding a transition from liquid-like to gel-like and finally to an elastic-like response for the PVBTMAC homopolymer. By changing the block arrangement along the backbone from statistical to sequential, a distinct change in the viscoelastic response is obvious, indicating the presence/absence of bulk-like regions. The tunable viscosity values and shear-thinning behavior achieved through alteration of the copolymer composition and block arrangement along the backbone render the studied DHBCs promising candidates for drug delivery applications. In the second part, the rheological data are analyzed within the framework of the classical free volume theories of glass formation. Specifically, the copolymers exhibit reduced fractional free volume and similar fragility values compared to the PVBTMAC homopolymer. On the contrary, the activation energy increases by increasing the VBTMAC content, reflecting the required higher energy for the relaxation of the glassy VBTMAC segments. Overall, this study provides information about the viscoelastic properties of DHBCs with densely grafted macromolecular architecture and shows how the mechanical and dynamical properties can be tailored for different drug delivery applications by simply altering the ratio between the two homopolymers. Full article
(This article belongs to the Special Issue Advances and Applications of Block Copolymers II)
Show Figures

Graphical abstract

14 pages, 4074 KiB  
Article
Synthesis and Characterization of Biodegradable Polymer Blends Based on Chitosan
by Lyazzat Bekbayeva, Grigoriy A. Mun, Bayana B. Yermukhambetova, El-Sayed Negim, Galiya Irmukhametova, Khaldun M. Al Azzam, Sergey V. Nechipurenko, Sergey A. Efremov, Mubarak Yermaganbetov and Moshera Samy
Polymers 2025, 17(13), 1853; https://doi.org/10.3390/polym17131853 - 2 Jul 2025
Viewed by 380
Abstract
Despite its broad application due to its affordability, biodegradability, and natural antimicrobial and antioxidant activities, chitosan (CS) still exhibits limitations in mechanical strength and barrier effectiveness. Owing to its unique chemical characteristics, itaconic acid (IT) presents potential as a compatibilizing agent in polymeric [...] Read more.
Despite its broad application due to its affordability, biodegradability, and natural antimicrobial and antioxidant activities, chitosan (CS) still exhibits limitations in mechanical strength and barrier effectiveness. Owing to its unique chemical characteristics, itaconic acid (IT) presents potential as a compatibilizing agent in polymeric blend formulations. Biodegradable polymers composed of chitosan (CS), itaconic acid (IT), and starch (S) were synthesized using two polymerization methods. The first method involved grafting IT onto CS at varying ratios of IT (4%, 6%, and 8% wt.), using 1% v/v acetic acid/water as the solvent and potassium persulfate as the initiator. In the second approach, starch (S) was blended with the copolymer P(CS-g-IT) at concentrations of 1%, 3%, and 5%, utilizing water as the solvent and glacial acetic acid as a catalyst. The resulting biodegradable films underwent characterization through FTIR, TGA, SEM, and mechanical property analysis. To further explore the effects of combining IT, starch, and carbon black, the blends, referred to as P[(CS-g-IT)-b-S], were also loaded with carbon black. This allowed for the evaluation of the materials’ physicomechanical properties, such as viscosity, tensile strength, elongation, and contact angle. The findings demonstrated that the presence of IT, starch, and carbon black collectively improved the films’ mechanical performance, physical traits, and biodegradability. Among the samples, the blended copolymer with 1% starch exhibited the highest mechanical properties, followed by the grafted copolymer with 8% IT and the blended copolymer mixed with carbon black at 7%. In contrast, the blended copolymer with 5% starch showed the highest hydrophilicity and the shortest degradation time compared to the grafted copolymer with 8% IT and the blended copolymer mixed with 7% carbon black. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

13 pages, 2656 KiB  
Article
Effects on the Enthalpy of Microsynthesis Calorimetry of the Graft Copolymer Starch-g-Polycaprolactone for Five Starch Sources
by Noé Francisco Mendoza-Morales, Alejandro Aparicio-Saguilán, Delia E. Páramo-Calderón, Miguel A. García-Muñoz, Jesús Carrillo-Ahumada, José Eduardo Baéz-García, Javier Saldaña-Herrera, Enrique J. Flores-Munguía and Aurelio Ramírez-Hernández
Polymers 2025, 17(10), 1311; https://doi.org/10.3390/polym17101311 - 11 May 2025
Viewed by 405
Abstract
The aim of this work was to carry out a microsynthesis of a graft copolymer from different starch sources with polycaprolactone (PCL) and to evaluate its effects on enthalpy during synthesis via differential scanning calorimetry (DSC). The copolymer was characterized via FTIR and [...] Read more.
The aim of this work was to carry out a microsynthesis of a graft copolymer from different starch sources with polycaprolactone (PCL) and to evaluate its effects on enthalpy during synthesis via differential scanning calorimetry (DSC). The copolymer was characterized via FTIR and pasting profile techniques. FTIR studies revealed that starch–PCL graft copolymerization was carried out on all starch sources. The pasting profile revealed that the copolymer presented low viscosity values (heating and cooling stages), compared with those of native starches. This finding indicates that copolymerization took place on the surface of the starch granules. Cassava starch presented the highest enthalpy values at synthesis temperatures of 150 °C and 160 °C. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Graphical abstract

20 pages, 2617 KiB  
Article
Evaluation of the PP6D5 Polymer as a Novel Non-Viral Vector in the Development of a CRISPR/nCas9-Based Gene Therapy for Tay–Sachs Disease
by Jacky M. Guerrero-Vargas, Diego A. Suarez-Garcia, Andrés F. Leal, Ivonne L. Diaz-Ariza, León D. Pérez-Pérez, Angela J. Espejo-Mojica and Carlos J. Alméciga-Díaz
Pharmaceutics 2025, 17(5), 628; https://doi.org/10.3390/pharmaceutics17050628 - 9 May 2025
Viewed by 787
Abstract
Background/Objectives: Tay–Sachs disease (TSD) is a neurodegenerative disorder caused by a deficiency in β-hexosaminidase A (HexA), which accumulates GM2 gangliosides, primarily in neurons. Currently, therapeutic options are limited, highlighting the need for new strategies such as gene therapy. Despite their effectiveness, viral vectors [...] Read more.
Background/Objectives: Tay–Sachs disease (TSD) is a neurodegenerative disorder caused by a deficiency in β-hexosaminidase A (HexA), which accumulates GM2 gangliosides, primarily in neurons. Currently, therapeutic options are limited, highlighting the need for new strategies such as gene therapy. Despite their effectiveness, viral vectors can elicit adverse immune responses; consequently, non-viral vectors are being explored as an alternative. We have previously investigated the use of CRISPR/Cas9 nickase (nCas9) as a potential tool for treating TSD. Here, we expanded our study by evaluating the PP6D5 polymer as a novel non-viral vector for delivering the CRISPR/nCas9 system to restore HexA activity. Methods: First, we evaluated the PP6D5-mediated CRISPR/nCas9 system’s transfection efficiency in NIH-3T3 fibroblasts, U87MG astrocytoma, SHSY5Y neuroblastoma, and TSD fibroblasts. We then evaluated the potential of PP6D5 to correct the gene defect in TSD fibroblasts. Results: The results showed that PP6D5 exhibited significantly higher transfection efficiency compared to lipofectamine 3000 in all tested cell models. In TSD fibroblasts, transfection with both HEXA and HEXB cDNAs increased the HexA activity levels by up to 7.4-fold, compared to a 3.2-fold increase in cells transfected only with HEXA cDNA after 15 days post-transfection. These levels were up to 4.5-fold higher than those observed in lipofectamine-mediated transfection. Additionally, PP6D5-mediated CRISPR/nCas9-based genome editing led to a significant reduction in the lysosomal mass of TSD fibroblasts. Conclusions: This study provides promising evidence for the use of the PP6D5 polymer as a non-viral vector for delivering CRISPR/nCas9-based gene therapy in TSD. The use of the PP6D5 polymer may offer some advantages that viral vectors cannot, such as a reduction in cytotoxicity and higher TE in difficult-to-transfect cell lines. Furthermore, this type of polymeric vector has not been extensively explored for gene therapy, making this study an important contribution to the development of non-viral delivery systems for the treatment of neurodegenerative diseases. Full article
Show Figures

Graphical abstract

14 pages, 2559 KiB  
Article
Insights into Cysteine Protease Complexes with Grafted Chitosan–Poly(N-vinylpyrrolidone) Copolymers: Catalytic Activity and Storage Stability
by Maria S. Lavlinskaya, Andrey V. Sorokin, Anastasia N. Dubovitskaya, Anastasia I. Yutkina, Maxim S. Kondratyev, Marina G. Holyavka, Yuriy F. Zuev and Valeriy G. Artyukhov
Biophysica 2025, 5(2), 18; https://doi.org/10.3390/biophysica5020018 - 8 May 2025
Viewed by 531
Abstract
The investigation of structure–function relationships in enzyme polysaccharide complexes provides a theoretical foundation for modulating enzyme properties and expanding their industrial applications. In this study, the interaction of cysteine proteases—bromelain, ficin, and papain—with a grafted chitosan–poly(N-vinylpyrrolidone) copolymers, Cs-g-PVP, was [...] Read more.
The investigation of structure–function relationships in enzyme polysaccharide complexes provides a theoretical foundation for modulating enzyme properties and expanding their industrial applications. In this study, the interaction of cysteine proteases—bromelain, ficin, and papain—with a grafted chitosan–poly(N-vinylpyrrolidone) copolymers, Cs-g-PVP, was examined, and its effect on the catalytic and stability properties of the enzymes was assessed. Molecular docking and Fourier-transform infrared spectroscopy were used to analyze the topology of the resulting complexes and identify macromolecular fragments involved in binding. Based on the obtained results, it was hypothesized that complex formation would lead to a slight reduction in the catalytic activity of cysteine proteases. In vitro studies of the complexes confirmed this hypothesis, showing that the enzymes retained more than 63% of their proteolytic activity while their half-inactivation time during storage increased by up to ~12-fold. The investigated Cs-g-PVP copolymers demonstrated high efficiency as supports for the studied enzymes, capable of retaining up to 100% of the added enzymes. Full article
(This article belongs to the Special Issue Investigations into Protein Structure)
Show Figures

Figure 1

22 pages, 4903 KiB  
Review
Hybrid Materials Based on Self-Assembled Block Copolymers and Magnetic Nanoparticles—A Review
by Galder Kortaberria
Polymers 2025, 17(10), 1292; https://doi.org/10.3390/polym17101292 - 8 May 2025
Viewed by 642
Abstract
In this review work, the different routes and methods for preparing hybrid materials based on nanostructured block copolymers (BCPs) and magnetic nanoparticles (MNPs) are analyzed, as they can be potentially employed in different sectors like biomedicine, electronic or optoelectronic devices, data storing devices, [...] Read more.
In this review work, the different routes and methods for preparing hybrid materials based on nanostructured block copolymers (BCPs) and magnetic nanoparticles (MNPs) are analyzed, as they can be potentially employed in different sectors like biomedicine, electronic or optoelectronic devices, data storing devices, etc. The first procedure for their preparation consists of the nanostructuring of BCPs in the presence of previously synthesized NPs by modifying their surface for increasing compatibility with the matrix or employing magnetic fields for NP orientation, which can also promote the orientation of nanodomains. Surface modification with surfactants led to the selective confinement of NPs depending on the interaction (mainly hydrogen bonding) degree and their intensity. Surface modification with brushes can be performed by three methods, including grafting from, grafting to, or grafting through. Those methods are compared in terms of success for the positioning and confinement of NPs in the desired domains, showing the crucial importance of brush length and grafting density, as well as of NP amount and modification degree in the self-assembled morphology. Regarding the use of external magnetic fields, the importance of relative amounts of MNPs and BCPs employed and that of the magnetic field intensity for the orientation of the NPs and the nearby BCP domains is shown. The second procedure, consisting of the in situ synthesis of NPs inside the nanodomains by a reduction in the respective metallic ions or employing metal-containing BCPs for the generation of MNP patterns or arrays, is also shown. In all cases, the transference of magnetic properties to the nanocomposite was successful. Finally, a brief summary of some aspects about the use of BCPs for the synthesis, encapsulation, and release of MNPs is shown, as they present potential biomedical applications such as cancer treatment, among others. Full article
(This article belongs to the Special Issue Advances and Applications of Block Copolymers II)
Show Figures

Graphical abstract

16 pages, 4956 KiB  
Article
New Strategy for Upcycling Marine Plastic Waste Through the Development of a Diamine-Functionalized Poly(ethylene terephthalate) Compatibilizer
by Pedro V. Rodrigues, Sibele P. Cestari, Vasco Cruz, M. Cidália R. Castro and Ana Vera Machado
Recycling 2025, 10(3), 82; https://doi.org/10.3390/recycling10030082 - 1 May 2025
Cited by 1 | Viewed by 588
Abstract
A compatibilizer for low-density polyethylene (LDPE)/poly(ethylene terephthalate) (PET) blends was developed. This compatibilizer consists of amine-functionalized PET, which is blended with maleated polyethylene to form a copolymer. The goal is to use this compatibilizer in the future for recycling plastic waste from the [...] Read more.
A compatibilizer for low-density polyethylene (LDPE)/poly(ethylene terephthalate) (PET) blends was developed. This compatibilizer consists of amine-functionalized PET, which is blended with maleated polyethylene to form a copolymer. The goal is to use this compatibilizer in the future for recycling plastic waste from the marine environment. Fourier-transform infrared spectroscopy confirmed the successful incorporation of amine groups into PET chains through the addition of p-phenylenediamine in a molten state. An increase in diamine content allowed for the visualization of three bands where PET reacted with the diamine. Differential scanning calorimetry suggested that the polyester chains were grafted onto the maleated polyethylene backbone, with crystallinity increasing up to 2.5% diamine content. Scanning electron microscopy (SEM) images showed that the LDPE/PET blend resulted in a continuous polyethylene matrix with a dispersed polyester phase. The blend compatibilized with modified maleated polyethylene, and functionalized PET exhibited an improved interface. Oscillatory rheology and dynamic mechanical analysis indicated that the developed compatibilizer positively impacted the mechanical properties of the compatibilized LDPE/PET blends. This new approach enables the creation of innovative strategies for enhancing the properties of pre-existing polyolefin/polyester recycled blends. Full article
Show Figures

Figure 1

15 pages, 3077 KiB  
Article
Surface-Driven Phase Segregation in Conducting Polymer Thin Films Enables High Selectivity and Storage Stability of Chemiresistive Sensors in Humid Air
by Jianan Weng, Wei Wu, Minghao Qian, Jiarui Zhang, Shuhua Zhang, Zhi Geng and Bo Zhu
Polymers 2025, 17(7), 979; https://doi.org/10.3390/polym17070979 - 3 Apr 2025
Viewed by 401
Abstract
Chemiresistive sensors integrated with functionalized conductive polymers have emerged as promising candidates for wearable applications, offering adequate protection against highly toxic and widely prevalent organophosphate compounds, due to their high sensitivity, room-temperature operation, and straightforward fabrication process. However, these chemiresistive sensors exhibit poor [...] Read more.
Chemiresistive sensors integrated with functionalized conductive polymers have emerged as promising candidates for wearable applications, offering adequate protection against highly toxic and widely prevalent organophosphate compounds, due to their high sensitivity, room-temperature operation, and straightforward fabrication process. However, these chemiresistive sensors exhibit poor resistance to water vapor due to the intrinsic properties of these conducting polymers, likely leading to false sensor alarms. In this study, we engineered a series of water-vapor-resistant, yet organophosphate-sensitive, conducting polymers by electro-copolymerizing hexafluoroisopropanol (HFIP)-grafted 3,4-ethylenedioxythiophene (EDOT-HFIP) with EDOT comonomers bearing hydrophobic alkyl groups of varying lengths (ethyl, butyl, and hexyl). The typical results indicated that increasing the alkyl length and alkyl-bearing EDOT comonomer composition significantly enhanced the water resistance of the EDOT-HFIP copolymers and the copolymer-integrated chemiresistive sensor, but this improvement came at the unacceptable cost of compromising the organophosphate sensitivity. To address this issue, we developed a surface-driven phase-segregation strategy to enrich the alkyl chains on the surface while concentrating the HFIP groups beneath it by treating the silica substrates using oxygen plasma before polymer spin coating, thus decoupling and optimizing the two mutually competing characteristics. Finally, the chemiresistive sensor integrated with the EDOT-HFIP copolymer containing 10% hexyl-grafted EDOT comonomer exhibited an organophosphate (DMMP) resistive response 657 times higher than that to water vapor, and more than two times that of a PEDOT-HFIP sensor, while preserving the original specific sensitivity of the PEDOT-HFIP sensor. Furthermore, it demonstrated a markedly improved shelf storage stability, being directly exposed to air for 14 days without any special protection. We envision that this surface-driven phase-segregation strategy could offer a promising solution to the significant challenge of air moisture interference in highly sensitive polymer sensors, promoting their practical use in real-world applications. Full article
Show Figures

Figure 1

14 pages, 4333 KiB  
Article
Effect of Poly (Caprolactone) Introduction Site on the Network Structure and Properties of Glycidyl Azide Polymer Adhesive
by Chengzhao Tu, Zhengyuan Wang, Fengdan Zhu, Dengsheng Yang, Chang Liu, Chaofei Bai, Guoping Li and Yunjun Luo
Polymers 2025, 17(5), 661; https://doi.org/10.3390/polym17050661 - 28 Feb 2025
Cited by 1 | Viewed by 727
Abstract
Copolymers of glycidyl azide polymer (GAP) and poly (caprolactone) (PCL) were obtained by introducing PCL molecular chains at both ends or side groups of GAP molecular chains, respectively. GAP/PCL elastomers were prepared via polyurethane curing reaction and compared with GAP/PCL elastomers prepared by [...] Read more.
Copolymers of glycidyl azide polymer (GAP) and poly (caprolactone) (PCL) were obtained by introducing PCL molecular chains at both ends or side groups of GAP molecular chains, respectively. GAP/PCL elastomers were prepared via polyurethane curing reaction and compared with GAP/PCL elastomers prepared by physical blending, in order to clarify the relationship between microstructure and macroscopic properties. The results showed that no GAP and PCL phase separation was observed in the chemically bonded GAP/PCL elastomers. The elongation at break of the thermosetting GAP/PCL block copolymer elastomer increased significantly from 268% to 300% due to the increase in molecular weight between crosslinking points. The GAP/PCL graft copolymer, with its longer PCL segment length and higher segment mobility, formed microcrystalline domains within the elastomer, resulting in a significant improvement in tensile strength from 0.32 MPa to 1.07 MPa. In addition, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) revealed that the glass transition temperature of the GAP/PCL elastomer was 2.6 °C lower than that of the pure GAP elastomer, and the thermal stability was also enhanced. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

16 pages, 11241 KiB  
Article
Glycine-Group-Functionalized Polymeric Materials Impregnated with Zn(II) Used in the Photocatalytic Degradation of Congo Red Dye
by Laura Cocheci, Aurelia Visa, Bianca Maranescu, Lavinia Lupa, Aniela Pop, Ecaterina Stela Dragan and Adriana Popa
Polymers 2025, 17(5), 641; https://doi.org/10.3390/polym17050641 - 27 Feb 2025
Viewed by 626
Abstract
Reducing the ecological impact of dyes through wastewater discharge into the environment is a challenge that must be addressed in textile wastewater pollution prevention. Congo red (CR) dye is widely used in experimental studies for textile wastewater treatment due to its high organic [...] Read more.
Reducing the ecological impact of dyes through wastewater discharge into the environment is a challenge that must be addressed in textile wastewater pollution prevention. Congo red (CR) dye is widely used in experimental studies for textile wastewater treatment due to its high organic loads used in its preparation. The degradation of organic dyes of the CR type was investigated using the photocatalytic activity of functionalized polymers. We have employed photodegradation procedures for both polymer-supported glycine groups (Code: AP2) and polymer-supported glycine-Zn(II) (Code: AP2-Zn(II)). A photocatalysis efficiency of 89.2% was achieved for glycine pendant groups grafted on styrene-6.7% divinylbenzene copolymer (AP2) and 95.4% for the AP2-Zn(II) sample by using an initial concentration of CR of 15 mg/L, a catalyst concentration of 1 g/L, and 240 min of photocatalysis. The findings provided here have shown that the two materials (AP2 and AP2-Zn(II)) may be effectively employed in the heterogeneous photocatalysis method to remove CR from water. From the perspective of the degradation mechanism of CR, the two photocatalysts act similarly. Full article
Show Figures

Figure 1

15 pages, 5588 KiB  
Article
Poly(Vinylpyrrolidone) Graft in Poly(Vinyl Chloride) Catheters Using Gamma Radiation for Ciprofloxacin Loading and Release
by Pedro J. Vargas-Machado, Felipe López-Saucedo and Emilio Bucio
Polymers 2025, 17(5), 612; https://doi.org/10.3390/polym17050612 - 25 Feb 2025
Viewed by 834
Abstract
This study addresses the modification of poly(vinyl chloride) catheters with N-vinylpyrrolidone and ciprofloxacin to achieve an antimicrobial surface. The copolymer was synthesized using the grafting-from method with gamma rays as a physical initiator and under different reaction conditions (absorbed dose, monomer concentration, [...] Read more.
This study addresses the modification of poly(vinyl chloride) catheters with N-vinylpyrrolidone and ciprofloxacin to achieve an antimicrobial surface. The copolymer was synthesized using the grafting-from method with gamma rays as a physical initiator and under different reaction conditions (absorbed dose, monomer concentration, and solvent). The modified catheters attained hydrophilic properties and were tested for ciprofloxacin loading and release efficiency. Antibiotic-loaded materials successfully inhibited the growth of S. aureus and P. aeruginosa strains. Therefore, surfaces with PVP chains exhibit suitable features for the loading and release of small molecules like ciprofloxacin (a fluoroquinolone). Results suggest that graft copolymers are suitable materials for the fabrication of biomedical devices with antibacterial features. Full article
(This article belongs to the Section Innovation of Polymer Science and Technology)
Show Figures

Figure 1

26 pages, 7894 KiB  
Article
Advanced Nanobiocomposite Hydrogels Incorporating Organofunctionalized LDH for Soft Tissue Engineering Applications
by Ionut-Cristian Radu, Eugenia Tanasa, Sorina Dinescu, George Vlasceanu and Catalin Zaharia
Polymers 2025, 17(4), 536; https://doi.org/10.3390/polym17040536 - 19 Feb 2025
Viewed by 733
Abstract
Nanocomposite hydrogels are gaining significant attention for biomedical applications in soft tissue engineering due to the increasing demand for highly flexible and durable soft polymer materials. This research paper focused on investigating and optimizing a procedure for the development of novel nanocomposite hydrogels [...] Read more.
Nanocomposite hydrogels are gaining significant attention for biomedical applications in soft tissue engineering due to the increasing demand for highly flexible and durable soft polymer materials. This research paper focused on investigating and optimizing a procedure for the development of novel nanocomposite hydrogels based on poly(2-hydroxyethyl methacrylate)-co-(2-acrylamido-2-methylpropane sulfonic acid) (HEMA/AMPSA) copolymers. These hydrogels were synthesized through a grafting-through process, where the polymer network was formed using a modified clay crosslinker. The layered double hydroxide (LDH) clay modified with 3-(trimethoxysilyl)propyl methacrylate (ATPM) was synthesized using a novel recipe through a two-step procedure. The nanocomposite hydrogel compositions were optimized to achieve soft hydrogels with high flexibility. The developed materials were analyzed for their mechanical and morphological properties using tensile and compressive tests, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and micro-computed tomography (micro-CT). The swelling behavior, network density, and kinetic diffusion mechanism demonstrated the specific characteristics of the materials. The modified LDH-ATPM was further characterized using Thermogravimetry (TGA), FTIR-ATR and X-ray diffraction (XRD). Biological assessments on human adipose-derived stem cells (hASCs) were essential to evaluate the biocompatibility of the nanocomposite hydrogels and their potential for soft tissue applications. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

Back to TopTop