Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = gold nanoplates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 8010 KiB  
Article
Mono-(Ni, Au) and Bimetallic (Ni-Au) Nanoparticles-Loaded ZnAlO Mixed Oxides as Sunlight-Driven Photocatalysts for Environmental Remediation
by Monica Pavel, Liubovi Cretu, Catalin Negrila, Daniela C. Culita, Anca Vasile, Razvan State, Ioan Balint and Florica Papa
Molecules 2025, 30(15), 3249; https://doi.org/10.3390/molecules30153249 - 2 Aug 2025
Viewed by 177
Abstract
A facile and versatile strategy to obtain NPs@ZnAlO nanocomposite materials, comprising controlled-size nanoparticles (NPs) within a ZnAlO matrix is reported. The mono-(Au, Ni) and bimetallic (Ni-Au) NPs serving as an active phase were prepared by the polyol-alkaline method, while the ZnAlO support was [...] Read more.
A facile and versatile strategy to obtain NPs@ZnAlO nanocomposite materials, comprising controlled-size nanoparticles (NPs) within a ZnAlO matrix is reported. The mono-(Au, Ni) and bimetallic (Ni-Au) NPs serving as an active phase were prepared by the polyol-alkaline method, while the ZnAlO support was obtained via the thermal decomposition of its corresponding layered double hydroxide (LDH) precursors. X-ray diffraction (XRD) patterns confirmed the successful fabrication of the nanocomposites, including the synthesis of the metallic NPs, the formation of LDH-like structure, and the subsequent transformation to ZnO phase upon LDH calcination. The obtained nanostructures confirmed the nanoplate-like morphology inherited from the original LDH precursors, which tended to aggregate after the addition of gold NPs. According to the UV-Vis spectroscopy, loading NPs onto the ZnAlO support enhanced the light absorption and reduced the band gap energy. ATR-DRIFT spectroscopy, H2-TPR measurements, and XPS analysis provided information about the functional groups, surface composition, and reducibility of the materials. The catalytic performance of the developed nanostructures was evaluated by the photodegradation of bisphenol A (BPA), under simulated solar irradiation. The conversion of BPA over the bimetallic Ni-Au@ZnAlO reached up to 95% after 180 min of irradiation, exceeding the monometallic Ni@ZnAlO and Au@ZnAlO catalysts. Its enhanced activity was correlated with good dispersion of the bimetals, narrower band gap, and efficient charge carrier separation of the photo-induced e/h+ pairs. Full article
Show Figures

Graphical abstract

16 pages, 8254 KiB  
Article
ZnO Hexagonal Nano- and Microplates Modified with Nanomaterials as a Gas-Sensitive Material for DMS Detection—Extended Studies
by Patrycja Suchorska-Woźniak and Helena Teterycz
Sensors 2024, 24(17), 5690; https://doi.org/10.3390/s24175690 - 1 Sep 2024
Viewed by 4137
Abstract
The detection of dimethyl sulphide (DMS) at levels between ppb and ppm is a significant area of research due to the necessity of monitoring the presence of this gas in a variety of environments. These include environmental protection, industrial safety and medical diagnostics. [...] Read more.
The detection of dimethyl sulphide (DMS) at levels between ppb and ppm is a significant area of research due to the necessity of monitoring the presence of this gas in a variety of environments. These include environmental protection, industrial safety and medical diagnostics. Issues related to certain uncertainties concerning the influence of high humidity on DMS measurements with resistive gas sensors, e.g., in the detection of this marker in exhaled air, of the still unsatisfactory lower detection limit of DMS are the subject of intensive research. This paper presents the results of modifying the composition of the ZnO-based sensor layer to develop a DMS sensor with higher sensitivity and lower detection limit (LOD). Improved performance was achieved by using ZnO in the form of hexagonal nano- and microplates doped with gold nanoparticles (0.75 wt.%) and by using a well-proven sepiolite-based passive filter. The modification of the layer composition with respect to the authors’ previous studies contributed to the development of a sensor that is highly sensitive to 1 ppm DMS (S = 11.4) and achieves an LOD of up to 406 ppb, despite the presence of a high water vapour content (90% RH) in the analysed atmosphere. Full article
Show Figures

Figure 1

29 pages, 18687 KiB  
Article
Synthesis, Characterization and Antimicrobial Activity of Multiple Morphologies of Gold/Platinum Doped Bismuth Oxide Nanostructures
by Cătălin Ianăși, Nicoleta Sorina Nemeş, Bogdan Pascu, Radu Lazău, Adina Negrea, Petru Negrea, Narcis Duteanu, Mihaela Ciopec, Jiri Plocek, Popa Alexandru, Bianca Bădescu, Daniel Marius Duda-Seiman and Delia Muntean
Int. J. Mol. Sci. 2023, 24(17), 13173; https://doi.org/10.3390/ijms241713173 - 24 Aug 2023
Cited by 6 | Viewed by 2188
Abstract
Bismuth oxides were synthesized from bismuth carbonate using the sol-gel method. Studies have described the formation of Bi2O3, as a precursor of HNO3 dissolution, and intermediate oxides, such as BixOy when using H2SO [...] Read more.
Bismuth oxides were synthesized from bismuth carbonate using the sol-gel method. Studies have described the formation of Bi2O3, as a precursor of HNO3 dissolution, and intermediate oxides, such as BixOy when using H2SO4 and H3PO4. The average size of the crystallite calculated from Scherrer’s formula ranged from 9 to 19 nm, according to X-ray diffraction. The FTIR analysis showed the presence of specific Bi2O3 bands when using HNO3 and of crystalline phases of “bismuth oxide sulphate” when using H2SO4 and “bismuth phosphate” when using H3PO4. The TG curves showed major mass losses and specific thermal effects, delimited in four temperature zones for materials synthesized with HNO3 (with loss of mass between 24% and 50%) and H2SO4 (with loss of mass between 45% and 76%), and in three temperature zones for materials synthesized with H3PO4 (with loss of mass between 13% and 43%). Further, the thermal stability indicates that materials have been improved by the addition of a polymer or polymer and carbon. Confocal laser scanning microscopy showed decreased roughness in the series, [BixOy]N > [BixOy-6% PVA]N > [BixOy-C-6% PVA]N, and increased roughness for materials [BixOy]S, [BixOy-6% PVA]S, [BixOy-C-6% PVA]S, [BixOy]P, [BixOy-6% PVA]P and [BixOy-C-6% PVA]P. The morphological analysis (electronic scanning microscopy) of the synthesized materials showed a wide variety of forms: overlapping nanoplates ([BixOy]N or [BixOy]S), clusters of angular forms ([BixOy-6% PVA]N), pillars ([BixOy-6% PVA]S-Au), needle particles ([BixOy-Au], [BixOy-6% PVA]S-Au, [BixOy-C-6% PVA]S-Au), spherical particles ([BixOy-C-6% PVA]P-Pt), 2D plates ([BixOy]P-Pt) and 3D nanometric plates ([BixOy-C-6% PVA]S-Au). For materials obtained in the first synthesis stage, antimicrobial activity increased in the series [BixOy]N > [BixOy]S > [BixOy]P. For materials synthesized in the second synthesis stage, when polymer (polyvinyl alcohol, PVA) was added, maximum antimicrobial activity, regardless of the microbial species tested, was present in the material [BixOy-6% PVA]S. For the materials synthesized in the third stage, to which graphite and 6% PVA were added, the best antimicrobial activity was in the material [BixOy-C-6% PVA]P. Materials synthesized and doped with metal ions (gold or platinum) showed significant antimicrobial activity for the tested microbial species. Full article
(This article belongs to the Special Issue Antimicrobial Activity of Metal- and Metal-Oxide-Based Nanoparticles)
Show Figures

Figure 1

13 pages, 5597 KiB  
Article
Shape Dependence of Silver-Nanoparticle-Mediated Synthesis of Gold Nanoclusters with Small Molecules as Capping Ligands
by Cheng-Yeh Chang, Yi-Ru Wu, Tzu-Hsien Tseng, Jun-Hao Su, Yu-Shan Wang, Fang-Yi Jen, Bo-Ru Chen, Cheng-Liang Huang and Jui-Chang Chen
Nanomaterials 2023, 13(16), 2338; https://doi.org/10.3390/nano13162338 - 14 Aug 2023
Cited by 2 | Viewed by 5757
Abstract
In this study, differently shaped silver nanoparticles used for the synthesis of gold nanoclusters with small capping ligands were demonstrated. Silver nanoparticles provide a reaction platform that plays dual roles in the formation of Au NCs. One is to reduce gold ions and [...] Read more.
In this study, differently shaped silver nanoparticles used for the synthesis of gold nanoclusters with small capping ligands were demonstrated. Silver nanoparticles provide a reaction platform that plays dual roles in the formation of Au NCs. One is to reduce gold ions and the other is to attract capping ligands to the surface of nanoparticles. The binding of capping ligands to the AgNP surface creates a restricted space on the surface while gold ions are being reduced by the particles. Four different shapes of AgNPs were prepared and used to examine whether or not this approach is dependent on the morphology of AgNPs. Quasi-spherical AgNPs and silver nanoplates showed excellent results when they were used to synthesize Au NCs. Spherical AgNPs and triangular nanoplates exhibited limited synthesis of Au NCs. TEM images demonstrated that Au NCs were transiently assembled on the surface of silver nanoparticles in the method. The formation of Au NCs was observed on the whole surface of the QS-AgNPs if the synthesis of Au NCs was mediated by QS-AgNPs. In contrast, formation of Au NCs was only observed on the edges and corners of AgNPts if the synthesis of Au NCs was mediated by AgNPts. All of the synthesized Au NCs emitted bright red fluorescence under UV-box irradiation. The synthesized Au NCs displayed similar fluorescent properties, including quantum yields and excitation and emission wavelengths. Full article
Show Figures

Figure 1

15 pages, 2135 KiB  
Article
Triangular Silver Nanoplates as a Bioanalytical Tool: Potential COVID-19 Detection
by Laura G. Rodriguez Barroso, Eduardo Lanzagorta Garcia, Marija Mojicevic, Buket Alkan Tas, Miriam Huerta, Robert Pogue, Declan M. Devine and Margaret Brennan-Fournet
Int. J. Mol. Sci. 2023, 24(15), 11974; https://doi.org/10.3390/ijms241511974 - 26 Jul 2023
Cited by 1 | Viewed by 1375
Abstract
Nanotechnology offers new possibilities in molecular diagnostics, with nanoparticles gaining attention as biosensor upgrades. This study evaluates gold-coated silver nanoplates coated with PEG for enhanced protection, aiming to detect Spike protein with higher sensitivity, and emphasizes the importance of considering complex environments and [...] Read more.
Nanotechnology offers new possibilities in molecular diagnostics, with nanoparticles gaining attention as biosensor upgrades. This study evaluates gold-coated silver nanoplates coated with PEG for enhanced protection, aiming to detect Spike protein with higher sensitivity, and emphasizes the importance of considering complex environments and appropriate controls for specific binding and accurate analysis. The sensitivity of antibody-coated PEGAuTSNPs as tools for immunoassays is demonstrated through fibronectin (Fn)– anti-fibronectin binding within an isolated extracellular matrix as a complex and native environment of Fn. Moreover, the optimal functionalization volume of Spike protein was determined (4 µg/mL of PEGAuTSNP). Anti-Spike was added to confirm binding, while the TJP1 protein was used as a negative control. The same experiment was used in the presence of horse serum to simulate a complex environment. According to Localized Surface Plasmon Resonance analysis and Dynamic Light Scattering size measurements, anti-Spike exhibited a stronger affinity for the nanoplates, causing TJP1 to be replaced by the antibody on the nanoplates’ surface. Future research will involve exploring alternative complex environments, filtering larger molecules, and the optimization of immunoassay performance. Full article
(This article belongs to the Special Issue Latest Advances on Nanoparticles for Modern Biomedicine)
Show Figures

Figure 1

19 pages, 5286 KiB  
Article
Triangular Silver Nanoparticles Synthesis: Investigating Potential Application in Materials and Biosensing
by Laura G. Rodriguez Barroso, Eduardo Lanzagorta Garcia, Marija Mojicevic, Miriam Huerta, Robert Pogue, Declan M. Devine and Margaret Brennan-Fournet
Appl. Sci. 2023, 13(14), 8100; https://doi.org/10.3390/app13148100 - 11 Jul 2023
Cited by 7 | Viewed by 3205
Abstract
Triangular silver nanoplates (TSNPs) exhibit unique optical and antimicrobial properties due to their shape, sharp edges, and vertices. In this study, TSNPs were incorporated into biopolymer blends (bacterial cellulose (BC) with polylactic acid (PLA), polycaprolactone (PCL), and polyhydroxybutyrate (PHB)). Antimicrobial activity of materials [...] Read more.
Triangular silver nanoplates (TSNPs) exhibit unique optical and antimicrobial properties due to their shape, sharp edges, and vertices. In this study, TSNPs were incorporated into biopolymer blends (bacterial cellulose (BC) with polylactic acid (PLA), polycaprolactone (PCL), and polyhydroxybutyrate (PHB)). Antimicrobial activity of materials was tested against Escherichia coli ATCC 95922 and Staphylococcus aureus ATCC 25923 (106 CFU/mL). After incubation (24 h at 37 °C, 100 rpm), optical density was measured at 630 nm. In order to assess biosensing applications, specifically fibronectin (Fn) behavior, TSNPs were protected with gold (AuTSNP) and analyzed via sucrose sensitivity test and monitored by localized surface plasmon resonance (LSPR). Additionally, AuTSNPs were coated with polyethylene glycol (PEGAuTSNP). Fibronectin functionalization of PEGAuTSNPs and pH-conformation was monitored (FnPEGAuTSNP). Eventually, adequate Fn and anti-Fn antibody concentrations were determined. BC/PHB/TSNPs showed antimicrobial activity against E. coli and S. aureus with 80 and 95% of growth inhibition, respectively. The sucrose sensitivity test indicated that the LSPRλmax of the spectra is directly proportional to the sucrose concentration. LSPRλmax of Fn-PEGAuTSNPs at pH 7 and pH 4 were measured at 633 and 643 nm, respectively. A total of 5 µg of Fn was determined to be adequate concentration, while 0.212 mg/mL of anti-Fn antibody indicatied system saturation. Full article
(This article belongs to the Special Issue Nanotechnology and Functional Nanomaterials)
Show Figures

Figure 1

12 pages, 3964 KiB  
Article
Seed-Mediated Synthesis of Thin Gold Nanoplates with Tunable Edge Lengths and Optical Properties
by Zhun Qiao, Xinyu Wei, Hongpo Liu, Kai Liu and Chuanbo Gao
Nanomaterials 2023, 13(4), 711; https://doi.org/10.3390/nano13040711 - 13 Feb 2023
Cited by 3 | Viewed by 3230
Abstract
Thin Au nanoplates show intriguing localized surface plasmon resonance (LSPR) properties with potential applications in various fields. The conventional synthesis of Au nanoplates usually involves the formation of spherical nanoparticles or produces nanoplates with large thicknesses. Herein, we demonstrate a synthesis of uniform [...] Read more.
Thin Au nanoplates show intriguing localized surface plasmon resonance (LSPR) properties with potential applications in various fields. The conventional synthesis of Au nanoplates usually involves the formation of spherical nanoparticles or produces nanoplates with large thicknesses. Herein, we demonstrate a synthesis of uniform thin Au nanoplates by using Au–Ag alloy nanoframes obtained by the galvanic replacement of Ag nanoplates with HAuCl4 as the seeds and a sulfite (SO32−) as a ligand. The SO32− ligand not only complexes with the Au salt for the controlled reduction kinetics but also strongly adsorbs on Au {111} facets for effectively constraining the crystal growth on both basal sides of the Au nanoplates for controlled shape and reduced thicknesses. This seed-mediated synthesis affords Au nanoplates with a thickness of only 7.5 nm, although the thickness increases with the edge length. The edge length can be customizable in a range of 48–167 nm, leading to tunable LSPR bands in the range of 600–1000 nm. These thin Au nanoplates are applicable not only to surface-enhanced Raman spectroscopy with enhanced sensitivity and reliability but also to a broader range of LSPR-based applications. Full article
Show Figures

Figure 1

10 pages, 4630 KiB  
Article
Preparation of Copper Nanoplates in Aqueous Phase and Electrochemical Detection of Dopamine
by Lijian Xu, Sijia Tang, Ling Zhang, Jingjing Du, Jianxiong Xu, Na Li and Zengmin Tang
Life 2022, 12(7), 999; https://doi.org/10.3390/life12070999 - 5 Jul 2022
Cited by 7 | Viewed by 2966
Abstract
Compared with gold and silver, cheap copper has attracted more attention and can potentially be applied in non-enzymatic electrochemical sensors due to its excellent conductivity and catalytic activity. In this paper, copper nanoplates were rapidly synthesized using copper bromide as the copper precursor, [...] Read more.
Compared with gold and silver, cheap copper has attracted more attention and can potentially be applied in non-enzymatic electrochemical sensors due to its excellent conductivity and catalytic activity. In this paper, copper nanoplates were rapidly synthesized using copper bromide as the copper precursor, polyethyleneimine as the stabilizer, and ascorbic acid as a reducing agent in the presence of silver nanoparticles at a reaction temperature of 90 °C. The Cu nanoplates with an average side length of 10.97 ± 3.45 μm were obtained after a short reaction time of 2 h, demonstrating the promoting effect of an appropriate amount of silver nanoparticle on the synthesis of Cu nanoplates. Then, the electrochemical dopamine sensor was constructed by modifying a glass carbon electrode (GCE) with the Cu nanoplates. The results obtained from the test of cyclic voltammetry and chronoamperometry indicated that the Cu-GCE showed a significant electrochemical response for the measurement of dopamine. The oxidation peak current increased linearly with the concentration of dopamine in the range of 200 µmol/L to 2.21 mmol/L, and the corresponding detection limit was calculated to be 62.4 μmol/L (S/N = 3). Furthermore, the anti-interference test showed that the dopamine sensor was not affected by a high concentration of ascorbic acid, glucose, uric acid, etc. Therefore, the constructed Cu-GCE with good selectivity, sensitivity, and stability possesses a high application value in the detection of dopamine. Full article
(This article belongs to the Special Issue Recent Advances in Biosensor Technology for Detection)
Show Figures

Figure 1

15 pages, 2547 KiB  
Article
Simultaneous Thermal and Spectroscopic Screening of Morphologically Complex Theranostic Gold Nanoparticles
by Suhash Reddy Chavva, Namratha Bhat, Angela Michelle T. San Juan, Siddhant Jaitpal and Samuel Mabbott
J. Nanotheranostics 2022, 3(2), 102-116; https://doi.org/10.3390/jnt3020007 - 26 May 2022
Cited by 4 | Viewed by 4071
Abstract
Gold nanoparticles absorb light energy and convert it to thermal energy that transfers to the surrounding environment, making them potentially useful for the hyperthermic treatments well known as photothermal therapy (PTT). Further, it is well documented that noble metal nanoparticles are capable of [...] Read more.
Gold nanoparticles absorb light energy and convert it to thermal energy that transfers to the surrounding environment, making them potentially useful for the hyperthermic treatments well known as photothermal therapy (PTT). Further, it is well documented that noble metal nanoparticles are capable of significantly enhancing the Raman scattering of molecules attached to their surfaces, a technique which is termed surface-enhanced Raman scattering (SERS). SERS combined with PTT has the ability to locate nanoparticles at depth and trigger heat production, providing an effective methodology to both seek and destroy diseased tissues. While PTT and SERS are often used in tandem and there are several ways of individually measuring SERS and thermal output, there is currently no method available that pre-screens both properties prior to in vitro or in vivo application. In this work, we have designed a 3D printed platform capable of coupling a commercially available Raman probe to a sample cuvette for SERS and heat output to be monitored simultaneously. We have compared the performance of morphologically complex gold nanoparticles, nanostars (AuNSs) and nanoplates (AuNPLs), which are both well utilized in SERS and photothermal experiments; and measured the SERS activity originating from common Raman reporter analytes 4-mercaptobenzoic acid (MBA) and 1,4-benzenedithiol (BDT). We were able to show that the system effectively measures the thermal output and SERS activity of the particles and can evaluate the effect that multiple irradiation cycles have on the SERS signal. Full article
Show Figures

Figure 1

9 pages, 1887 KiB  
Article
Epitaxially Integrated Hierarchical ZnO/Au/SrTiO3 and ZnO/Ag/Al2O3 Heterostructures: Three-Dimensional Plasmo-Photonic Nanoarchitecturing
by Youngdong Yoo, Minjung Kim and Bongsoo Kim
Nanomaterials 2021, 11(12), 3262; https://doi.org/10.3390/nano11123262 - 30 Nov 2021
Cited by 2 | Viewed by 2182
Abstract
In this study, we fabricated three-dimensional (3D) hierarchical plasmo-photonic nanoarchitectures by epitaxially integrating semiconducting zinc oxide (ZnO) nanowires with vertically oriented plasmonic gold (Au) and silver (Ag) nanoplatforms and investigated their growth mechanisms in detail. We synthesized 3D hierarchical Au–ZnO nanostructures via a [...] Read more.
In this study, we fabricated three-dimensional (3D) hierarchical plasmo-photonic nanoarchitectures by epitaxially integrating semiconducting zinc oxide (ZnO) nanowires with vertically oriented plasmonic gold (Au) and silver (Ag) nanoplatforms and investigated their growth mechanisms in detail. We synthesized 3D hierarchical Au–ZnO nanostructures via a vapor–solid mechanism leading to the epitaxial growth of ZnO nanowires on vertically oriented single-crystalline Au nanowires on a strontium titanate (SrTiO3) substrate. The elongated half-octahedral Au nanowires with a rhombus cross-section were transformed into thermodynamically stable elongated cuboctahedral Au nanowires with a hexagonal cross-section during the reaction. After the transformation, ZnO thin films with six twinned domains were formed on the side planes of the elongated cuboctahedral Au nanowire trunks, and six ZnO nanowire branches were grown on the ZnO thin films. Further, 3D hierarchical Ag–ZnO nanostructures were obtained via the same vapor–solid mechanism leading to the epitaxial growth of ZnO nanowires on vertically oriented Ag nanoplates on an aluminum oxide (Al2O3) substrate. Therefore, the growth mechanism developed herein can be generally employed to fabricate 3D hierarchical plasmo-photonic nanoarchitectures. Full article
(This article belongs to the Special Issue New Growth Mechanisms for Synthesizing Various Novel Nanostructures)
Show Figures

Figure 1

22 pages, 6456 KiB  
Article
Experimental and Theoretical Studies on Sustainable Synthesis of Gold Sol Displaying Dichroic Effect
by Anshuman Jakhmola, Raffaele Vecchione, Valentina Onesto, Francesco Gentile, Maurizio Celentano and Paolo Antonio Netti
Nanomaterials 2021, 11(1), 236; https://doi.org/10.3390/nano11010236 - 18 Jan 2021
Cited by 21 | Viewed by 4374
Abstract
Gold nanoparticles depending on their shape and mixtures of multiple shapes can exhibit peculiar optical properties, including the dichroic effect typical of the Lycurgus cup, which has puzzled scientists for a long time. Such optical properties have been recently exploited in several fields [...] Read more.
Gold nanoparticles depending on their shape and mixtures of multiple shapes can exhibit peculiar optical properties, including the dichroic effect typical of the Lycurgus cup, which has puzzled scientists for a long time. Such optical properties have been recently exploited in several fields such as paint technology, sensors, dichroic polarizers, display (LCD) devices, laser applications, solar cells and photothermal therapy among others. In this article, we have demonstrated a simple room temperature one-pot synthesis of gold sol displaying a dichroic effect using a slow reduction protocol involving only trisodium citrate as a reducing agent. We found that the dichroic gold sol can be easily formed at room temperature by reducing gold salt by trisodium citrate below a certain critical concentration. The sol displayed an orangish-brown color in scattered/reflected light and violet/blue/indigo/purple/red/pink in transmitted light, depending on the experimental conditions. With minor changes such as the introduction of a third molecule or replacing a small amount of water in the reaction mixture with ethanol, the color of the gold sol under transmitted light changed and a variety of shades of red, pink, cobalt blue, violet, magenta and purple were obtained. The main advantage of the proposed method lies in its simplicity, which involves the identification of the right ratio of the reactants, and simple mixing of reactants at room temperature with no other requirements. TEM micrographs displayed the formation of two main types of particles viz. single crystal gold nanoplates and polycrystalline faceted polyhedron nanoparticles. The mechanism of growth of the nanoplates and faceted polyhedron particles have been described by an enhanced diffusion limited aggregation numerical scheme, where it was assumed that both trisodium citrate and the gold ions in solution undergo a stochastic Brownian motion, and that the evolution of the entire system is regulated by a principle of energy minimization. The predictions of the model matched with the experiments with a good accuracy, indicating that the initial hypothesis is correct. Full article
Show Figures

Figure 1

13 pages, 4814 KiB  
Article
Effect of the Morphology and Electrical Property of Metal-Deposited ZnO Nanostructures on CO Gas Sensitivity
by Sung-Ho Hwang, Young Kwang Kim, Seong Hui Hong and Sang Kyoo Lim
Nanomaterials 2020, 10(11), 2124; https://doi.org/10.3390/nano10112124 - 27 Oct 2020
Cited by 11 | Viewed by 2932
Abstract
The development of a highly sensitive gas sensor for toxic gases is an important issue in that it can reduce the damage caused by unexpected gas leaks. In this regard, in order to make the sensor accurate and highly responsive, we have investigated [...] Read more.
The development of a highly sensitive gas sensor for toxic gases is an important issue in that it can reduce the damage caused by unexpected gas leaks. In this regard, in order to make the sensor accurate and highly responsive, we have investigated which morphology is effective to improve the sensitivity and how the deposited nanoparticle affects the sensitivity by controlling the morphology of semiconductor oxides—either nanorod or nanoplate—and depositing metal nanoparticles on the semiconductor surface. In this study, we compared the CO gas sensitivity for sensors with different morphology (rod and plate) of ZnO nanostructure with metal nanoparticles (gold and copper) photodeposited and investigated the correlation between the gas sensitivity and some factors such as the morphology of ZnO and the properties of the deposited metal. Among the samples, Au/ZnO nanorod showed the best response (~86%) to the exposure of 100 ppm CO gas at 200 °C. The result showed that the electrical properties due to the deposition of metal species also have a strong influence on the sensor properties such as sensor response, working temperature, the response and recovery time, etc., together with the morphology of ZnO. Full article
(This article belongs to the Special Issue Nanostructured Gas Sensors Synthesis and Applications)
Show Figures

Figure 1

10 pages, 2232 KiB  
Article
Surfactant-Free Synthesis and Scalable Purification of Triangular Gold Nanoprisms with Low Non-Specific Cellular Uptake
by Rafael Ramírez-Jiménez, Álvaro Artiga, Scott G. Mitchell, Rafael Martín-Rapún and Jesús M. de la Fuente
Nanomaterials 2020, 10(3), 539; https://doi.org/10.3390/nano10030539 - 17 Mar 2020
Cited by 11 | Viewed by 4182
Abstract
Gold nanoprisms possess remarkable optical properties that make them useful for medical biotechnology applications such as diagnosis and photothermal therapy. However, shape-selective synthesis of gold nanoprisms is not trivial and typically requires either toxic surfactants or time-consuming purification protocols, which can limit their [...] Read more.
Gold nanoprisms possess remarkable optical properties that make them useful for medical biotechnology applications such as diagnosis and photothermal therapy. However, shape-selective synthesis of gold nanoprisms is not trivial and typically requires either toxic surfactants or time-consuming purification protocols, which can limit their applicability. Here, we show how triangular gold nanoprisms of different sizes can be purified by precipitation using the non-toxic glutathione ligand, thereby removing the need for toxic surfactants and bottleneck purification techniques. The protocol is amenable for direct scaling up as no instrumentation is required in the critical purification step. The new purification method provides a two-fold increased yield in gold nanoprisms compared to electrophoretic filtration, while providing nanoprisms of similar localized surface plasmon resonance wavelength. Crucially, the gold nanoprisms isolated using this methodology show fewer non-specific interactions with cells and lower cellular internalization, which paves the way for a higher selectivity in therapeutic applications. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Graphical abstract

30 pages, 6096 KiB  
Review
Morphology- and Crystalline Composition-Governed Activity of Titania-Based Photocatalysts: Overview and Perspective
by Kunlei Wang, Marcin Janczarek, Zhishun Wei, Tharishinny Raja-Mogan, Maya Endo-Kimura, Tamer M. Khedr, Bunsho Ohtani and Ewa Kowalska
Catalysts 2019, 9(12), 1054; https://doi.org/10.3390/catal9121054 - 11 Dec 2019
Cited by 53 | Viewed by 6566
Abstract
Titania photocatalysts have been intensively examined for both mechanism study and possible commercial applications for more than 30 years. Although various reports have already been published on titania, including comprehensive review papers, the morphology-governed activity, especially for novel nanostructures, has not been reviewed [...] Read more.
Titania photocatalysts have been intensively examined for both mechanism study and possible commercial applications for more than 30 years. Although various reports have already been published on titania, including comprehensive review papers, the morphology-governed activity, especially for novel nanostructures, has not been reviewed recently. Therefore, this paper presents novel, attractive, and prospective titania photocatalysts, including zero-, one-, two-, and three-dimensional titania structures. The 1D, 2D, and 3D titania structures have been mainly designed for possible applications, e.g., (i) continuous use without the necessity of particulate titania separation, (ii) efficient light harvesting (e.g., inverse opals), (iii) enhanced activity (fast charge carriers’ separation, e.g., 1D nanoplates and 2D nanotubes). It should be pointed out that these structures might be also useful for mechanism investigation, e.g., (i) 3D titania aerogels with gold either incorporated inside the 3D network or supported in the porosity, and (ii) titania mesocrystals with gold deposited either on basal or lateral surfaces, for the clarification of plasmonic photocatalysis. Moreover, 0D nanostructures of special composition and morphology, e.g., magnetic(core)–titania(shell), mixed-phase titania (anatase/rutile/brookite), and faceted titania NPs have been presented, due to their exceptional properties, including easy separation in the magnetic field, high activity, and mechanism clarification, respectively. Although anatase has been usually thought as the most active phase of titania, the co-existence of other crystalline phases accelerates the photocatalytic activity significantly, and thus mixed-phase titania (e.g., famous P25) exhibits high photocatalytic activity for both oxidation and reduction reactions. It is believed that this review might be useful for the architecture design of novel nanomaterials for broad and diverse applications, including environmental purification, energy conversion, synthesis and preparation of “intelligent” surfaces with self-cleaning, antifogging, and antiseptic properties. Full article
Show Figures

Graphical abstract

8 pages, 2258 KiB  
Article
Regioselective DNA Modification and Directed Self-Assembly of Triangular Gold Nanoplates
by Guoqing Wang, Yao Zhang, Xingguo Liang, Tohru Takarada and Mizuo Maeda
Nanomaterials 2019, 9(4), 581; https://doi.org/10.3390/nano9040581 - 9 Apr 2019
Cited by 13 | Viewed by 5245
Abstract
As a class of emerging nanoparticles, gold nanotriangles (AuNTs) are characterized by unique structural anisotropy and plasmonic properties. The organization of AuNTs into well-defined architecture potentially promises collective properties that are difficult to produce by individual AuNTs. To date, however, the orientation-controlled self-assembly [...] Read more.
As a class of emerging nanoparticles, gold nanotriangles (AuNTs) are characterized by unique structural anisotropy and plasmonic properties. The organization of AuNTs into well-defined architecture potentially promises collective properties that are difficult to produce by individual AuNTs. To date, however, the orientation-controlled self-assembly of AuNTs has been achieved with limited success. Here, we describe an effective and straightforward approach to induce directed self-assembly of AuNTs. By taking advantage of the uneven chemical reactivity of AuNT surfaces, we implement regioselective modification of the edges and the top/bottom surfaces with two different double-stranded DNA (dsDNA) sequences. By means of terminal single base pairing/unpairing, controlled assembly of the dsDNA-modified AuNTs evolves in a face-to-face or edge-to-edge manner based on blunt-end stacking interaction on an intentional region of the AuNTs, along with entropic repulsion by unpaired terminal nucleobases on the other region. This approach could be useful for achieving directed self-assembly of other anisotropic nanoparticles. Full article
(This article belongs to the Special Issue Synthesis and Applications of Functionalized Gold Nanosystems)
Show Figures

Figure 1

Back to TopTop