Evaluation of Greenhouse Gas-Flux-Determination Models and Calculation in Southeast Arkansas Cotton Production
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Treatments and Experimental Design
2.3. Field and Plot Management
2.4. Gas, Soil Moisture, and EC Measurements
2.5. Data Processing
2.6. Season-Long Emissions and GWP Determinations
2.7. Statistical Analyses
3. Results
3.1. Evaluation of Gas-Flux-Determination Methods
3.1.1. CO2 Fluxes and Season-Long Emissions
3.1.2. CH4 Fluxes and Season-Long Emissions
3.1.3. N2O Fluxes and Season-Long Emissions
3.1.4. Global Warming Potential
3.2. Measurement Duration Evaluation
4. Discussion
4.1. Gas-Flux-Determination Methods Evaluation
4.1.1. CO2 Fluxes and Season-Long Emissions
4.1.2. CH4 Fluxes and Season-Long Emissions
4.1.3. N2O Fluxes and Season-Long Emissions
4.1.4. Global Warming Potential
4.2. Measurement Duration Evaluation
4.3. Implications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ANOVA | Analysis of Variance |
BAU | Business-as-usual |
CH4 | Methane |
CO2 | Carbon Dioxide |
CC | Cover Crop |
DOY | Day of Year |
EC | Electrical Conductivity |
E | Exponential |
GFD | Gas-flux-determination |
GHG | Greenhouse Gas |
GWP | Global Warming Potential |
IGRA | Infrared Gas Analyzer |
IPCC | Intergovernmental Panel on Climate Change |
L | Linear |
LMRV | Lower Mississippi River Valley |
N2O | Nitrous Oxide |
PVC | Polyvinyl Chloride |
RNF | Replacing Negative Fluxes |
WNF | With Negative Fluxes |
References
- Canadell, J.G.; Monteiro, P.M.S.; Costa, M.H.; Cotrim da Cunha, L.; Cox, P.M.; Eliseev, A.V.; Henson, S.; Ishii, M.; Jaccard, S.; Koven, C.; et al. Global carbon and other biogeochemical cycles and feedbacks. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 673–816. [Google Scholar]
- Jia, G.; Shevliakova, E.; Artaxo, P.; De Noblet-Ducoudré, N.; Houghton, R.; House, J.; Kitajima, K.; Lennard, C.; Popp, A.; Sirin, A.; et al. Land–climate interactions. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Calvo Buendia, E., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., et al., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 131–248. [Google Scholar]
- Matthias, A.D.; Blackmer, A.M.; Bremner, J.M. A simple chamber technique for field measurement of emissions of nitrous oxide from soils. J. Environ. Qual. 1980, 9, 251–256. [Google Scholar] [CrossRef]
- Parkinson, K.J. An improved method for measuring soil respiration in the field. J. Appl. Ecol. 1981, 18, 221–228. [Google Scholar] [CrossRef]
- Hutchinson, G.L.; Mosier, A.R. Improved soil cover method for field measurement of nitrous oxide fluxes. Soil Sci. Soc. Am. J. 1981, 45, 311–316. [Google Scholar] [CrossRef]
- Crill, P.M. Seasonal patterns of methane uptake and carbon dioxide release by a temperate woodland soil. Glob. Biogeochem. Cycles 1991, 5, 319–334. [Google Scholar] [CrossRef]
- Scott, A.; Crichton, I.; Ball, B.C. Long-term monitoring of soil gas fluxes with closed chambers using automated and manual systems. J. Environ. Qual. 1999, 28, 1637–1643. [Google Scholar] [CrossRef]
- Rochette, P.; Hutchinson, G.L. Measurement of soil respiration in situ: Chamber techniques. In Agronomy Monographs; Hatfield, J.L., Baker, J.M., Eds.; USDA-ARS/UNL: Lincoln, NE, USA, 2005; pp. 247–286. [Google Scholar]
- Rochette, P.; Ellert, B.; Gregorich, E.G.; Desjardins, R.L.; Pattey, E.; Lessard, R.; Johnson, B.G. Description of a dynamic closed chamber for measuring soil respiration and its comparison with other techniques. Can. J. Soil Sci. 1997, 77, 195–203. [Google Scholar] [CrossRef]
- Gao, F.; Yates, S.R.; Yates, M.V.; Gan, J.; Ernst, F.F. Design, fabrication, and application of a dynamic chamber for measuring gas emissions from soil. Environ. Sci. Technol. 1997, 31, 148–153. [Google Scholar] [CrossRef]
- Reichman, R.; Rolston, D.E. Design and performance of a dynamic gas flux chamber. J. Environ. Qual. 2002, 31, 1774–1781. [Google Scholar] [CrossRef]
- LI-COR Environmental. LI-7810 CH4/CO2/H2O Trace Gas Analyzer Instruction Manual. Available online: https://licor.app.boxenterprise.net/s/zsce2z88fgkfpbiguqi0k3g537jllsl7 (accessed on 15 July 2024).
- LI-COR Environmental. LI-7820 N2O/H2O Trace Gas Analyzer Instruction Manual. Available online: https://licor.app.boxenterprise.net/s/xg9i6bs12w8h8y3g1wqxltuxlzr4m6qz (accessed on 15 July 2024).
- Bohra, R. Greenhouse Gas Fluxes Across Climatic Gradients in Mountain National Parks of the Iberian Peninsula. Master’s Thesis, University of Eastern Finland, Kuopio, Finland, 2023. [Google Scholar]
- Hopple, A.M.; Pennington, S.C.; Megonigal, J.P.; Bailey, V.; Bond-Lamberty, B. Root and microbial soil CO2 and CH4 fluxes respond differently to seasonal and episodic environmental changes in a temperate forest. J. Geophys. Res.-Biogeosci. 2023, 128, e2022JG007233. [Google Scholar] [CrossRef]
- Ingle, R.; Habib, W.; Connolly, J.; McCorry, M.; Barry, S.; Saunders, M. Upscaling methane fluxes from peatlands across a drainage gradient in Ireland using PlanetScope imagery and machine learning tools. Sci. Rep. 2023, 13, 11997. [Google Scholar] [CrossRef]
- Koschorreck, M.; Kamjunke, N.; Koedel, U.; Rode, M.; Schuetze, C.; Bussmann, I. Diurnal versus spatial variability of greenhouse gas emissions from an anthropogenically modified lowland river in Germany. Biogeosciences 2024, 21, 1613–1628. [Google Scholar] [CrossRef]
- Hupp, J. Theory and Measurement of Trace Gas Fluxes from Soil; Training Manual as a Power Point Presentation; LI-COR Environmental, Inc.: Lincoln, NE, USA, 2022. [Google Scholar]
- Tenny, K.M.; Cooper, J.S. Ideal Gas Behavior; StatsPearl Publishing: Treasure Island, FL, USA, 2025. [Google Scholar]
- Livingston, G.P.; Hutchinson, G.L.; Spartalian, K. Diffusion theory improves chamber-based measurements of trace gas emissions. Geophys. Res. Lett. 2005, 32, L24817. [Google Scholar] [CrossRef]
- Livingston, G.P.; Hutchinson, G.L.; Spartalian, K. Trace gas emission in chambers: A non-steady-state diffusion model. Soil Sci. Soc. Am. J. 2006, 70, 1459–1469. [Google Scholar] [CrossRef]
- Kutzbach, L.; Schneider, J.; Sachs, T.; Giebels, M.; Nykänen, H.; Shurpali, N.J.; Martikainen, P.J.; Alm, J.; Wilmking, M. CO2 flux determination by closed-chamber methods can be seriously biased by inappropriate application of linear regression. Biogeosciences 2007, 4, 1005–1025. [Google Scholar] [CrossRef]
- Venterea, R.T.; Spokas, K.A.; Baker, J.M. Accuracy and precision analysis of chamber-based nitrous oxide gas flux estimates. Soil Sci. Soc. Am. J. 2009, 73, 1087–1093. [Google Scholar] [CrossRef]
- Venterea, R.T.; Petersen, S.O.; de Klein, C.A.M.; Pedersen, A.R.; Noble, A.D.L.; Rees, R.M.; Gamble, J.D.; Parkin, T.B. Global Research Alliance N2O chamber methodology guidelines: Flux calculations. J. Environ. Qual. 2020, 49, 1141–1155. [Google Scholar] [CrossRef]
- Silva, J.P.; Lasso, A.; Lubberding, H.J.; Pena, M.R.; Gijzen, H.J. Biases in greenhouse gases static chambers measurements in stabilization ponds: Comparison of flux estimation using linear and non-linear models. Atmos. Environ. 2015, 109, 130–138. [Google Scholar] [CrossRef]
- Richardson, C.J.; Flanagan, N.E.; Wang, H.; Ho, M. Annual carbon sequestration and loss rates under altered hydrology and fire regimes in southeastern USA pocosin peatlands. Glob. Change Biol. 2022, 28, 6370–6384. [Google Scholar] [CrossRef]
- Ruis, S.J.; Blanco-Canqui, H.; Jasa, P.J.; Jin, V.L. No-till farming and greenhouse gas fluxes: Insights from literature and experimental data. Soil Tillage Res. 2022, 220, 105359. [Google Scholar] [CrossRef]
- Courtois, E.A.; Stahl, C.; Burban, B.; Van den Berge, J.; Berveiller, D.; Bréchet, L.; Soong, J.L.; Arriga, N.; Peñuelas, J.; Janssens, I.A. Automatic high-frequency measurements of full soil greenhouse gas fluxes in a tropical forest. Biogeosciences 2019, 16, 785–796. [Google Scholar] [CrossRef]
- Parkin, T.B.; Venterea, R.T. Chamber-Based Trace Gas Flux Measurements. In Sampling Protocols; Follett, R.F., Ed.; USDA-ARS: Washington, DC, USA, 2010; pp. 3.1–3.39. [Google Scholar]
- Rogers, C.W.; Brye, K.R.; Norman, R.J.; Gbur, E.E.; Mattice, J.D.; Parkin, T.B.; Roberts, T.L. Methane emissions from drill-seeded, delayed-flood rice production on a silt-loam soil in Arkansas. J. Environ. Qual. 2013, 42, 1059–1069. [Google Scholar] [CrossRef]
- Rogers, C.W.; Brye, K.R.; Smartt, A.D.; Norman, R.J.; Gbur, E.E.; Evans-White, M.A. Cultivar and previous crop effects on methane emissions from drill-seeded, delayed-flood rice production on a silt-loam soil. Soil Sci. 2014, 179, 28–36. [Google Scholar] [CrossRef]
- Rogers, C.W.; Smartt, A.D.; Brye, K.R.; Norman, R.J. Nitrogen source effects on methane emissions from drill-seeded, delayed-flood rice production. Soil Sci. 2017, 182, 9–17. [Google Scholar] [CrossRef]
- Smartt, A.D.; Brye, K.R.; Rogers, C.W.; Norman, R.J.; Gbur, E.E.; Hardke, J.T.; Roberts, T.L. Previous crop and cultivar effects on methane emissions from drill-seeded, delayed-flood rice grown on a clay soil. Appl. Environ. Soil Sci. 2016, 2016, 9542361. [Google Scholar] [CrossRef]
- Slayden, J.M.; Brye, K.R.; Della Lunga, D.; Henry, C.G.; Wood, L.S.; Lessner, D.J. Site position and tillage treatment effects on nitrous oxide emissions from furrow-irrigated rice on a silt-loam Alfisol in the Mid-south, USA. Geoderma Reg. 2022, 28, e00491. [Google Scholar] [CrossRef]
- United States Department of Agriculture, Foreign Agriculture Service. Cotton Explorer. Available online: https://ipad.fas.usda.gov/cropexplorer/cropview/commodityView.aspx?cropid=2631000&sel_year=2023&rankby=Production (accessed on 12 August 2024).
- MacDonald, S.; Lanclos, K.; Meyer, L.; Soley, G. The world and United States cotton outlook. In Proceedings of the U.S. Department of Agriculture 100th Annual Agricultural Outlook Forum, Arlington, VA, USA, 15–16 February 2024. [Google Scholar]
- United States Department of Agriculture, Economic Research Service. Cotton Sector at a Glance. Available online: https://www.ers.usda.gov/topics/crops/cotton-and-wool/cotton-sector-at-a-glance/ (accessed on 13 August 2024).
- Anthony, W.H.; Hutchinson, G.L.; Livingston, G.P. Chamber measurement of soil-atmosphere gas exchange: Linear vs. diffusion-based flux models. Soil Sci. Soc. Am. J. 1995, 59, 1308–1310. [Google Scholar] [CrossRef]
- Healy, R.W.; Striegl, R.G.; Russell, T.F.; Hutchinson, G.L.; Livingston, G.P. Numerical evaluation of static-chamber measurements of soil-atmosphere gas exchange: Identification of physical processes. Soil Sci. Soc. Am. J. 1996, 60, 740–747. [Google Scholar] [CrossRef]
- LI-COR Environmental. High Performance CO2, CO2 Isotope, NH3, CH4, and N2O Gas Analyzers for the Field, the Lab, and Mobile Applications. Available online: https://www.compact-industrial.ro/wp-content/uploads/2024/02/78xx.pdf (accessed on 15 August 2024).
- LI-COR Environmental. Support: SoilFluxPro 5 Software. Available online: https://www.licor.com/env/support/SoilFluxPro/topics/file-management-bar.html#Mappingdata (accessed on 9 June 2025).
- United States Department of Agriculture, Natural Resource Conservation Service. Land Resource Regions and Major Land Resource Areas of the United States, the Caribbean, and the Pacific Basin. Available online: https://www.nrcs.usda.gov/sites/default/files/2022-10/AgHandbook296_text_low-res.pdf (accessed on 4 September 2024).
- United States Department of Agriculture, National Cooperative Soil Survey. Hebert Series. Available online: https://soilseries.sc.egov.usda.gov/OSD_Docs/H/HEBERT.html (accessed on 4 September 2024).
- United States Department of Agriculture, Natural Resource Conservation Service. Web Soil Survey. Available online: https://websoilsurvey.nrcs.usda.gov/app/ (accessed on 4 September 2024).
- National Oceanic & Atmospheric Administration, National Centers for Environmental Information. U.S. Climate Normals Quick Access. Available online: https://www.ncei.noaa.gov/access/us-climate-normals/#dataset=normals-monthly&timeframe=30&location=AR&station=USC00032148 (accessed on 4 September 2024).
- Forster, P.; Storelvmo, T.; Armour, K.; Collins, W.; Dufresne, J.-L.; Frame, D.; Lunt, D.J.; Mauritsen, T.; Palmer, M.D.; Watanabe, M.; et al. The Earth’s energy budget, climate feedbacks, and climate sensitivity. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 923–1054. [Google Scholar]
- Firth, A.G.; Brooks, J.P.; Locke, M.A.; Morin, D.J.; Brown, A.; Baker, B.H. Dynamics of soil organic carbon and CO2 flux under cover crop and no-till management in soybean cropping systems of the mid-south (USA). Environments 2022, 9, 109. [Google Scholar] [CrossRef]
- Hu, J.; Lei, F.; Miles, D.M.; Adeli, A.; Brooks, J.P.; Smith, R.; Podrebarac, F.A.; Li, X.; Moorhead, R. Effects of cover crops and soil amendments on soil CO2 flux in a Mississippi corn cropping system on upland soil. Environments 2023, 10, 19. [Google Scholar] [CrossRef]
- Ma, L.; Kong, F.; Lv, X.; Wang, Z.; Zhou, Z.; Meng, Y. Responses of greenhouse gas emissions to different straw management methods with the same amount of carbon input in cotton field. Soil Tillage Res. 2021, 213, 105126. [Google Scholar] [CrossRef]
- Yuste, C.J.; Baldocchi, D.D.; Gershenson, A.; Goldstein, A.; Misson, L.; Wong, S. Microbial soil respiration and its dependency on carbon inputs, soil temperature and moisture. Glob. Change Biol. 2007, 13, 2018–2035. [Google Scholar] [CrossRef]
- Risk, D.; Kellman, L.; Beltrami, H. Carbon dioxide in soil profiles: Production and temperature dependence. Geophys. Res. Lett. 2002, 29, 1087. [Google Scholar] [CrossRef]
- Collier, S.M.; Ruark, M.D.; Oates, L.G.; Jokela, W.E.; Dell, C.J. Measurement of greenhouse gas flux from agricultural soils using static chambers. J. Vis. Exp. 2014, 90, 52210. [Google Scholar]
- Kandel, T.P.; Lærke, P.E.; Elsgaard, L. Effect of chamber enclosure time on soil respiration flux: A comparison of linear and non-linear flux calculation methods. Atmos. Environ. 2016, 141, 245–254. [Google Scholar] [CrossRef]
- Tian, Z.; Wang, J.J.; Liu, S.; Zhang, Z.; Dodla, S.K.; Myers, G. Application effects of coated urea and urease and nitrification inhibitors on ammonia and greenhouse gas emissions from a subtropical cotton field of the Mississippi delta region. Sci. Total Environ. 2015, 533, 329–338. [Google Scholar] [CrossRef]
- Watts, D.B.; Runion, G.B.; Smith Nannenga, K.W.; Torbert, H.A. Impacts of enhanced-efficiency nitrogen fertilizers on greenhouse gas emissions in a coastal plain soil under cotton. J. Environ. Qual. 2015, 44, 1699–1710. [Google Scholar] [CrossRef]
- Cueva, A.; Volkmann, H.M.; van Haren, J.; Troch, P.A.; Meredith, L.K. Reconciling negative soil CO2 fluxes: Insights from a large-scale experimental hillslope. Soil Syst. 2019, 3, 10. [Google Scholar] [CrossRef]
- Le Mer, J.; Roger, P. Production, oxidation, emission and consumption of methane by soils: A review. Eur. J. Soil Biol. 2001, 37, 25–50. [Google Scholar] [CrossRef]
- Chapuis-Lardy, L.; Wrage, N.; Metay, A.; Chotte, J.-L.; Bernoux, M. Soils, a sink for N2O? A review. Glob. Change Biol. 2007, 13, 1–17. [Google Scholar] [CrossRef]
- van Groenigen, J.W.; Huygens, D.; Boeckx, P.; Kuyper, T.W.; Lubbers, I.M.; Rütting, T.; Groffman, P.M. The soil N cycle: New insights and key challenges. Soil 2015, 1, 235–256. [Google Scholar] [CrossRef]
- Parker, D.; Casey, K.; Todd, R.; Waldrip, H.; Marek, G.; Auvermann, B.; Marek, T.; Webb, K.; Willis, W.; Pemberton, B.; et al. Improved chamber systems for rapid, real-time nitrous oxide emissions from manure and soil. Trans. ASABE 2017, 60, 1235–1258. [Google Scholar] [CrossRef]
GFD Method Comparison | Source of Variation | CO2 | CH4 | N2O |
---|---|---|---|---|
p | ||||
LRNF and ERNF | Time | <0.01 | <0.01 | <0.01 |
Treatment | 0.02 | 0.99 | 0.73 | |
Time x treatment | 0.04 | 0.99 | 0.99 | |
LWNF and EWNF | Time | <0.01 | 0.07 | <0.01 |
Treatment | 0.01 | 0.72 | 0.27 | |
Time x treatment | 0.05 | 0.99 | 0.99 | |
LWNF and LRNF | Time | <0.01 | 0.89 | <0.01 |
Treatment | 0.99 | <0.01 | 0.13 | |
Time x treatment | 0.99 | 0.52 | 0.99 | |
EWNF and ERNF | Time | <0.01 | 0.86 | <0.01 |
Treatment | 0.99 | <0.01 | 0.02 | |
Time x treatment | 0.99 | 0.51 | 0.88 |
GFD Method | CO2 (kg ha−1) | CH4 (kg ha−1) | N2O (kg ha−1) | GWP (kg ha−1) |
---|---|---|---|---|
LRNF | 17,704 | 0.01 a† | 0.50 | 17838 |
LWNF | 17,704 | −0.51 b | 0.19 | 17741 |
ERNF | 20,561 | 0.01 a | 0.44 | 20678 |
EWNF | 20,561 | −0.54 b | −0.09 | 20522 |
p-value | 0.11 | <0.01 | 0.36 | 0.11 |
GFD Method | Date 1 (DOY 184) | Date 2 (DOY 219) | Dates Combined | ||||||
---|---|---|---|---|---|---|---|---|---|
CO2 | CH4 | N2O | CO2 | CH4 | N2O | CO2 | CH4 | N2O | |
p | |||||||||
LWNF | <0.01 | 0.89 | 0.99 | 0.01 | 0.94 | <0.01 | 0.78 | 0.46 | <0.01 |
EWNF | 0.96 | 0.48 | 0.98 | 0.16 | 0.94 | 0.17 | 0.98 | 0.27 | 0.21 |
Measurement Duration | Date 1 (DOY 184) | Date 2 (DOY 219) | Date 2 (DOY 219) | Dates Combined |
---|---|---|---|---|
CO2 (mg m−2 h−1) | CO2 (mg m−2 h−1) | N2O (mg m−2 h−1) | N2O (mg m−2 h−1) | |
BAU | 5.81 ab† | 3.98 a | −0.58 ab | −0.15 ab |
120 s | 5.81 ab | 3.98 a | −1.92 b | −1.01 b |
300 s | 5.90 a | 3.85 ab | −0.62 ab | −0.17 ab |
600 s | 5.69 ab | 3.74 ab | 0.08 a | 0.26 a |
900 s | 5.52 ab | 3.64 ab | 0.17 a | 0.34 a |
1200 s | 5.39 ab | 3.55 ab | 0.21 a | 0.36 a |
1500 s | 5.28 ab | 3.47 ab | 0.21 a | 0.36 a |
1800 s | 5.17 ab | 3.40 ab | 0.21 a | 0.36 a |
2100 s | 5.06 ab | 3.34 ab | 0.21 a | 0.35 a |
2400 s | 4.97 ab | 3.28 ab | 0.21 a | 0.35 a |
2700 s | 4.87 b | 3.22 b | 0.20 a | 0.34 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seuferling, C.; Brye, K.; Della Lunga, D.; Brye, J.; Daniels, M.; Wood, L.; Greub, K. Evaluation of Greenhouse Gas-Flux-Determination Models and Calculation in Southeast Arkansas Cotton Production. AgriEngineering 2025, 7, 213. https://doi.org/10.3390/agriengineering7070213
Seuferling C, Brye K, Della Lunga D, Brye J, Daniels M, Wood L, Greub K. Evaluation of Greenhouse Gas-Flux-Determination Models and Calculation in Southeast Arkansas Cotton Production. AgriEngineering. 2025; 7(7):213. https://doi.org/10.3390/agriengineering7070213
Chicago/Turabian StyleSeuferling, Cassandra, Kristofor Brye, Diego Della Lunga, Jonathan Brye, Michael Daniels, Lisa Wood, and Kelsey Greub. 2025. "Evaluation of Greenhouse Gas-Flux-Determination Models and Calculation in Southeast Arkansas Cotton Production" AgriEngineering 7, no. 7: 213. https://doi.org/10.3390/agriengineering7070213
APA StyleSeuferling, C., Brye, K., Della Lunga, D., Brye, J., Daniels, M., Wood, L., & Greub, K. (2025). Evaluation of Greenhouse Gas-Flux-Determination Models and Calculation in Southeast Arkansas Cotton Production. AgriEngineering, 7(7), 213. https://doi.org/10.3390/agriengineering7070213