Predicting Long-Term Prognosis of Poststroke Dysphagia with Machine Learning
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection and Outcome Measures
2.3. Data Preprocessing
2.4. Machine Learning Models
2.5. Ensemble Learning
2.6. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Model Performance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banda, K.J.; Chu, H.; Kang, X.L.; Liu, D.; Pien, L.-C.; Jen, H.-J.; Hsiao, S.-T.S.; Chou, K.-R. Prevalence of dysphagia and risk of pneumonia and mortality in acute stroke patients: A meta-analysis. BMC Geriatr. 2022, 22, 420. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Wu, M.; Wang, H.; Pang, R.; Zhu, L. Prevalence, risk factors, and outcomes of dysphagia after stroke: A systematic review and meta-analysis. Front. Neurol. 2024, 15, 1403610. [Google Scholar] [CrossRef] [PubMed]
- Chang, M.C.; Choo, Y.J.; Seo, K.C.; Yang, S. The relationship between dysphagia and pneumonia in acute stroke patients: A systematic review and meta-analysis. Front. Neurol. 2022, 13, 834240. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.; Liesirova, K.; Broeg-Morvay, A.; Meisterernst, J.; Schlager, M.; Mono, M.-L.; El-Koussy, M.; Kägi, G.; Jung, S.; Sarikaya, H. Dysphagia in acute stroke: Incidence, burden and impact on clinical outcome. PLoS ONE 2016, 11, e0148424. [Google Scholar] [CrossRef] [PubMed]
- Smithard, D.G.; O’Neill, P.A.; England, R.E.; Park, C.L.; Wyatt, R.; Martin, D.F.; Morris, J. The natural history of dysphagia following a stroke. Dysphagia 1997, 12, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Suh, J.-W.; Lim, H.-S.; Kim, D.-K.; Lee, H.S.; Lee, Y.-T.; Park, Y.S.; Park, C.-H.; Yoon, K.-J. Natural Course of Swallowing Recovery and Associated Factors in Post-Ischemic Stroke Dysphagia. J. Korean Dysphagia Soc. 2022, 12, 115–122. [Google Scholar] [CrossRef]
- D’Netto, P.; Rumbach, A.; Dunn, K.; Finch, E. Clinical predictors of dysphagia recovery after stroke: A systematic review. Dysphagia 2023, 38, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Rajkomar, A.; Dean, J.; Kohane, I. Machine learning in medicine. N. Engl. J. Med. 2019, 380, 1347–1358. [Google Scholar] [CrossRef] [PubMed]
- Alruily, M.; El-Ghany, S.A.; Mostafa, A.M.; Ezz, M.; El-Aziz, A.A. A-tuning ensemble machine learning technique for cerebral stroke prediction. Appl. Sci. 2023, 13, 5047. [Google Scholar] [CrossRef]
- Heo, J.; Yoon, J.G.; Park, H.; Kim, Y.D.; Nam, H.S.; Heo, J.H. Machine learning–based model for prediction of outcomes in acute stroke. Stroke 2019, 50, 1263–1265. [Google Scholar] [CrossRef] [PubMed]
- Mainali, S.; Darsie, M.E.; Smetana, K.S. Machine learning in action: Stroke diagnosis and outcome prediction. Front. Neurol. 2021, 12, 734345. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.-Y.; Chen, C.-H.; Tseng, Y.-J.; Tsai, Y.-T.; Chang, C.-Y.; Wang, H.-Y.; Chen, C.-K. Predicting post-stroke activities of daily living through a machine learning-based approach on initiating rehabilitation. Int. J. Med. Inform. 2018, 111, 159–164. [Google Scholar] [CrossRef] [PubMed]
- Galovic, M.; Stauber, A.J.; Leisi, N.; Krammer, W.; Brugger, F.; Vehoff, J.; Balcerak, P.; Müller, A.; Müller, M.; Rosenfeld, J.; et al. Development and validation of a prognostic model of swallowing recovery and enteral tube feeding after ischemic stroke. JAMA Neurol. 2019, 76, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Dubin, P.H.; Boehme, A.K.; Siegler, J.E.; Shaban, A.; Juengling, J.; Albright, K.C.; Martin-Schild, S. New model for predicting surgical feeding tube placement in patients with an acute stroke event. Stroke 2013, 44, 3232–3234. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.H.; Lim, M.H.; Seo, H.G.; Seong, M.Y.; Oh, B.-M.; Kim, S. Development of a novel prognostic model to predict 6-month swallowing recovery after ischemic stroke. Stroke 2020, 51, 440–448. [Google Scholar] [CrossRef] [PubMed]
- Ye, F.; Cheng, L.-L.; Li, W.-M.; Guo, Y.; Fan, X.-F. A Machine-Learning Model Based on Clinical Features for the Prediction of Severe Dysphagia After Ischemic Stroke. Int. J. Gen. Med. 2024, 17, 5623–5631. [Google Scholar] [CrossRef] [PubMed]
- Park, D.; Son, S.I.; Kim, M.S.; Kim, T.Y.; Choi, J.H.; Lee, S.-E.; Hong, D.; Kim, M.-C. Machine learning predictive model for aspiration screening in hospitalized patients with acute stroke. Sci. Rep. 2023, 13, 7835. [Google Scholar] [CrossRef] [PubMed]
- Logemann, J.A. Evaluation and treatment of swallowing disorders. Am. J. Speech-Lang. Pathol. 1994, 3, 41–44. [Google Scholar] [CrossRef]
- Han, T.R.; Paik, N.-J.; Park, J.W. Quantifying swallowing function after stroke: A functional dysphagia scale based on videofluoroscopic studies. Arch. Phys. Med. Rehabil. 2001, 82, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Oh, B.-M.; Kim, J.Y.; Lee, G.J.; Lee, S.A.; Han, T.R. Validation of the videofluoroscopic dysphagia scale in various etiologies. Dysphagia 2014, 29, 438–443. [Google Scholar] [CrossRef] [PubMed]
- Han, T.R.; Paik, N.-J.; Park, J.-W.; Kwon, B.S. The prediction of persistent dysphagia beyond six months after stroke. Dysphagia 2008, 23, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Logemann, J.A. Manual for the Videofluorographic Study of Swallowing; Pro Ed: Austin, TX, USA, 1993. [Google Scholar]
- Crary, M.A.; Mann, G.D.C.; Groher, M.E. Initial psychometric assessment of a functional oral intake scale for dysphagia in stroke patients. Arch. Phys. Med. Rehabil. 2005, 86, 1516–1520. [Google Scholar] [CrossRef] [PubMed]
- A Ilemobayo, J.; Durodola, O.; Alade, O.; Awotunde, O.J.; Olanrewaju, A.T.; Falana, O.; Ogungbire, A.; Osinuga, A.; Ogunbiyi, D.; Ifeanyi, A.; et al. Hyperparameter tuning in machine learning: A comprehensive review. J. Eng. Res. Rep. 2024, 26, 388–395. [Google Scholar] [CrossRef]
- Baita, A.; Prasetyo, I.A.; Cahyono, N. Hyperparameter Tuning on Random Forest for Diagnose COVID-19. JIKO (J. Inform. Dan Komput.) 2023, 6, 138–143. [Google Scholar] [CrossRef]
- Lai, J.-P.; Lin, Y.-L.; Lin, H.-C.; Shih, C.-Y.; Wang, Y.-P.; Pai, P.-F. Tree-based machine learning models with optuna in predicting impedance values for circuit analysis. Micromachines 2023, 14, 265. [Google Scholar] [CrossRef] [PubMed]
- Zamzam, Y.F.; Saragih, T.H.; Herteno, R.; Nugrahadi, D.T.; Huynh, P.-H. Comparison of CatBoost and random forest methods for lung cancer classification using hyperparameter tuning Bayesian optimization-based. J. Electron. Electromed. Eng. Med. Inform. 2024, 6, 125–136. [Google Scholar] [CrossRef]
- Dietterich, T.G. Ensemble methods in machine learning. In International Workshop on Multiple Classifier Systems: 2000; Springer: Berlin/Heidelberg, Germany, 2000; pp. 1–15. [Google Scholar]
Parameter | Operational Definition | Score |
---|---|---|
Lip closure | Complete lip seal during oral phase | 0 |
Incomplete seal; mild leakage observed | 1 | |
No seal | 2 | |
Bolus formation | Well-formed cohesive bolus | 0 |
Partially formed; weak cohesion | 1 | |
No cohesive formation | 2 | |
Mastication | Normal chewing pattern | 0 |
Incomplete or weak mastication | 1 | |
No mastication | 2 | |
Apraxia | No signs of oral apraxia | 0 |
Mild impairment in voluntary oral movements | 1 | |
Moderate impairment; inconsistent oral motor coordination | 2 | |
Severe apraxia; inability to initiate or sequence oral actions | 3 | |
Tongue to palate contact | Full contact during bolus propulsion | 0 |
Weak or partial contact | 1 | |
No contact; ineffective oral propulsion | 2 | |
Premature bolus loss | No bolus spillage into pharynx before swallow initiation | 0 |
<10% of bolus spills prematurely | 1 | |
10–50% of bolus spills prematurely | 2 | |
>50% of bolus spills prematurely | 3 | |
Oral transit time | Bolus transfer completed within 1.5 s | 0 |
Prolonged oral transit > 1.5 s | 1 | |
Pharyngeal delay time | Initiated within 0.5 s after bolus reaches ramus of mandible | 0 |
Delayed beyond 0.5 s | 1 | |
Vallecular residue | No residue | 0 |
<10% of bolus remains | 1 | |
10–50% remains | 2 | |
>50% remains | 3 | |
Laryngeal elevation | Normal elevation during swallowing | 0 |
Reduced elevation | 1 | |
Pyriform sinus residue | No residue | 0 |
<10% of bolus remains | 1 | |
10–50% remains | 2 | |
>50% remains | 3 | |
Coating of pharyngeal wall | No coating observed post-swallow | 0 |
Coating present | 1 | |
Pharyngeal transit time | <1.0 s | 0 |
>1.0 s | 1 | |
Aspiration | No penetration or aspiration | 0 |
Penetration above vocal folds without aspiration | 1 | |
Aspiration below vocal folds, with or without cough reflex | 2 | |
Outcome | Recovery | 0 |
Persistent dysphagia | 1 |
Characteristic | n = 448 |
---|---|
Age | 69 ± 13 |
Gender (M/F) | 248/200 |
Etiology (n) | |
Infarction | 320 |
Hemorrhage | 128 |
Days from onset to 1st study (days) | 18.7 ± 17.5 |
Accuracy | Precision | Recall | F1-Score | AUC | |
---|---|---|---|---|---|
Random forest | 0.94 | 0.89 | 0.80 | 0.84 | 0.96 |
CatBoost classifier | 0.96 | 0.94 | 0.84 | 0.88 | 0.98 |
Light gradient boosting | 0.93 | 0.86 | 0.80 | 0.83 | 0.96 |
K-neighbor classifier | 0.94 | 0.89 | 0.80 | 0.84 | 0.88 |
Extreme gradient boosting | 0.95 | 0.90 | 0.84 | 0.86 | 0.95 |
Final ensemble model | 0.98 | 0.94 | 0.84 | 0.88 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, M.; Lee, C.; Nam, K.; Kwon, B.S.; Kim, B.H.; Park, J.-W. Predicting Long-Term Prognosis of Poststroke Dysphagia with Machine Learning. J. Clin. Med. 2025, 14, 5025. https://doi.org/10.3390/jcm14145025
Seo M, Lee C, Nam K, Kwon BS, Kim BH, Park J-W. Predicting Long-Term Prognosis of Poststroke Dysphagia with Machine Learning. Journal of Clinical Medicine. 2025; 14(14):5025. https://doi.org/10.3390/jcm14145025
Chicago/Turabian StyleSeo, Minsu, Changyeol Lee, Kihwan Nam, Bum Sun Kwon, Bo Hae Kim, and Jin-Woo Park. 2025. "Predicting Long-Term Prognosis of Poststroke Dysphagia with Machine Learning" Journal of Clinical Medicine 14, no. 14: 5025. https://doi.org/10.3390/jcm14145025
APA StyleSeo, M., Lee, C., Nam, K., Kwon, B. S., Kim, B. H., & Park, J.-W. (2025). Predicting Long-Term Prognosis of Poststroke Dysphagia with Machine Learning. Journal of Clinical Medicine, 14(14), 5025. https://doi.org/10.3390/jcm14145025