Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (417)

Search Parameters:
Keywords = gradient coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4156 KiB  
Article
Numerical and Experimental Study on Deposition Mechanism of Laser-Assisted Plasma-Sprayed Y2O3 Coating
by Hui Zou, Xutao Zhao, Bin Fu, Huabao Yang and Chengda Sun
Coatings 2025, 15(8), 904; https://doi.org/10.3390/coatings15080904 (registering DOI) - 2 Aug 2025
Abstract
Due to the limitations of high speed and short time in plasma-spraying experiments, this study established a simulation model of Y2O3 multi-particle deposition to discuss the influence of laser loading on coating-deposition behavior and performance. According to the simulation results, [...] Read more.
Due to the limitations of high speed and short time in plasma-spraying experiments, this study established a simulation model of Y2O3 multi-particle deposition to discuss the influence of laser loading on coating-deposition behavior and performance. According to the simulation results, the temperature of coating particles under laser loading displays a gradient distribution, with the surface having the highest temperature. The particles deposit on the substrate to form uniform pits of a certain depth. Plastic deformation causes maximum stress to occur at the edges of the pits and maximum strain to occur on the sidewall of the pits. The deposition region had both compressive and tensile stresses, and laser loading greatly reduced the tensile stresses’ magnitude while having less of an impact on the particle strains. Laser assistance promotes further melting of particles, reduces coating thickness, lowers coating porosity to 3.94%, increases hardness to 488 MPa, reduces maximum pore size from 68 µm to 32 µm, and causes particle sputtering to gradually evolve from being disc-shaped to being finger-shaped, creating cavities at the coating edges. The comparison between the surface morphology and the cross-section pores of the experimentally prepared coating verified the rationality and viability of the simulation work. Full article
(This article belongs to the Section Laser Coatings)
Show Figures

Figure 1

21 pages, 3814 KiB  
Article
Features of the Structure of Layered Epoxy Composite Coatings Formed on a Metal-Ceramic-Coated Aluminum Base
by Volodymyr Korzhyk, Volodymyr Kopei, Petro Stukhliak, Olena Berdnikova, Olga Kushnarova, Oleg Kolisnichenko, Oleg Totosko, Danylo Stukhliak and Liubomyr Ropyak
Materials 2025, 18(15), 3620; https://doi.org/10.3390/ma18153620 (registering DOI) - 1 Aug 2025
Abstract
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer [...] Read more.
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer of basalt fabric, which allows for effective heating of the antenna, and to study the properties of this coating. The multilayer coating was formed on an aluminum base that was subjected to abrasive jet processing. The first and second metal-ceramic layers, Al2O3 + 5% Al, which were applied by high-speed multi-chamber cumulative detonation spraying (CDS), respectively, provide maximum adhesion strength to the aluminum base and high adhesion strength to the third layer of the epoxy composite containing Al2O3. On this not-yet-polymerized layer of epoxy composite containing Al2O3, a layer of carbon fabric (impregnated with epoxy resin) was formed, which serves as a resistive heating element. On top of this carbon fabric, a layer of epoxy composite containing Cr2O3 and SiO2 was applied. Next, basalt fabric was applied to this still-not-yet-polymerized layer. Then, the resulting layered coating was compacted and dried. To study this multilayer coating, X-ray analysis, light and raster scanning microscopy, and transmission electron microscopy were used. The thickness of the coating layers and microhardness were measured on transverse microsections. The adhesion strength of the metal-ceramic coating layers to the aluminum base was determined by both bending testing and peeling using the adhesive method. It was established that CDS provides the formation of metal-ceramic layers with a maximum fraction of lamellae and a microhardness of 7900–10,520 MPa. In these metal-ceramic layers, a dispersed subgrain structure, a uniform distribution of nanoparticles, and a gradient-free level of dislocation density are observed. Such a structure prevents the formation of local concentrators of internal stresses, thereby increasing the level of dispersion and substructural strengthening of the metal-ceramic layers’ material. The formation of materials with a nanostructure increases their strength and crack resistance. The effectiveness of using aluminum, chromium, and silicon oxides as nanofillers in epoxy composite layers was demonstrated. The presence of structures near the surface of these nanofillers, which differ from the properties of the epoxy matrix in the coating, was established. Such zones, specifically the outer surface layers (OSL), significantly affect the properties of the epoxy composite. The results of industrial tests showed the high performance of the multilayer coating during antenna heating. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

15 pages, 2057 KiB  
Article
Machine Learning-Based Prediction of Atmospheric Corrosion Rates Using Environmental and Material Parameters
by Saurabh Tiwari, Khushbu Dash, Nokeun Park and Nagireddy Gari Subba Reddy
Coatings 2025, 15(8), 888; https://doi.org/10.3390/coatings15080888 (registering DOI) - 31 Jul 2025
Viewed by 133
Abstract
Atmospheric corrosion significantly impacts infrastructure worldwide, with traditional assessment methods being time-intensive and costly. This study developed a comprehensive machine learning framework for predicting atmospheric corrosion rates using environmental and material parameters. Three regression models (Linear Regression, Random Forest, and Gradient Boosting) were [...] Read more.
Atmospheric corrosion significantly impacts infrastructure worldwide, with traditional assessment methods being time-intensive and costly. This study developed a comprehensive machine learning framework for predicting atmospheric corrosion rates using environmental and material parameters. Three regression models (Linear Regression, Random Forest, and Gradient Boosting) were trained on a scientifically informed synthetic dataset incorporating established corrosion principles from ISO 9223 standards and peer-reviewed literature. The Gradient Boosting model achieved superior performance with cross-validated R2 = 0.835 ± 0.024 and RMSE = 98.99 ± 16.62 μm/year, significantly outperforming the Random Forest (p < 0.001) and Linear Regression approaches. Feature importance analysis revealed the copper content (30%), exposure time (20%), and chloride deposition (15%) as primary predictors, consistent with the established principles of corrosion science. Model diagnostics demonstrated excellent predictive accuracy (R2 = 0.863) with normally distributed residuals and homoscedastic variance patterns. This methodology provides a systematic framework for ML-based corrosion prediction, with significant implications for protective coating design, material selection, and infrastructure risk assessment, pending comprehensive experimental validation. Full article
(This article belongs to the Special Issue Advanced Anticorrosion Coatings and Coating Testing)
Show Figures

Figure 1

21 pages, 7973 KiB  
Article
Enhanced Response of ZnO Nanorod-Based Flexible MEAs for Recording Ischemia-Induced Neural Activity in Acute Brain Slices
by José Ignacio Del Río De Vicente, Valeria Marchetti, Ivano Lucarini, Elena Palmieri, Davide Polese, Luca Montaina, Francesco Maita, Jan Kriska, Jana Tureckova, Miroslava Anderova and Luca Maiolo
Nanomaterials 2025, 15(15), 1173; https://doi.org/10.3390/nano15151173 - 30 Jul 2025
Viewed by 199
Abstract
Brain ischemia is a severe condition caused by reduced cerebral blood flow, leading to the disruption of ion gradients in brain tissue. This imbalance triggers spreading depolarizations, which are waves of neuronal and glial depolarization propagating through the gray matter. Microelectrode arrays (MEAs) [...] Read more.
Brain ischemia is a severe condition caused by reduced cerebral blood flow, leading to the disruption of ion gradients in brain tissue. This imbalance triggers spreading depolarizations, which are waves of neuronal and glial depolarization propagating through the gray matter. Microelectrode arrays (MEAs) are essential for real-time monitoring of these electrophysiological processes both in vivo and in vitro, but their sensitivity and signal quality are critical for accurate detection of extracellular brain activity. In this study, we evaluate the performance of a flexible microelectrode array based on gold-coated zinc oxide nanorods (ZnO NRs), referred to as nano-fMEA, specifically for high-fidelity electrophysiological recording under pathological conditions. Acute mouse brain slices were tested under two ischemic models: oxygen–glucose deprivation (OGD) and hyperkalemia. The nano-fMEA demonstrated significant improvements in event detection rates and in capturing subtle fluctuations in neural signals compared to flat fMEAs. This enhanced performance is primarily attributed to an optimized electrode–tissue interface that reduces impedance and improves charge transfer. These features enabled the nano-fMEA to detect weak or transient electrophysiological events more effectively, making it a valuable platform for investigating neural dynamics during metabolic stress. Overall, the results underscore the promise of ZnO NRs in advancing electrophysiological tools for neuroscience research. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

16 pages, 8118 KiB  
Article
The Influence of Long-Term Service on the Mechanical Properties and Energy Dissipation Capacity of Flexible Anti-Collision Rings
by Junhong Zhou, Jia Lu, Wei Jiang, Ang Li, Hancong Shao, Zixiao Huang, Fei Wang and Qiuwei Yang
Coatings 2025, 15(8), 880; https://doi.org/10.3390/coatings15080880 - 27 Jul 2025
Viewed by 243
Abstract
This study investigates the long-term performance of flexible anti-collision rings after 12 years of service on the Xiangshan Port Highway Bridge. Stepwise loading–unloading tests at multiple loading rates (0.8–80 mm/s) were performed on the anti-collision rings, with full-field strain measurement via digital image [...] Read more.
This study investigates the long-term performance of flexible anti-collision rings after 12 years of service on the Xiangshan Port Highway Bridge. Stepwise loading–unloading tests at multiple loading rates (0.8–80 mm/s) were performed on the anti-collision rings, with full-field strain measurement via digital image correlation (DIC) technology. The results show that: The mechanical response of the anti-collision ring shows significant asymmetric tension–compression, with the tensile peak force being 6.8 times that of compression. A modified Johnson–Cook model was developed to accurately characterize the tension–compression force–displacement behavior across varying strain rates (0.001–0.1 s−1). The DIC full-field strain analysis reveals that the clamping fixture significantly influences the tensile deformation mode of the anti-collision ring by constraining its inner wall movement, thereby altering strain distribution patterns. Despite exhibiting a corrosion gradient from severe underwater degradation to minimal surface weathering, all tested rings demonstrated consistent mechanical performance, verifying the robust protective capability of the rubber coating in marine service conditions. Full article
Show Figures

Figure 1

15 pages, 3416 KiB  
Article
The Study of Tribological Characteristics of YSZ/NiCrAlY Coatings and Their Resistance to CMAS at High Temperatures
by Dastan Buitkenov, Zhuldyz Sagdoldina, Aiym Nabioldina and Cezary Drenda
Appl. Sci. 2025, 15(14), 8109; https://doi.org/10.3390/app15148109 - 21 Jul 2025
Viewed by 272
Abstract
This paper presents the results of a comprehensive study of the structure, phase composition, thermal corrosion, and tribological properties of multilayer gradient coatings based on YSZ/NiCrAlY obtained using detonation spraying. X-ray phase analysis showed that the coatings consist entirely of metastable tetragonal zirconium [...] Read more.
This paper presents the results of a comprehensive study of the structure, phase composition, thermal corrosion, and tribological properties of multilayer gradient coatings based on YSZ/NiCrAlY obtained using detonation spraying. X-ray phase analysis showed that the coatings consist entirely of metastable tetragonal zirconium dioxide (t’-ZrO2) phase stabilized by high temperature and rapid cooling during spraying. SEM analysis confirmed the multilayer gradient phase distribution and high density of the structure. Wear resistance, optical profilometry, wear quantification, and coefficient of friction measurements were used to evaluate the operational stability. The results confirm that the structural parameters of the coating, such as porosity and phase gradient, play a key role in improving its resistance to thermal corrosion and CMAS melt, which makes such coatings promising for use in high-temperature applications. It is shown that a dense and thick coating effectively prevents the penetration of aggressive media, providing a high barrier effect and minimal structural damage. Tribological tests in the temperature range from 21 °C to 650 °C revealed that the best characteristics are observed at 550 °C: minimum coefficient of friction (0.63) and high stability in the stage of stable wear. At room temperature and at 650 °C, there is an increase in wear due to the absence or destabilization of the protective layer. Full article
Show Figures

Figure 1

25 pages, 3459 KiB  
Article
Phase Composition, Structure, and Microwave Absorption of Magnetron-Sputtered Co–C–Cr Multilayer Films
by Nadezhda Prokhorenkova, Almira Zhilkashinova, Madi Abilev, Leszek Łatka, Igor Ocheredko and Assel Zhilkashinova
Compounds 2025, 5(3), 27; https://doi.org/10.3390/compounds5030027 - 20 Jul 2025
Viewed by 214
Abstract
Multilayer thin films composed of cobalt (Co), carbon (C), and chromium (Cr) possess promising electromagnetic properties, yet the combined Co–C–Cr system remains underexplored, particularly regarding its performance as a microwave absorber. Existing research has primarily focused on binary Co–C or Co–Cr compositions, leaving [...] Read more.
Multilayer thin films composed of cobalt (Co), carbon (C), and chromium (Cr) possess promising electromagnetic properties, yet the combined Co–C–Cr system remains underexplored, particularly regarding its performance as a microwave absorber. Existing research has primarily focused on binary Co–C or Co–Cr compositions, leaving a critical knowledge gap in understanding how ternary multilayer architectures influence electromagnetic behavior. This study addresses this gap by investigating the structure, phase composition, and microwave absorption performance of Co–C–Cr multilayer coatings fabricated via magnetron sputtering onto porous silicon substrates. This study compares four-layer and eight-layer configurations to assess how multilayer architecture affects impedance matching, reflection coefficients, and absorption characteristics within the 8.2–12.4 GHz frequency range. Structural analyses using X-ray diffraction and transmission electron microscopy confirm the coexistence of amorphous and nanocrystalline phases, which enhance absorption through dielectric and magnetic loss mechanisms. Both experimental and simulated results show that increasing the number of layers improves impedance gradients and broadens the operational bandwidth. The eight-layer coatings demonstrate a more uniform absorption response, while four-layer structures exhibit sharper resonant minima. These findings advance the understanding of ternary multilayer systems and contribute to the development of frequency-selective surfaces and broadband microwave shielding materials. Full article
Show Figures

Figure 1

27 pages, 2739 KiB  
Article
Immunogenicity of DNA, mRNA and Subunit Vaccines Against Beak and Feather Disease Virus
by Buyani Ndlovu, Albertha R. van Zyl, Dirk Verwoerd, Edward P. Rybicki and Inga I. Hitzeroth
Vaccines 2025, 13(7), 762; https://doi.org/10.3390/vaccines13070762 - 17 Jul 2025
Viewed by 593
Abstract
Background/Objectives: Beak and feather disease virus (BFDV) is the causative agent of psittacine beak and feather disease (PBFD), affecting psittacine birds. There is currently no commercial vaccine or treatment for this disease. This study developed a novel BFDV coat protein mRNA vaccine encapsidated [...] Read more.
Background/Objectives: Beak and feather disease virus (BFDV) is the causative agent of psittacine beak and feather disease (PBFD), affecting psittacine birds. There is currently no commercial vaccine or treatment for this disease. This study developed a novel BFDV coat protein mRNA vaccine encapsidated by TMV coat protein to form pseudovirions (PsVs) and tested its immunogenicity alongside BFDV coat protein (CP) subunit and DNA vaccine candidates. Methods: mRNA and BFDV CP subunit vaccine candidates were produced in Nicotiana benthamiana and subsequently purified using PEG precipitation and gradient ultracentrifugation, respectively. The DNA vaccine candidate was produced in E. coli cells harbouring a plasmid with a BFDV1.1mer pseudogenome. Immunogenicity of the vaccine candidates was evaluated in African grey parrot chicks. Results: Successful purification of TMV PsVs harbouring the mRNA vaccine, and of the BFDV-CP subunit vaccine, was confirmed by SDS-PAGE and western blot analysis. TEM analyses confirmed formation of TMV PsVs, while RT-PCR and RT-qPCR cDNA amplification confirmed encapsidation of the mRNA vaccine candidate within TMV particles. Restriction digests verified presence of the BFDV1.1mer genome in the plasmid. Four groups of 5 ten-week-old African grey parrot (Psittacus erithacus) chicks were vaccinated and received two boost vaccinations 2 weeks apart. Blood samples were collected from all four groups on day 14, 28 and 42, and sera were analysed using indirect ELISA, which showed that all vaccine candidates successfully elicited specific anti-BFDV-CP immune responses. The subunit vaccine candidate showed the strongest immune response, indicated by higher binding titres (>6400), followed by the mRNA and DNA vaccine candidates. Conclusions: The candidate vaccines present an important milestone in the search for a protective vaccine against PBFD, and their inexpensive manufacture could considerably aid commercial vaccine development. Full article
(This article belongs to the Special Issue Innovations in Vaccine Technology)
Show Figures

Figure 1

10 pages, 507 KiB  
Article
Predicting Long-Term Prognosis of Poststroke Dysphagia with Machine Learning
by Minsu Seo, Changyeol Lee, Kihwan Nam, Bum Sun Kwon, Bo Hae Kim and Jin-Woo Park
J. Clin. Med. 2025, 14(14), 5025; https://doi.org/10.3390/jcm14145025 - 16 Jul 2025
Viewed by 230
Abstract
Background: Poststroke dysphagia is a common condition that can lead to complications such as aspiration pneumonia and malnutrition, significantly affecting the quality of life. Most patients recover their swallowing function spontaneously, but in others difficulties persist beyond six months. Can we predict [...] Read more.
Background: Poststroke dysphagia is a common condition that can lead to complications such as aspiration pneumonia and malnutrition, significantly affecting the quality of life. Most patients recover their swallowing function spontaneously, but in others difficulties persist beyond six months. Can we predict this in advance? On the other hand, there have been recent attempts to use machine learning to predict disease prognosis. Therefore, this study aims to investigate whether machine learning can predict the long-term prognosis for poststroke dysphagia using early videofluoroscopic swallowing study (VFSS) data. Methods: Data from VFSSs performed within 1 month of onset and swallowing status at 6 months were collected retrospectively in patients with dysphagia who experienced their first acute stroke at a university hospital. We selected 14 factors (lip closure, bolus formation, mastication, apraxia, tongue-to-palate contact, premature bolus loss, oral transit time, triggering of pharyngeal swallow, vallecular residue, laryngeal elevation, pyriform sinus residue, coating of the pharyngeal wall, pharyngeal transit time, and aspiration) from the VFSS data, scored them, and analyzed whether they could predict the long-term prognosis using five machine learning algorithms: Random forest, CatBoost classifier, K-neighbor classifier, Light gradient boosting machine, Extreme gradient boosting. These algorithms were combined through an ensemble method to create the final model. Results: In total, we collected data from 448 patients, of which 70% were used for training and 30% for testing. The final model was evaluated using accuracy, precision, recall, F1-score, and Area Under the Receiver Operating Characteristic Curve (AUC), resulting in values of 0.98, 0.94, 0.84, 0.88, and 0.99, respectively. Conclusions: Machine learning models using early VFSS data have shown high accuracy and predictive power in predicting the long-term prognosis of patients with poststroke dysphagia, and they are likely to provide useful information for clinicians. Full article
(This article belongs to the Section Otolaryngology)
Show Figures

Figure 1

21 pages, 5153 KiB  
Article
Macro- and Micro-Analysis of Factors Influencing the Performance of Sustained-Release Foamed Cement Materials
by Yijun Chen, Shengyu Wang, Yu Zhao, Pan Guo, Lei Zhang, Yingchun Cai, Jiandong Wei and Heng Liu
Materials 2025, 18(14), 3330; https://doi.org/10.3390/ma18143330 - 15 Jul 2025
Viewed by 305
Abstract
This paper addresses the issues of insufficient expansion force, low early strength (1-day compressive strength < 1.5 MPa), and poor toughness (flexural strength < 0.8 MPa) in traditional chemical foamed cement used for road grouting repair. By combining single-factor gradient experiments with microscopic [...] Read more.
This paper addresses the issues of insufficient expansion force, low early strength (1-day compressive strength < 1.5 MPa), and poor toughness (flexural strength < 0.8 MPa) in traditional chemical foamed cement used for road grouting repair. By combining single-factor gradient experiments with microscopic mechanism analysis, the study systematically investigates the performance modulation mechanisms of controlled-release foamed cement using additives such as heavy calcium powder (0–20%), calcium chloride (0.2–1.2%), latex powder (0.2–1.2%), and polypropylene fiber (0.2–0.8%). The study innovatively employs a titanium silicate coupling agent coating technique (with the coating agent amounting to 25% of the catalyst’s mass) to delay foaming by 40 s. Scanning electron microscopy (SEM) and pore structure analysis reveal the microscopic essence of material performance optimization. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

24 pages, 8373 KiB  
Article
Simple Strain Gradient–Divergence Method for Analysis of the Nanoindentation Load–Displacement Curves Measured on Nanostructured Nitride/Carbonitride Coatings
by Uldis Kanders, Karlis Kanders, Artis Kromanis, Irina Boiko, Ernests Jansons and Janis Lungevics
Coatings 2025, 15(7), 824; https://doi.org/10.3390/coatings15070824 - 15 Jul 2025
Viewed by 526
Abstract
This study investigates the fabrication, nanomechanical behavior, and tribological performance of nanostructured superlattice coatings (NSCs) composed of alternating TiAlSiNb-N/TiCr-CN bilayers. Deposited via High-Power Ion-Plasma Magnetron Sputtering (HiPIPMS) onto 100Cr6 steel substrates, the coatings achieved nanohardness values of ~25 GPa and elastic moduli up [...] Read more.
This study investigates the fabrication, nanomechanical behavior, and tribological performance of nanostructured superlattice coatings (NSCs) composed of alternating TiAlSiNb-N/TiCr-CN bilayers. Deposited via High-Power Ion-Plasma Magnetron Sputtering (HiPIPMS) onto 100Cr6 steel substrates, the coatings achieved nanohardness values of ~25 GPa and elastic moduli up to ~415 GPa. A novel empirical method was applied to extract stress–strain field (SSF) gradient and divergence profiles from nanoindentation load–displacement data. These profiles revealed complex, depth-dependent oscillations attributed to alternating strain-hardening and strain-softening mechanisms. Fourier analysis identified dominant spatial wavelengths, DWL, ranging from 4.3 to 42.7 nm. Characteristic wavelengths WL1 and WL2, representing fine and coarse oscillatory modes, were 8.2–9.2 nm and 16.8–22.1 nm, respectively, aligning with the superlattice period and grain-scale features. The hyperfine structure exhibited non-stationary behavior, with dominant wavelengths decreasing from ~5 nm to ~1.5 nm as the indentation depth increased. We attribute the SSF gradient and divergence spatial oscillations to alternating strain-hardening and strain-softening deformation mechanisms within the near-surface layer during progressive loading. This cyclic hardening–softening behavior was consistently observed across all NSC samples, suggesting it represents a general phenomenon in thin film/substrate systems under incremental nanoindentation loading. The proposed SSF gradient–divergence framework enhances nanoindentation analytical capabilities, offering a tool for characterizing thin-film coatings and guiding advanced tribological material design. Full article
(This article belongs to the Section Ceramic Coatings and Engineering Technology)
Show Figures

Graphical abstract

14 pages, 4419 KiB  
Article
Slurry Aluminizing Mechanisms of Nickel-Based Superalloy and Applicability for the Manufacturing of Platinum-Modified Aluminide Coatings
by Giulia Pedrizzetti, Virgilio Genova, Erica Scrinzi, Rita Bottacchiari, Marco Conti, Laura Paglia and Cecilia Bartuli
Coatings 2025, 15(7), 822; https://doi.org/10.3390/coatings15070822 - 14 Jul 2025
Viewed by 309
Abstract
The slurry aluminizing process is widely employed to enhance the oxidation and corrosion resistance of nickel-based superalloys used in high-temperature environments such as gas turbines and aerospace engines. This study investigates the effects of the concentration of Al vapors in the reactor chamber [...] Read more.
The slurry aluminizing process is widely employed to enhance the oxidation and corrosion resistance of nickel-based superalloys used in high-temperature environments such as gas turbines and aerospace engines. This study investigates the effects of the concentration of Al vapors in the reactor chamber and the initial slurry layer thickness on the microstructure, chemical composition, and phase composition of aluminide coatings. Coatings were manufactured on Ni-based superalloy substrates using CrAl powders as an aluminum source and chloride- and fluoride-based activator salts. The effect of the initial thickness of the slurry layer was studied by varying the amount of deposited slurry in terms of mgslurry/cm2sample (with constant mgslurry/cm3chamber). The microstructure and phase composition of the produced aluminide coatings were evaluated by SEM, EDS, and XRD analysis. Slurry thickness can affect concentration gradients during diffusion, and the best results were obtained with an initial slurry amount of 100 mgslurry/cm2sample. The effect of the Al vapor phase in the reaction chamber was then investigated by varying the mgslurry/cm3chamber ratio while keeping the slurry layer thickness constant at 100 mgslurry/cm2sample. This parameter influences the amount of Al at the substrate surface before the onset of solid-state diffusion, and the best results were obtained for a 6.50 mgslurry/cm3chamber ratio with the formation of 80 µm coatings (excluding the interdiffusion zone) with a β-NiAl phase throughout the thickness. To validate process flexibility, the same parameters were successfully applied to produce platinum-modified aluminides with a bi-phasic ζ-PtAl2 and β-(Ni,Pt)Al microstructure. Full article
Show Figures

Figure 1

16 pages, 3915 KiB  
Article
Corrosion Resistance of Ti/Cr Gradient Modulation Period Nanomultilayer Coatings Prepared by Magnetron Sputtering on 7050 Aluminum Alloy
by Kang Chen, Tao He, Xiangyang Du, Alexey Vereschaka, Catherine Sotova, Yang Ding and Jian Li
Inorganics 2025, 13(7), 242; https://doi.org/10.3390/inorganics13070242 - 13 Jul 2025
Viewed by 295
Abstract
Nanostructured multilayer anticorrosion coatings offer an effective strategy to mitigate the poor corrosion resistance of aluminum alloys and extend their service life. In this study, four types of Ti/Cr multilayer coatings with varied modulation periods along the growth direction were deposited on 7050 [...] Read more.
Nanostructured multilayer anticorrosion coatings offer an effective strategy to mitigate the poor corrosion resistance of aluminum alloys and extend their service life. In this study, four types of Ti/Cr multilayer coatings with varied modulation periods along the growth direction were deposited on 7050 aluminum alloy substrates using direct current magnetron sputtering. The cross-sectional microstructure of the coatings was characterized by scanning electron microscopy (SEM), while their mechanical and corrosion properties were systematically evaluated through nanoindentation and electrochemical measurements. The influence of modulation period distribution on the corrosion resistance of Ti/Cr multilayers was thoroughly investigated. The results show that the average thickness of the Ti/Cr multilayer coatings is 680 nm, the structure is dense, and the coarse columnar crystals are not seen. All Ti/Cr multilayer coatings significantly reduced the corrosion current density of 7050 aluminum alloy by about 10 times compared with that of the substrate, showing good protective effect. Modulation period along the coating growth direction decreases the Ti/Cr multilayer coating surface heterogeneous interface density increases, inhibits the formation of corrosion channels, hindering the penetration of corrosive media, and the other three coatings and aluminum alloy compared to its corrosion surface did not see obvious pore corrosion, showing the most excellent corrosion resistance. Full article
Show Figures

Figure 1

24 pages, 7448 KiB  
Article
A Novel Approach to Quantitatively Account on Deposition Efficiency by Direct Energy Deposition: Case of Hardfacing-Coated AISI 304 SS
by Gabriele Grima, Kamal Sleem, Alberto Santoni, Gianni Virgili, Vincenzo Foti, Marcello Cabibbo and Eleonora Santecchia
Crystals 2025, 15(7), 626; https://doi.org/10.3390/cryst15070626 - 5 Jul 2025
Viewed by 334
Abstract
Nickel-based coatings have been demonstrated to effectively enhance the surface performance of stainless-steel components. The present study investigates the deposition efficiency and quality of Colmonoy 227-F nickel alloy coatings on AISI 304 stainless steel using direct energy deposition (DED). The work focuses on [...] Read more.
Nickel-based coatings have been demonstrated to effectively enhance the surface performance of stainless-steel components. The present study investigates the deposition efficiency and quality of Colmonoy 227-F nickel alloy coatings on AISI 304 stainless steel using direct energy deposition (DED). The work focuses on the relationships between process parameters, microstructural features, and mechanical properties. A total of sixteen process parameter combinations were studied, varying laser power and scanning speed to establish optimal deposition conditions and to evaluate coating morphology, surface topology, dilution behavior, and mechanical performance. The surface geometry was analyzed using three-dimensional digital confocal microscopy. New material distribution (MD) indices were developed to quantify spatial uniformity and integrity of single coating scan tracks (CSTs) across the XY, XZ, and YZ planes. The optimal process was identified around 900 W laser power, balancing deposition efficiency and structural integrity. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) reveal a gradual compositional transition between coating and substrate. The results of the microhardness test demonstrate a consistent gradient in mechanical properties, extending from the coating to the substrate. Coatings were found to achieve a hardness level of up to 600 HK. These findings establish a new benchmark for evaluating DED high-performance coatings and offer a scalable methodology for optimizing additive manufacturing processes in surface engineering applications. Full article
(This article belongs to the Special Issue Recent Advances in Microstructure and Properties of Metals and Alloys)
Show Figures

Figure 1

16 pages, 6331 KiB  
Article
Comprehensive Study of the Mechanical and Tribological Properties of NiCr-Al Detonation Coatings
by Zhuldyz Sagdoldina, Bauyrzhan Rakhadilov, Meruyert Maulet, Laila Sulyubayeva, Cezary Drenda and Sanzhar Bolatov
Appl. Sci. 2025, 15(13), 7513; https://doi.org/10.3390/app15137513 - 4 Jul 2025
Viewed by 267
Abstract
This article presents a comprehensive study of the mechanical and tribological properties of detonation coatings in the NiCr-Al system. Using the detonation spraying technology, NiCr-Al homogeneous (HC) and gradient coatings (GCs) were produced, and their characteristics were determined. Modern analytical instruments were used [...] Read more.
This article presents a comprehensive study of the mechanical and tribological properties of detonation coatings in the NiCr-Al system. Using the detonation spraying technology, NiCr-Al homogeneous (HC) and gradient coatings (GCs) were produced, and their characteristics were determined. Modern analytical instruments were used in the course of the study. The results showed that the microhardness of the NiCr-Al GC was approximately 30% higher compared to the NiCr-Al HC. According to nanoindentation results, the elasticity modulus and nanohardness of the NiCr-Al GC were twice as high as those of the NiCr-Al homogeneous coating. Tribological tests conducted using the rotational ball-on-disk contact geometry showed that the wear rate of the NiCr-Al GC was significantly lower, while the friction coefficients of both coatings were approximately similar. According to the adhesion strength tests, the strength of the NiCr-Al GC was recorded at 38.7 ± 6.9 MPa, while that of the NiCr-Al HC was approximately 25.4 ± 3.1 MPa. High-temperature tribological tests revealed that the wear resistance of the NiCr-Al GC was 2.5 times higher than that of the NiCr-Al HC. The conducted studies demonstrated that the coating structure, particularly the distribution of elements, has a significant influence on its mechanical and tribological properties. Overall, the NiCr-Al GC exhibited superior mechanical and tribological performance. Full article
(This article belongs to the Special Issue Corrosion and Protection with Hard Coatings)
Show Figures

Figure 1

Back to TopTop