Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (536)

Search Parameters:
Keywords = gossypium

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2074 KiB  
Article
Special Regulation of GhANT in Ovules Increases the Size of Cotton Seeds
by Ning Liu, Yuping Chen, Yangbing Guan, Geyi Guan, Jian Yang, Feng Nie, Kui Ming, Wenqin Bai, Ming Luo and Xingying Yan
Genes 2025, 16(8), 912; https://doi.org/10.3390/genes16080912 - 30 Jul 2025
Abstract
Background: Gossypium hirsutum L. is one of the main economic crops worldwide, and increasing the size/weight of its seeds is a potential strategy to improve its seed-related yield. AINTEGUMENTA (ANT) is an organogenesis transcription factor mediating cell proliferation and expansion in Arabidopsis, [...] Read more.
Background: Gossypium hirsutum L. is one of the main economic crops worldwide, and increasing the size/weight of its seeds is a potential strategy to improve its seed-related yield. AINTEGUMENTA (ANT) is an organogenesis transcription factor mediating cell proliferation and expansion in Arabidopsis, but little is known about its candidate function in upland cotton seed. Results: In this study, functional characterization of GhANT in the cotton seed development stage was performed. The expression pattern analysis showed that GhANT was predominantly expressed in the ovules, and its expression was consistent with the ovules’ development stage. Heterologous expression of GhANT in Arabidopsis promoted plant organ growth and led to larger seeds. Importantly, specific expression of GhANT by the TFM7 promoter in the cotton ovules enlarged the seeds and increased the cotton seed yield, as compared with the wild-type in a three-year field trial. Furthermore, transcription level analysis showed that numerous genes involved in cell division were up-regulated in the ovules of TFM7::GhANT lines in comparison to the wild-type. These results indicate that GhANT is a potential genetic resource for improving cotton seed yield through its molecular links with cell cycle controllers. Full article
(This article belongs to the Special Issue 5Gs in Crop Genetic and Genomic Improvement: 2nd Edition)
Show Figures

Figure 1

16 pages, 8038 KiB  
Article
Comparative Transcriptome and Volatile Metabolome Analysis of Gossypium hirsutum Resistance to Verticillium Wilt
by Ni Yang, Chaoli Xu, Yajun Liang, Juyun Zheng, Shiwei Geng, Fenglei Sun, Shengmei Li, Chengxia Lai, Mayila Yusuyin, Zhaolong Gong and Junduo Wang
Genes 2025, 16(8), 877; https://doi.org/10.3390/genes16080877 - 25 Jul 2025
Viewed by 159
Abstract
Background: In recent years, changes in climate conditions and long-term continuous cropping have led to the increased occurrence of Verticillium wilt in various cotton-growing regions, causing significant economic losses in cotton production. Research has shown that volatile substances are closely linked to plant [...] Read more.
Background: In recent years, changes in climate conditions and long-term continuous cropping have led to the increased occurrence of Verticillium wilt in various cotton-growing regions, causing significant economic losses in cotton production. Research has shown that volatile substances are closely linked to plant disease resistance; however, studies on their roles in the response of cotton to Verticillium wilt, including their relationship with gene regulation, are limited. Methods: In this study, the transcriptomes and metabolomes of Xinluzao 57 (a highly susceptible Verticillium wilt variety) and 192,868 (a highly resistant Verticillium wilt variety) were sequenced at different time points after inoculation with Verticillium wilt. Results: A total of 21,911 commonly differentially expressed genes (DEGs) were identified within and between the materials, and they were clustered into eight groups. Significant annotations were made in pathways related to amino acids and anthocyanins. Metabolomics identified and annotated 26,200 volatile metabolites across nine categories. A total of 158 differentially accumulated metabolites (DAMs) were found within and between the materials; three clusters were identified, and the 10 metabolites with the most significant fold changes were highlighted. Weighted gene coexpression network analysis (WGCNA) revealed that 13 genes were significantly correlated with guanosine, 6 genes were correlated with 2-deoxyerythritol, and 32 genes were correlated with raffinose. Conclusions: Our results provide a foundation for understanding the role of volatile substances in the response of cotton to Verticillium wilt and offer new gene resources for future research on Verticillium wilt resistance. Full article
(This article belongs to the Special Issue Genetic Research on Crop Stress Resistance and Quality Traits)
Show Figures

Figure 1

23 pages, 2406 KiB  
Review
Current Research on Quantifying Cotton Yield Responses to Waterlogging Stress: Indicators and Yield Vulnerability
by Long Qian, Yunying Luo and Kai Duan
Plants 2025, 14(15), 2293; https://doi.org/10.3390/plants14152293 - 25 Jul 2025
Viewed by 216
Abstract
Cotton (Gossypium spp.) is an important industrial crop, but it is vulnerable to waterlogging stress. The relationship between cotton yields and waterlogging indicators (CY-WI) is fundamental for waterlogging disaster reduction. This review systematically summarized and analyzed literature containing CY-WI relations across 1970s–2020s. [...] Read more.
Cotton (Gossypium spp.) is an important industrial crop, but it is vulnerable to waterlogging stress. The relationship between cotton yields and waterlogging indicators (CY-WI) is fundamental for waterlogging disaster reduction. This review systematically summarized and analyzed literature containing CY-WI relations across 1970s–2020s. China conducted the most CY-WI experiments (67%), followed by Australia (17%). Recent decades (2010s, 2000s) contributed the highest proportion of CY-WI works (49%, 15%). Surface waterlogging form is mostly employed (74%) much more than sub-surface waterlogging. The flowering and boll-forming stage, followed by the budding stage, performed the most CY-WI experiments (55%), and they showed stronger negative relations of CY-WI than other stages. Some compound stresses enhance negative relations of CY-WI, such as accompanying high temperatures, low temperatures, and shade conditions, whereas some others weaken the negative CY-WI relations, such as prior/post drought and waterlogging. Anti-waterlogging applications significantly weaken negative CY-WI relations. Regional-scale CY-WI research is increasing now, and they verified the influence of compound stresses. In future CI-WI works, we should emphasize the influence of compound stresses, establish regional CY-WI relations regarding cotton growth features, examine more updated cotton cultivars, focus on initial and late cotton stages, and explore the consequence of high-deep submergence. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

19 pages, 4354 KiB  
Article
Genomic Insights into ARR Genes: Key Role in Cotton Leaf Abscission Formation
by Hongyan Shi, Zhenyu Wang, Yuzhi Zhang, Gongye Cheng, Peijun Huang, Li Yang, Songjuan Tan, Xiaoyu Cao, Xiaoyu Pei, Yu Liang, Yu Gao, Xiang Ren, Quanjia Chen and Xiongfeng Ma
Int. J. Mol. Sci. 2025, 26(15), 7161; https://doi.org/10.3390/ijms26157161 - 24 Jul 2025
Viewed by 243
Abstract
The cytokinin response regulator (ARR) gene is essential for cytokinin signal transduction, which plays a crucial role in plant growth and development. However, the functional mechanism of ARR genes in cotton leaf abscission remains incompletely understood. In this study, a total [...] Read more.
The cytokinin response regulator (ARR) gene is essential for cytokinin signal transduction, which plays a crucial role in plant growth and development. However, the functional mechanism of ARR genes in cotton leaf abscission remains incompletely understood. In this study, a total of 86 ARR genes were identified within the genome of Gossypium hirsutum. These genes were categorized into four distinct groups based on their phylogenetic characteristics, supported by analyses of gene structures and conserved protein motifs. The GhARR genes exhibited an uneven distribution across 25 chromosomes, with three pairs of tandem duplication events observed. Both segmental and tandem duplication events significantly contributed to the expansion of the ARR gene family. Furthermore, numerous putative cis-elements were identified in the promoter regions, with hormone and stress-related elements being common among all 86 GhARRs. Transcriptome expression profiling screening results demonstrated that GhARRs may play a mediating role in cotton’s response to TDZ (thidiazuron). The functional validation of GhARR16, GhARR43, and GhARR85 using virus-induced gene silencing (VIGS) technology demonstrated that the silencing of these genes led to pronounced leaf wilting and chlorosis in plants, accompanied by a substantial decrease in petiole fracture force. Overall, our study represents a comprehensive analysis of the G. hirsutum ARR gene family, revealing their potential roles in leaf abscission regulation. Full article
(This article belongs to the Special Issue Plant Stress Biology)
Show Figures

Figure 1

23 pages, 2173 KiB  
Article
Evaluation of Soil Quality and Balancing of Nitrogen Application Effects in Summer Direct-Seeded Cotton Fields Based on Minimum Dataset
by Yukun Qin, Weina Feng, Cangsong Zheng, Junying Chen, Yuping Wang, Lijuan Zhang and Taili Nie
Agronomy 2025, 15(8), 1763; https://doi.org/10.3390/agronomy15081763 - 23 Jul 2025
Viewed by 181
Abstract
There is a lack of systematic research on the comprehensive regulatory effects of urea and organic fertilizer application on soil quality and cotton yield in summer direct-seeded cotton fields in the Yangtze River Basin. Additionally, there is a redundancy of indicators in the [...] Read more.
There is a lack of systematic research on the comprehensive regulatory effects of urea and organic fertilizer application on soil quality and cotton yield in summer direct-seeded cotton fields in the Yangtze River Basin. Additionally, there is a redundancy of indicators in the cotton field soil quality evaluation system and a lack of reports on constructing a minimum dataset to evaluate the soil quality status of cotton fields. We aim to accurately and efficiently evaluate soil quality in cotton fields and screen nitrogen application measures that synergistically improve soil quality, cotton yield, and nitrogen fertilizer utilization efficiency. Taking the summer live broadcast cotton field in Jiangxi Province as the research object, four treatments, including CK without nitrogen application, CF with conventional nitrogen application, N1 with nitrogen reduction, and N2 with nitrogen reduction and organic fertilizer application, were set up for three consecutive years from 2022 to 2024. A total of 15 physical, chemical, and biological indicators of the 0–20 cm plow layer soil were measured in each treatment. A minimum dataset model was constructed to evaluate and verify the soil quality status of different nitrogen application treatments and to explore the physiological mechanisms of nitrogen application on yield performance and stability from the perspectives of cotton source–sink relationship, nitrogen use efficiency, and soil quality. The minimum dataset for soil quality evaluation in cotton fields consisted of five indicators: soil bulk density, moisture content, total nitrogen, organic carbon, and carbon-to-nitrogen ratio, with a simplification rate of 66.67% for the evaluation indicators. The soil quality index calculated based on the minimum dataset (MDS) was significantly positively correlated with the soil quality index of the total dataset (TDS) (R2 = 0.904, p < 0.05). The model validation parameters RMSE was 0.0733, nRMSE was 13.8561%, and the d value was 0.9529, all indicating that the model simulation effect had reached a good level or above. The order of soil quality index based on MDS and TDS for CK, CF, N1, and N2 treatments was CK < N1 < CF < N2. The soil quality index of N2 treatment under MDS significantly increased by 16.70% and 26.16% compared to CF and N1 treatments, respectively. Compared with CF treatment, N2 treatment significantly increased nitrogen fertilizer partial productivity by 27.97%, 31.06%, and 21.77%, respectively, over a three-year period while maintaining the same biomass, yield level, yield stability, and yield sustainability. Meanwhile, N1 treatment had the risk of significantly reducing both boll density and seed cotton yield. Compared with N1 treatment, N2 treatment could significantly increase the biomass of reproductive organs during the flower and boll stage by 23.62~24.75% and the boll opening stage by 12.39~15.44%, respectively, laying a material foundation for the improvement in yield and yield stability. Under CF treatment, the cotton field soil showed a high degree of soil physical property barriers, while the N2 treatment reduced soil barriers in indicators such as bulk density, soil organic carbon content, and soil carbon-to-nitrogen ratio by 0.04, 0.04, 0.08, and 0.02, respectively, compared to CF treatment. In summary, the minimum dataset (MDS) retained only 33.3% of the original indicators while maintaining high accuracy, demonstrating the model’s efficiency. After reducing nitrogen by 20%, applying 10% total nitrogen organic fertilizer could substantially improve cotton biomass, cotton yield performance, yield stability, and nitrogen partial productivity while maintaining soil quality levels. This study also assessed yield stability and sustainability, not just productivity alone. The comprehensive nitrogen fertilizer management (reducing N + organic fertilizer) under the experimental conditions has high practical applicability in the intensive agricultural system in southern China. Full article
(This article belongs to the Special Issue Innovations in Green and Efficient Cotton Cultivation)
Show Figures

Figure 1

17 pages, 2789 KiB  
Article
GhSPX1s Interact with GhPHR1A and GhPHL1A in Regulating Phosphate Starvation Response in Cotton
by Nuerkaimaier Mulati, Miaomiao Hao, Yuxin Yang, Yanping Shi, Guanghui Xiao and Liping Zhu
Biology 2025, 14(8), 916; https://doi.org/10.3390/biology14080916 - 23 Jul 2025
Viewed by 221
Abstract
SPX (SYG1/Pho81/XPR1) family genes play a pivotal role in phosphorus signaling, phosphorus uptake, and phosphorus translocation in plants. However, to date, the SPX family genes have not been systematically investigated in cotton. In this study, we conducted a genome-wide analysis and [...] Read more.
SPX (SYG1/Pho81/XPR1) family genes play a pivotal role in phosphorus signaling, phosphorus uptake, and phosphorus translocation in plants. However, to date, the SPX family genes have not been systematically investigated in cotton. In this study, we conducted a genome-wide analysis and identified 44 SPX family genes in Gossypium hirsutum, classifying them into four subfamilies (SPX, SPX-MFS, SPX-EXS, and SPX-RING) based on conserved domains. An expression analysis revealed that the majority of SPX family genes were highly expressed in the root and stem. We identified hormone response, stress response, low-temperature response, and PHR1 binding sequence (P1BS) cis-elements in the promoters of the SPX genes. Additionally, the expression of GhPHO1-4, GhSPX1-1/1-2/1-3, and GhSPX-MFS2-1/2-2 was significantly altered under phosphorus-deficient conditions and may be involved in the regulation of Pi response. A Y2H assay suggested that GhSPX1-1 interacts with GhPHR1A and GhSPX1-2 interacts with GhPHL1A. Our findings provide a basis for further cloning and functional verification of genes related to the regulatory network of low phosphorus tolerance in cotton. Full article
Show Figures

Figure 1

18 pages, 21045 KiB  
Article
Genome-Wide Characterization of the ABI3 Gene Family in Cotton
by Guoyong Fu, Yanlong Yang, Tahir Mahmood, Xinxin Liu, Zongming Xie, Zengqiang Zhao, Yongmei Dong, Yousheng Tian, Jehanzeb Farooq, Iram Sharif and Youzhong Li
Genes 2025, 16(8), 854; https://doi.org/10.3390/genes16080854 - 23 Jul 2025
Viewed by 202
Abstract
Background: The B3-domain transcription factor ABI3 (ABSCISIC ACID INSENSITIVE 3) is a critical regulator of seed maturation, stress adaptation, and hormonal signaling in plants. However, its evolutionary dynamics and functional roles in cotton (Gossypium spp.) remain poorly characterized. Methods: We conducted [...] Read more.
Background: The B3-domain transcription factor ABI3 (ABSCISIC ACID INSENSITIVE 3) is a critical regulator of seed maturation, stress adaptation, and hormonal signaling in plants. However, its evolutionary dynamics and functional roles in cotton (Gossypium spp.) remain poorly characterized. Methods: We conducted a comprehensive genome-wide investigation of the ABI3 gene family across 26 plant species, with a focus on 8 Gossypium species. Analyses included phylogenetics, chromosomal localization, synteny assessment, gene duplication patterns, protein domain characterization, promoter cis-regulatory element identification, and tissue-specific/spatiotemporal expression profiling under different organizations of Gossypium hirsutum. Results: Phylogenetic and chromosomal analyses revealed conserved ABI3 evolutionary patterns between monocots and dicots, alongside lineage-specific expansion events within Gossypium spp. Syntenic relationships and duplication analysis in G. hirsutum (upland cotton) indicated retention of ancestral synteny blocks and functional diversification driven predominantly by segmental duplication. Structural characterization confirmed the presence of conserved B3 domains in all G. hirsutum ABI3 homologs. Promoter analysis identified key stress-responsive cis-elements, including ABA-responsive (ABRE), drought-responsive (MYB), and low-temperature-responsive (LTRE) motifs, suggesting a role in abiotic stress regulation. Expression profiling demonstrated significant tissue-specific transcriptional activity across roots, stems, leaves, and fiber developmental stages. Conclusions: This study addresses a significant knowledge gap by elucidating the evolution, structure, and stress-responsive expression profiles of the ABI3 gene family in cotton. It establishes a foundational framework for future functional validation and targeted genetic engineering strategies aimed at developing stress-resilient cotton cultivars with enhanced fiber quality. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

16 pages, 1111 KiB  
Article
Improvement of Bacillus thuringiensis Protein Contents with Increased Nitrogen Fertilizer Application in Gossypium hirsutum
by Yuting Liu, Fuqin Zhou, Mao Hong, Shaoyang Wang, Yuan Li, Shu Dong, Yuan Chen, Dehua Chen and Xiang Zhang
Agronomy 2025, 15(7), 1730; https://doi.org/10.3390/agronomy15071730 - 18 Jul 2025
Viewed by 258
Abstract
The insect resistance expression of Bacillus thuringiensis (Bt) cotton (Gossypium hirsutum L.) is unstable due to temporal and spatial variations in the Bt protein content in different organs and growth stages. The aim of this study was to improve the Bt protein [...] Read more.
The insect resistance expression of Bacillus thuringiensis (Bt) cotton (Gossypium hirsutum L.) is unstable due to temporal and spatial variations in the Bt protein content in different organs and growth stages. The aim of this study was to improve the Bt protein content in cotton flowers and investigate the underlying physiological mechanism using biochemical analytical methods. In this study, a split-plot design with three replications was used. The main plots included two Bt cotton cultivars (a conventional cultivar, Sikang1 (S1), and a hybrid cultivar, Sikang3 (S3)), while five soil nitrogen application levels (CK (control check): normal level; N1: 125% of the CK; N2: 150% of the CK; N3: 175% of the CK; N4: 200% of the CK) constituted the subplots. The Bt protein content and related nitrogen metabolism parameters were measured. We found that the Bt protein content increased and then decreased with increasing nitrogen rates. It reached its maximum at N3, with significant increases of 71.86% in 2021 and 39.36% in 2022 compared to the CK. Correlation analysis indicated that the Bt protein content was significantly positively related to the soluble protein and free amino acid contents, as well as the GPT (glutamic pyruvic transaminase), GOT (glutamic oxaloacetic transaminase), GS (glutamine synthetase) and GOGAT (glutamate synthetase) activities. On the other hand, negative correlations were found between the Bt protein content and protease and peptidase activities. In addition, stepwise regression and path analysis indicated that the increased Bt protein content was mainly due to the enhanced GS and GOGAT activities. In summary, appropriately increasing nitrogen fertilizer application is a practical way to increase flower Bt protein content and insecticidal efficacy of Bt cotton. These findings provide an actionable agronomic strategy for sustaining Bt expression during the critical flowering period. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

17 pages, 7594 KiB  
Article
Uridine Kinase-like Protein (GhUKL4) Positively Regulates Resistance to Verticillium Wilt in Cotton
by Baimei Cheng, Yanmeng Sun, Xiaohui Sang, Jianhua Lu, Pei Zhao, Wei Chen, Yunlei Zhao and Hongmei Wang
Genes 2025, 16(7), 819; https://doi.org/10.3390/genes16070819 - 12 Jul 2025
Viewed by 240
Abstract
Background: Verticillium wilt (VW), caused by the fungal pathogen Verticillium dahliae, is a destructive disease that severely compromises cotton yield and fiber quality. Pyrimidine nucleotides, as essential metabolites and nucleic acid components, play critical roles in plant development and stress responses. However, [...] Read more.
Background: Verticillium wilt (VW), caused by the fungal pathogen Verticillium dahliae, is a destructive disease that severely compromises cotton yield and fiber quality. Pyrimidine nucleotides, as essential metabolites and nucleic acid components, play critical roles in plant development and stress responses. However, genes involved in pyrimidine metabolism, especially their roles in disease resistance, remain largely uncharacterized in plants. Methods: Ghir_D05G039120, a gene encoding uridine kinase, shown to be associated with VW resistance in our previous study, was cloned and named as GhUKL4. The differential expression of GhUKL4 between the resistant and susceptible cultivars at multiple time points post-inoculation with V. dahliae was analyzed by quantitative real-time PCR (qRT-PCR), and the uracil phosphoribosyl transferase (UPRT) and uridine 5′-monophosphate kinase (UMPK) domains were verified by analyzing the amino acid sequences of GhUKL4. The role of GhUKL4 in the defense against VW infection was estimated by silencing GhUKL4 in the resistant and susceptible cultivars using virus-induced gene silencing (VIGS) analysis. Results: There were significant differences in the expression level of Ghir_D05G039120/ GhUKL4 among resistant and susceptible cotton lines. GhUKL4 contains UPRTase and UMPK domains, and there was one SNP between the resistant and susceptible cultivars in its 3′-UTR region. The silencing of GhUKL4 reduced cotton’s resistance to VW through mediating hormone signaling (JA) and oxidative stress (ROS) pathways. Conclusions: GhUKL4, encoding UMPK and UPRTase domain proteins, is a new regulatory factor associated with VW resistance in Gossypium hirsutum through fine-tuning JA-signalling and ROS bursting. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

14 pages, 2265 KiB  
Article
Octahedral Paclobutrazol–Zinc Complex for Enhanced Chemical Topping Efficacy in Mechanized Cotton Production: A Two-Year Field Evaluation in Xinjiang
by Jincheng Shen, Sumei Wan, Guodong Chen, Jianwei Zhang, Chen Liu, Junke Wu, Yong Li, Jie Liu, Shuren Liu, Baojiu Zhang, Meng Lu and Hongqiang Dong
Agronomy 2025, 15(7), 1659; https://doi.org/10.3390/agronomy15071659 - 8 Jul 2025
Viewed by 467
Abstract
Topping is an essential step in cotton cultivation in Xinjiang, China, which can effectively increase the number of bolls per plant and optimize the yield and quality. Paclobutrazol, as a common chemical topping agent for cotton, faces challenges such as unstable topping effect [...] Read more.
Topping is an essential step in cotton cultivation in Xinjiang, China, which can effectively increase the number of bolls per plant and optimize the yield and quality. Paclobutrazol, as a common chemical topping agent for cotton, faces challenges such as unstable topping effect and limited leaf surface absorption during application. In this study, paclobutrazol was used as the ligand and a zinc complex was synthesized by the thermosolvent method to replace paclobutrazol and improve the topping effect on cotton. The structure of the complex was characterized using FTIR, UV-vis, TG, and XRD analyses. The results confirmed that each zinc ion coordinated with four nitrogen atoms from the triazole rings of paclobutrazol and two oxygen atoms from nitrate ions, forming an octahedral geometry. Surface tension measurement and analysis revealed that the complex had a surface tension reduction of 12.75 mN/m compared to paclobutrazol, thereby enhancing the surface activity of the complex in water systems and improving its absorption efficiency on plant leaves. Two-year field trials indicated that the foliar application of the complex at a dosage of 120 g·hm−2 in inhibiting cotton plant height was more stable to that of paclobutrazol or mepiquat chloride. It also shortened the length of fruiting branches, making the shape of cotton plants compact, thereby indirectly improving the ventilation and light penetration of the cotton field and the convenience of mechanical harvesting. Yield data showed that, compared with artificial topping, the complex at a dosage of 120 g·hm−2 treatment increased cotton yield by approximately 4.6%. Therefore, the paclobutrazol–zinc complex is a promising alternative to manual topping and have great application potential in future mechanized cotton production. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Figure 1

19 pages, 1898 KiB  
Article
Reducing Nitrogen Input Increases the Efficacy of Soil Nitrogen Utilization by Regulating Cotton–Arbuscular Mycorrhizal Fungi–Soil Nitrogen Interactions
by Hushan Wang, Yunzhu He, Zihui Shen, Mengjuan Liu, Wangfeng Zhang and Xiaozhen Pu
Nitrogen 2025, 6(3), 55; https://doi.org/10.3390/nitrogen6030055 - 3 Jul 2025
Viewed by 238
Abstract
Crops and arbuscular mycorrhizal (AM) fungi can enhance nitrogen (N) transformation and utilization efficiency in the soil, and this effect is regulated by soil N application rates. However, it remains unclear whether the N utilization efficiency of cotton can be improved through the [...] Read more.
Crops and arbuscular mycorrhizal (AM) fungi can enhance nitrogen (N) transformation and utilization efficiency in the soil, and this effect is regulated by soil N application rates. However, it remains unclear whether the N utilization efficiency of cotton can be improved through the symbiosis of cotton with AM fungi under reduced N application rates. Therefore, we conducted 15N labeling experiments using a compartmentalized culture system with Gossypium hirsutum L. as the experimental plant. We established three N treatments (0.15 g·kg−1, 0.10 g·kg−1 and 0 g·kg−1) to investigate the effects of different fertilization rates on N utilization, soil N priming effects, and differences in N accumulation in various parts of cotton plants within the soil–AM fungi–cotton system. The results indicate that under reduced N application, symbiosis between cotton and AM fungi increased the N fertilizer utilization efficiency and the soil N priming effect. Specifically, reducing the fertilization dosage from 0.15 g·kg−1 to 0.10 g·kg−1 increased the N fertilizer utilization efficiency and soil N priming effect by 8.87% and 11.67%, respectively, and decreased the N loss rate by 7.02%. The symbiosis between cotton and AM fungi after N reduction significantly increased N accumulation in the roots and leaves. Moreover, the N fertilizer content accounted for 5.89% of the total N content in roots. Overall, when N application was reduced, symbiosis with AM fungi effectively promoted the rhizosphere N priming effect, which reconciled the conflict in N nutrient allocation within cotton and thus enabled the efficient utilization of soil N. Full article
Show Figures

Figure 1

20 pages, 1419 KiB  
Article
Evaluation of Greenhouse Gas-Flux-Determination Models and Calculation in Southeast Arkansas Cotton Production
by Cassandra Seuferling, Kristofor Brye, Diego Della Lunga, Jonathan Brye, Michael Daniels, Lisa Wood and Kelsey Greub
AgriEngineering 2025, 7(7), 213; https://doi.org/10.3390/agriengineering7070213 - 2 Jul 2025
Viewed by 280
Abstract
Greenhouse gas (GHG) emissions evaluations from agroecosystems are critical, particularly as technology improves. Consistent GHG measurement methods are essential to the evaluation of GHG emissions. The objective of the study was to evaluate potential differences in gas-flux-determination (GFD) options and carbon dioxide (CO [...] Read more.
Greenhouse gas (GHG) emissions evaluations from agroecosystems are critical, particularly as technology improves. Consistent GHG measurement methods are essential to the evaluation of GHG emissions. The objective of the study was to evaluate potential differences in gas-flux-determination (GFD) options and carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes and growing-season-long emissions estimates from furrow-irrigated cotton (Gossypium hirsutum) in southeast Arkansas. Four GFD methods were evaluated [i.e., linear (L) or exponential (E) regression models, with negative fluxes (WNF) included in the dataset or replacing negative fluxes (RNF)] over the 2024 growing season using a LI-COR field-portable chamber and gas analyzers. Exponential regression models were influenced by abnormal CO2 and N2O gas concentration data points, indicating the use of caution with E models. Season-long CH4 emissions differed (p < 0.05) between the WNF (−0.51 kg ha−1 season−1 for L and−0.54 kg ha−1 season−1 for E) and RNF (0.01 kg ha−1 season−1 for L and E) GFD methods, concluding that RNF options over-estimate CH4 emissions. Gas concentration measurements following chamber closure should remain under 300 s, with one concentration measurement obtained per second. The choice of GFD method needs careful consideration to result in accurate GHG fluxes and season-long emission estimates. Full article
Show Figures

Figure 1

19 pages, 2218 KiB  
Article
Phenotypic Validation of the Cotton Fiber Length QTL, qFL-Chr.25, and Its Impact on AFIS Fiber Quality
by Samantha J. Wan, Sameer Khanal, Nino Brown, Pawan Kumar, Dalton M. West, Edward Lubbers, Neha Kothari, Donald Jones, Lori L. Hinze, Joshua A. Udall, William C. Bridges, Christopher Delhom, Andrew H. Paterson and Peng W. Chee
Plants 2025, 14(13), 1937; https://doi.org/10.3390/plants14131937 - 24 Jun 2025
Viewed by 468
Abstract
Advances in spinning technology have increased the demand for upland cotton (Gossypium hirsutum L.) cultivars with superior fiber quality. However, progress in breeding for traits such as fiber length is constrained by limited phenotypic and genetic diversity within upland cotton. Introgression from [...] Read more.
Advances in spinning technology have increased the demand for upland cotton (Gossypium hirsutum L.) cultivars with superior fiber quality. However, progress in breeding for traits such as fiber length is constrained by limited phenotypic and genetic diversity within upland cotton. Introgression from Gossypium barbadense, a closely related species known for its superior fiber traits, offers a promising strategy. Sealand 883 is an obsolete upland germplasm developed through G. barbadense introgression and is known for its long and fine fibers. Previous studies have identified a fiber length quantitative trait locus (QTL) on Chromosome 25, designated qFL-Chr.25, in Sealand 883, conferred by an allele introgressed from G. barbadense. This study evaluated the effect of qFL-Chr.25 in near-isogenic introgression lines (NIILs) using Advanced Fiber Information System (AFIS) measurements. Across four genetic backgrounds, NIILs carrying qFL-Chr.25 consistently exhibited longer fibers, as reflected in multiple length parameters, including UHML, L(n), L(w), UQL(w), and L5%. Newly developed TaqMan SNP diagnostic markers flanking the QTL enable automated, reproducible, and scalable screening of large populations typical in commercial breeding programs. These markers will facilitate the incorporation of qFL-Chr.25 into commercial breeding pipelines, accelerating fiber quality improvement and enhancing the competitiveness of cotton against synthetic fibers. Full article
Show Figures

Figure 1

17 pages, 272 KiB  
Article
High Planting Density Combined with Delayed Topping Improves Short Fruiting Branch Cotton Yield by Enhancing Biomass Accumulation, Canopy Light Interception and Delaying Leaf Senescence
by Yin Huang, Tao Wang, Xiaoxia Luo, Jianfei Wu, Yanfeng Deng, Qingquan Kong, Xiu Yang, Shuiping Xiao and Feiyu Tang
Agronomy 2025, 15(6), 1495; https://doi.org/10.3390/agronomy15061495 - 19 Jun 2025
Viewed by 285
Abstract
Short fruiting branch cotton (SFBC) has a compact plant architecture suitable for dense planting. Plant population density (PPD) and topping are important agronomic practices to achieve high yielding by optimizing cotton plant structure. However, their individual and interactive effects on SFBC growth and [...] Read more.
Short fruiting branch cotton (SFBC) has a compact plant architecture suitable for dense planting. Plant population density (PPD) and topping are important agronomic practices to achieve high yielding by optimizing cotton plant structure. However, their individual and interactive effects on SFBC growth and yield are poorly understood. This study aimed to explore cotton growth and yield responses to various combinations of PPD and topping time (TT) and the underlying physio-ecological mechanism. Four combinations were included in a two-year field experiment (2023–2024) involving two PPD levels (5.3 plants m−2, low density LD; 8 plants m−2, high density HD) and two TT levels (early topping for leaving ten sympodials per plant ET; late topping for leaving fifteen sympodials per plant LT), and compared in terms of biomass accumulation, photosynthetically active radiation capture, and leaf senescence during entire reproductive growth period. Compared to the other three combinations, the combination of HD and LT (HDLT) achieved a higher lint yield due to a greater biological yield, which was predominantly attributed to the higher average rate during the rapid biomass increasing period. Owing to delayed leaf senescence caused by the HD and the LT, the HDLT performed better in leaf senescence-related attributes at the late growth stage. Moreover, these improved attributes also contributed to a higher radiation interception rate and photosynthetic efficiency at the late growth stage. Taken together, combining high density with later topping tends to increase the lint yield of SFBC through increasing dry matter accumulation, delaying leaf senescence, and enhancing canopy radiation interception rate at the late growth. Full article
(This article belongs to the Section Innovative Cropping Systems)
22 pages, 12863 KiB  
Article
The Future of Cotton in Brazil: Agroclimatic Suitability and Climate Change Impacts
by João Antonio Lorençone, Pedro Antonio Lorençone, Lucas Eduardo de Oliveira Aparecido, Guilherme Botega Torsoni, Glauco de Souza Rolim and Fernando Giovannetti Macedo
AgriEngineering 2025, 7(6), 198; https://doi.org/10.3390/agriengineering7060198 - 19 Jun 2025
Viewed by 684
Abstract
Cotton is the most widely consumed natural fiber globally and emits fewer greenhouse gases compared to synthetic alternatives. Brazil is currently the largest cotton exporter, and understanding its potential for sustainable expansion is crucial. This study developed agroclimatic zoning maps for cotton ( [...] Read more.
Cotton is the most widely consumed natural fiber globally and emits fewer greenhouse gases compared to synthetic alternatives. Brazil is currently the largest cotton exporter, and understanding its potential for sustainable expansion is crucial. This study developed agroclimatic zoning maps for cotton (Gossypium hirsutum L.) across Brazil under current and future climate conditions using data from the World-Clim and MapBiomas platforms. Four climate change scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5) were assessed over multiple time periods. Results showed that rising temperatures and reduced rainfall will likely reduce cotton suitability in traditional producing regions such as Bahia. However, areas with potential for cotton cultivation, especially in Mato Grosso, which currently accounts for 90% of national production, remain extensive, with agroclimatic conditions indicating a theoretical expansion potential of up to 40 times the current cultivated area. This projection must be interpreted with caution, as it does not account for economic, logistical, or social constraints. Notably, Brazilian cotton is cultivated with minimal irrigation, low fertilizer input, and high adoption of no-till systems, making it one of the least carbon-intensive globally. Full article
Show Figures

Graphical abstract

Back to TopTop