Triangular Silver Nanoparticles Synthesis: Investigating Potential Application in Materials and Biosensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of TSNP
Scale-Up of TSNP Production
2.3. BC/PHB Blends Preparation
Evaluation of Antimicrobial Activity
2.4. Evaluation of TSNP Application in Biosensing and Diagnostics
2.4.1. TSNP Gold Coating
2.4.2. AuTSNP Sucrose Sensitivity Test
2.4.3. Polyethylene Glycol Coating of AuTSNP
2.4.4. Fibronectin Functionalization of PEGAuTSNP and pH-Conformation Monitoring
2.4.5. Determination of Adequate Fn Concentration
2.4.6. Determination of Adequate Anti-Fn Antibody Concentration
3. Results
3.1. Synthesis of TSNP
3.2. Scale-Up TSNP Production and Increase in Concentration via Thermal Evaporation
3.3. Integration of TSNP in Biopolymers for Enhanced Antimicrobial Activity
3.3.1. Preparation of BC Blends with the Addition of TSNP
3.3.2. Antimicrobial Activity of BC Blends
3.4. Evaluation of TSNP Application in Biosensing and Diagnostics
3.4.1. TSNP Gold Coating and Protection Check
3.4.2. Sensitivity Test
3.4.3. Functionalization of FnPEGAuTSNPs and pH Monitoring
3.4.4. Determination of Adequate Fn Concentration
3.4.5. Determination of Adequate Anti-Fn Antibody Concentration
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tanasa, E.; Zaharia, C.; Radu, I.C.; Surdu, V.A.; Vasile, B.S.; Damian, C.M.; Andronescu, E. Novel Nanocomposites Based on Functionalized Magnetic Nanoparticles and Polyacrylamide: Preparation and Complex Characterization. Nanomaterials 2019, 9, 1384. [Google Scholar] [CrossRef] [Green Version]
- Andronescu, E.; Predoi, D.; Neacsu, I.A.; Paduraru, A.V.; Musuc, A.M.; Trusca, R.; Oprea, O.; Tanasa, E.; Vasile, O.R.; Nicoara, A.I.; et al. Photoluminescent Hydroxylapatite: Eu3+ Doping Effect on Biological Behaviour. Nanomaterials 2019, 9, 1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, K.W.; Kim, Y.H.; Du, W.X.; Kim, J.Y. Stretchable and Low-Haze Ag-Nanowire-Network 2-D Films Embedded into a Cross-Linked Polydimethylsiloxane Elastomer. Nanomaterials 2019, 9, 576. [Google Scholar] [CrossRef] [Green Version]
- Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on Nanoparticles and Nanostructured Materials: History, Sources, Toxicity and Regulations. Beilstein J. Nanotechnol. 2018, 9, 1050–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, J.M.; Keegan, G.; Brennan-Fournet, M.E. Triangular Silver Nanoparticles: Their Preparation, Functionalisation and Properties. Acta Phys. Pol. A 2012, 122, 337–345. [Google Scholar] [CrossRef]
- Zhang, C.; Huang, Q.; Cui, Q.; Ji, C.; Zhang, Z.; Chen, X.; George, T.; Zhao, S.; Guo, L.J. High-Performance Large-Scale Flexible Optoelectronics Using Ultrathin Silver Films with Tunable Properties. ACS Appl. Mater. Interfaces 2019, 11, 27216–27225. [Google Scholar] [CrossRef]
- Bhardwaj, A.K.; Sundaram, S.; Yadav, K.K.; Srivastav, A.L. An Overview of Silver Nano-Particles as Promising Materials for Water Disinfection. Environ. Technol. Innov. 2021, 23, 101721. [Google Scholar] [CrossRef]
- Takáč, P.; Michalková, R.; Čižmáriková, M.; Bedlovičová, Z.; Balážová, Ľ.; Takáčová, G. The Role of Silver Nanoparticles in the Diagnosis and Treatment of Cancer: Are There Any Perspectives for the Future? Life 2023, 13, 466. [Google Scholar] [CrossRef]
- Gomes, H.I.O.; Martins, C.S.M.; Prior, J.A.V. Silver Nanoparticles as Carriers of Anticancer Drugs for Efficient Target Treatment of Cancer Cells. Nanomaterials 2021, 11, 964. [Google Scholar] [CrossRef]
- Shanmuganathan, R.; Karuppusamy, I.; Saravanan, M.; Muthukumar, H.; Ponnuchamy, K.; Ramkumar, V.S.; Pugazhendhi, A. Synthesis of Silver Nanoparticles and Their Biomedical Applications—A Comprehensive Review. Curr. Pharm. Des. 2019, 25, 2650–2660. [Google Scholar] [CrossRef]
- Gopinath, P.; Gogoi, S.K.; Chattopadhyay, A.; Ghosh, S.S. Implications of Silver Nanoparticle Induced Cell Apoptosis for in Vitro Gene Therapy. Nanotechnology 2008, 19, 075104. [Google Scholar] [CrossRef]
- Suter, S.; Haussener, S. Optimizing Mesostructured Silver Catalysts for Selective Carbon Dioxide Conversion into Fuels. Energy Environ. Sci. 2019, 12, 1668–1678. [Google Scholar] [CrossRef]
- Lee, S.H.; Jun, B.H. Silver Nanoparticles: Synthesis and Application for Nanomedicine. Int. J. Mol. Sci. 2019, 20, 865. [Google Scholar] [CrossRef] [Green Version]
- Güzel, R.; Erdal, G. Synthesis of Silver Nanoparticles; IntechOpen: London, UK, 2016; Chapter 1; Volume 13. [Google Scholar] [CrossRef] [Green Version]
- Le, V.T.; Bach, L.G.; Pham, T.T.; Le, N.T.T.; Ngoc, U.T.P.; Tran, D.H.N.; Nguyen, D.H. Synthesis and Antifungal Activity of Chitosan-Silver Nanocomposite Synergize Fungicide against Phytophthora Capsici. J. Macromol. Sci. Part A Pure Appl. Chem. 2019, 56, 522–528. [Google Scholar] [CrossRef]
- Lu, W.; Yao, K.; Wang, J.; Yuan, J. Ionic Liquids-Water Interfacial Preparation of Triangular Ag Nanoplates and Their Shape-Dependent Antibacterial Activity. J. Colloid Interface Sci. 2015, 437, 35–41. [Google Scholar] [CrossRef]
- Kelly, K.L.; Coronado, E.; Zhao, L.L.; Shatz, G.C. The Optical Properties of Metal Nanoparticles_The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003, 107, 668–677. [Google Scholar] [CrossRef]
- Pastoriza-Santos, I.; Liz-Marzán, L.M. Colloidal Silver Nanoplates. State of the Art and Future Challenges. J. Mater. Chem. 2008, 18, 1724–1737. [Google Scholar] [CrossRef]
- Qing, Y.; Cheng, L.; Li, R.; Liu, G.; Zhang, Y.; Tang, X.; Wang, J.; Liu, H.; Qin, Y. Potential Antibacterial Mechanism of Silver Nanoparticles and the Optimization of Orthopedic Implants by Advanced Modification Technologies. Int. J. Nanomed. 2018, 13, 3311–3327. [Google Scholar] [CrossRef] [Green Version]
- Siritongsuk, P.; Hongsing, N.; Thammawithan, S.; Daduang, S.; Klaynongsruang, S.; Tuanyok, A.; Patramanon, R. Two-Phase Bactericidal Mechanism of Silver Nanoparticles against Burkholderia Pseudomallei. PLoS ONE 2016, 11, e0168098. [Google Scholar] [CrossRef]
- Pal, S.; Tak, Y.K.; Song, J.M. Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? A Study of the Gram-Negative Bacterium Escherichia Coli. Appl. Environ. Microbiol. 2007, 73, 1712–1720. [Google Scholar] [CrossRef] [Green Version]
- Abbas, M.; Naeem, N.; Iftikhar, H.; Latif, U. Synthesis, Characterization and Antimicrobial Properties of Silver Nanocomposites; IntechOpen: London, UK, 2018; Volume i, Chapter 4; p. 13. [Google Scholar] [CrossRef] [Green Version]
- Knauer, A.; Csáki, A.; Fritzsche, W.; Serra, C.A.; Leclerc, N.; Michael Köhler, J. Micro Continuous Flow-through Synthesis of Triangular Silver Nanoprisms and Their Incorporation in Complexly Composed Polymer Microparticles. Chem. Eng. J. 2013, 227, 191–197. [Google Scholar] [CrossRef]
- Audoit, J.; Laffont-dantras, L.; Lonjon, A.; Dantras, E.; Audoit, J.; Laffont-dantras, L.; Lonjon, A.; Dantras, E.; Percolative, C.L. Percolative Silver Nanoplates/PVDF Nanocomposites: Bulk and Surface Electrical Conduction. Polymer 2016, 78, 104–110. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Sun, Y.; Zhang, H.; Xu, B.; Zhang, H.; Song, D. Preparation and Application of Triangular Silver Nanoplates/Chitosan Composite in Surface Plasmon Resonance Biosensing. Anal. Chim. Acta 2013, 769, 114–120. [Google Scholar] [CrossRef] [PubMed]
- Reynoso-García, P.J.; Güizado-Rodríguez, M.; Barba, V.; Ramos-Ortiz, G.; Martínez-Gutiérrez, H. Stabilization of Silver Nanoparticles with a Dithiocarbamate Ligand and Formation of Nanocomposites by Combination with Polythiophene Derivative Nanoparticles. Adv. Condens. Matter Phys. 2018, 2018, 4376051. [Google Scholar] [CrossRef] [Green Version]
- Kudryashov, M.; Logunov, A.; Gogova, D.; Mashin, A.; De Filpo, G. Ag/PVP/PAN Nanocomposites with Triangular Nanoprisms of Silver Synthesized by UV-Induced Polymerization: Morphology Manipulation and Optical Properties Tuning. Opt. Mater. 2020, 101, 109746. [Google Scholar] [CrossRef]
- Djafari, J.; Fernández-Lodeiro, C.; Fernández-Lodeiro, A.; Silva, V.; Poeta, P.; Igrejas, G.; Lodeiro, C.; Capelo, J.L.; Fernández-Lodeiro, J. Exploring the Control in Antibacterial Activity of Silver Triangular Nanoplates by Surface Coating Modulation. Front. Chem. 2019, 6, 677. [Google Scholar] [CrossRef]
- Vo, Q.K.; Phung, D.D.; Nguyen, Q.N.V.; Thi, H.H.; Thi, N.H.N.; Thi, P.P.N.; Bach, L.G.; Tan, L. Van Controlled Synthesis of Triangular Silver Nanoplates by Gelatin-Chitosan Mixture and the Influence of Their Shape on Antibacterial Activity. Processes 2019, 7, 873. [Google Scholar] [CrossRef] [Green Version]
- Velgosova, O.; Mačák, L.; Lisnichuk, M.; Vojtko, M. Synthesis and Analysis of Polymorphic Silver Nanoparticles and Their Incorporation into the Polymer Matrix. Polymers 2022, 14, 2666. [Google Scholar] [CrossRef]
- Unser, S.; Bruzas, I.; He, J.; Sagle, L. Localized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches. Sensors 2015, 15, 15684–15716. [Google Scholar] [CrossRef]
- Mauriz, E.; Dey, P.; Lechuga, L.M. Advances in Nanoplasmonic Biosensors for Clinical Applications. Analyst 2019, 144, 7105–7129. [Google Scholar] [CrossRef]
- Tang, Y.; Zeng, X.; Liang, J. Surface Plasmon Resonance: An Introduction to a Surface Spectroscopy Technique. J. Chem. Educ. 2010, 87, 742–746. [Google Scholar] [CrossRef] [Green Version]
- Aherne, D.; Charles, D.E.; Brennan-Fournet, M.E.; Kelly, J.M.; Gun’ko, Y.K. Etching-Resistant Silver Nanoprisms by Epitaxial Deposition of a Protecting Layer of Gold at the Edges. Langmuir 2009, 25, 10165–10173. [Google Scholar] [CrossRef]
- Willets, K.A.; Van Duyne, R.P. Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297. [Google Scholar] [CrossRef] [Green Version]
- Petryayeva, E.; Krull, U.J. Localized Surface Plasmon Resonance: Nanostructures, Bioassays and Biosensing—A Review. Anal. Chim. Acta 2011, 706, 8–24. [Google Scholar] [CrossRef]
- Loiseau, A.; Asila, V.; Boitel-Aullen, G.; Lam, M.; Salmain, M.; Boujday, S. Silver-Based Plasmonic Nanoparticles for and Their Use in Biosensing. Biosensors 2019, 9, 78. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Charles, D.E.; Ledwith, D.M.; Aherne, D.; Cunningham, S.; Voisin, M.; Blau, W.J.; Gun’Ko, Y.K.; Kelly, J.M.; Brennan-Fournet, M.E. Wash-Free Highly Sensitive Detection of C-Reactive Protein Using Gold Derivatised Triangular Silver Nanoplates. RSC Adv. 2014, 4, 29022–29031. [Google Scholar] [CrossRef]
- Michael Kotlarchyk Scattering Theory. In Encyclopedia of Spectroscopy and Spectrometry; Academic Press: Cambridge, MA, USA, 1999; pp. 2074–2084.
- Wu, C.; Zhou, X.; Wei, J. Localized Surface Plasmon Resonance of Silver Nanotriangles Synthesized by a Versatile Solution Reaction. Nanoscale Res. Lett. 2015, 10, 354. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Qiu, M.; Wang, J.; Liu, Y. Recent Advances in Nanoparticle-Based Optical Sensors for Detection of Pesticide Residues in Soil. Biosensors 2023, 13, 415. [Google Scholar] [CrossRef]
- Liu, L.; Liang, X.; Qiu, G.; Guo, C.; Chan, Y.K.; Wu, C.-M.L. Self-Assembly Silver Nanoparticles Decorated on Gold Nanoislands for Label-Free Localized Surface Plasmon Resonance Biosensing. Adv. Mater. Interfaces 2022, 9, 2200339. [Google Scholar] [CrossRef]
- Brennan-Fournet, M.E.; Huerta, M.; Zhang, Y.; Malliaras, G.; Owens, R.M. Detection of Fibronectin Conformational Changes in the Extracellular Matrix of Live Cells Using Plasmonic Nanoplates. J. Mater. Chem. B 2015, 3, 9140–9147. [Google Scholar] [CrossRef]
- Rodriguez Barroso, L.G.; Azaman, F.A.; Pogue, R.; Devine, D.; Fournet, M.B. Monitoring In Vitro Extracellular Matrix Protein Conformations in the Presence of Biomimetic Bone-Regeneration Scaffolds Using Functionalized Gold-Edge-Coated Triangular Silver Nanoparticles. Nanomaterials 2023, 13, 57. [Google Scholar] [CrossRef] [PubMed]
- Vinayagam, S.; Rajaiah, P.; Mukherjee, A.; Natarajan, C. DNA-Triangular Silver Nanoparticles Nanoprobe for the Detection of Dengue Virus Distinguishing Serotype. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 202, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Cai, T.; Gao, Y.; Yan, J.; Wu, Y.; Di, J. Visual Detection of Glucose Using Triangular Silver Nanoplates and Gold Nanoparticles. RSC Adv. 2017, 7, 29122–29128. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.; Ren, H.; Zhao, H.; Li, Z. Ultrasensitive Visual and Colorimetric Determination of Dopamine Based on the Prevention of Etching of Silver Nanoprisms by Chloride. Microchim. Acta 2017, 184, 415–421. [Google Scholar] [CrossRef]
- Li, L.; Zhang, L.; Zhao, Y.; Chen, Z. Colorimetric Detection of Hg(II) by Measurement the Color Alterations from the “before” and “after” RGB Images of Etched Triangular Silver Nanoplates. Microchim. Acta 2018, 185, 235. [Google Scholar] [CrossRef]
- Furletov, A.A.; Apyari, V.V.; Garshev, A.V.; Dmitrienko, S.G.; Zolotov, Y.A. Triangular Silver Nanoplates as a Spectrophotometric Reagent for the Determination of Mercury(II). J. Anal. Chem. 2017, 72, 1203–1207. [Google Scholar] [CrossRef]
- Aherne, D.; Ledwith, D.M.; Gara, M.; Kelly, J.M. Optical Properties and Growth Aspects of Silver Nanoprisms Produced by a Highly Reproducible and Rapid Synthesis at Room Temperature. Adv. Funct. Mater. 2008, 18, 2005–2016. [Google Scholar] [CrossRef]
- Solomon, S.D.; Bahadory, M.; Jeyarajasingam, A.V.; Rutkowsky, S.A.; Boritz, C.; Mulfinger, L. Synthesis and Study of Silver Nanoparticles. J. Chem. Educ. 2007, 84, 322–325. [Google Scholar]
- Etacheri, V.; Georgekutty, R.; Seery, M.K.; Pillai, S.C. Single Step Morphology-Controlled Synthesis of Silver Nanoparticles. Mater. Res. Soc. Symp. Proc. 2010, 1217, 7–13. [Google Scholar] [CrossRef]
- Garcia, E.L.; Mojicevic, M.; Milivojevic, D.; Aleksic, I.; Vojnovic, S.; Stevanovic, M.; Murray, J.; Attallah, O.A.; Devine, D.; Fournet, M.B. Enhanced Antimicrobial Activity of Biocompatible Bacterial Cellulose Films via Dual Synergistic Action of Curcumin and Triangular Silver Nanoplates. Int. J. Mol. Sci. 2022, 23, 12198. [Google Scholar] [CrossRef]
- Charles, D.E.; Aherne, D.; Gara, M.; Ledwith, D.M.; Gun, Y.K.; Kelly, J.M.; Blau, W.J.; Brennan-fournet, M.E. Versatile Solution Phase Triangular Silver Nanoplates for Highly Sensitive Plasmon Resonance Sensing. ACS Nano 2010, 4, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Garcia, E.L.; Attallah, O.A.; Mojicevic, M.; Devine, D.M.; Fournet, M.B. Antimicrobial Active Bioplastics Using Triangular Silver Nanoplate Integrated Polycaprolactone and Polylactic Acid Films. Materials 2021, 14, 1132. [Google Scholar] [CrossRef] [PubMed]
- Charles, D.; Fournet, P.; Cunningham, S.; Ledwith, D.; Kelly, J.M.; Blau, W.; Fournet, M.B. A Sensitivity Study of the Localised Surface Plasmon Resonance of High-Definition Structured Silver Nanoparticles in Solution. Plasmon. Met. Nanostruct. Their Opt. Prop. VI 2008, 7032, 70322G. [Google Scholar] [CrossRef]
- Bruna, T.; Maldonado-Bravo, F.; Jara, P.; Caro, N. Silver Nanoparticles and Their Antibacterial Applications. Int. J. Mol. Sci. 2021, 22, 7202. [Google Scholar] [CrossRef]
- Lyutakov, O.; Goncharova, I.; Rimpelova, S.; Kolarova, K.; Svanda, J.; Svorcik, V. Silver Release and Antimicrobial Properties of PMMA Films Doped with Silver Ions, Nano-Particles and Complexes. Mater. Sci. Eng. C 2015, 49, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Szymanski, M.S.; Porter, R.A. Preparation and Quality Control of Silver Nanoparticle-Antibody Conjugate for Use in Electrochemical Immunoassays. J. Immunol. Methods 2013, 387, 262–269. [Google Scholar] [CrossRef]
- Saptarshi, S.R.; Duschl, A.; Lopata, A.L. Interaction of Nanoparticles with Proteins: Relation to Bio-Reactivity of the Nanoparticle. J. Nanobiotechnol. 2013, 11, 26. [Google Scholar] [CrossRef] [Green Version]
- Maurer, L.M.; Ma, W.; Mosher, D.F. Dynamic Structure of Plasma Fibronectin. Crit. Rev. Biochem. Mol. Biol. 2016, 51, 213–227. [Google Scholar] [CrossRef] [Green Version]
- Tooney, N.M.; Mosesson, M.W.; Amrani, D.L.; Hainfeld, J.F.; Wall, J.S. Solution and Surface Effects on Plasma Fibronectin Structure. J. Cell Biol. 1983, 97, 1686–1692. [Google Scholar] [CrossRef] [Green Version]
- Karabulut, G.; Üllen, N.B.; Karakuş, S. Nanostructures in Biosensors Development and Applications. In Biosignal Processing; IntechOpen: London, UK, 2022; ISBN 978-1-80355-562-1. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez Barroso, L.G.; Lanzagorta Garcia, E.; Mojicevic, M.; Huerta, M.; Pogue, R.; Devine, D.M.; Brennan-Fournet, M. Triangular Silver Nanoparticles Synthesis: Investigating Potential Application in Materials and Biosensing. Appl. Sci. 2023, 13, 8100. https://doi.org/10.3390/app13148100
Rodriguez Barroso LG, Lanzagorta Garcia E, Mojicevic M, Huerta M, Pogue R, Devine DM, Brennan-Fournet M. Triangular Silver Nanoparticles Synthesis: Investigating Potential Application in Materials and Biosensing. Applied Sciences. 2023; 13(14):8100. https://doi.org/10.3390/app13148100
Chicago/Turabian StyleRodriguez Barroso, Laura G., Eduardo Lanzagorta Garcia, Marija Mojicevic, Miriam Huerta, Robert Pogue, Declan M. Devine, and Margaret Brennan-Fournet. 2023. "Triangular Silver Nanoparticles Synthesis: Investigating Potential Application in Materials and Biosensing" Applied Sciences 13, no. 14: 8100. https://doi.org/10.3390/app13148100
APA StyleRodriguez Barroso, L. G., Lanzagorta Garcia, E., Mojicevic, M., Huerta, M., Pogue, R., Devine, D. M., & Brennan-Fournet, M. (2023). Triangular Silver Nanoparticles Synthesis: Investigating Potential Application in Materials and Biosensing. Applied Sciences, 13(14), 8100. https://doi.org/10.3390/app13148100