Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,711)

Search Parameters:
Keywords = global trading

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1971 KiB  
Article
FFG-YOLO: Improved YOLOv8 for Target Detection of Lightweight Unmanned Aerial Vehicles
by Tongxu Wang, Sizhe Yang, Ming Wan and Yanqiu Liu
Appl. Syst. Innov. 2025, 8(4), 109; https://doi.org/10.3390/asi8040109 - 4 Aug 2025
Abstract
Target detection is essential in intelligent transportation and autonomous control of unmanned aerial vehicles (UAVs), with single-stage detection algorithms used widely due to their speed. However, these algorithms face limitations in detecting small targets, especially in aerial photography from unmanned aerial vehicles (UAVs), [...] Read more.
Target detection is essential in intelligent transportation and autonomous control of unmanned aerial vehicles (UAVs), with single-stage detection algorithms used widely due to their speed. However, these algorithms face limitations in detecting small targets, especially in aerial photography from unmanned aerial vehicles (UAVs), where small targets are often occluded, multi-scale semantic information is easily lost, and there is a trade-off between real-time processing and computational resources. Existing algorithms struggle to effectively extract multi-dimensional features and deep semantic information from images and to balance detection accuracy with model complexity. To address these limitations, we developed FFG-YOLO, a lightweight small-target detection method for UAVs based on YOLOv8. FFG-YOLO incorporates three modules: a feature enhancement block (FEB), a feature concat block (FCB), and a global context awareness block (GCAB). These modules strengthen feature extraction from small targets, resolve semantic bias in multi-scale feature fusion, and help differentiate small targets from complex backgrounds. We also improved the positioning accuracy of small targets using the Wasserstein distance loss function. Experiments showed that FFG-YOLO outperformed other algorithms, including YOLOv8n, in small-target detection due to its lightweight nature, meeting the stringent real-time performance and deployment requirements of UAVs. Full article
Show Figures

Figure 1

24 pages, 9190 KiB  
Article
Modeling the Historical and Future Potential Global Distribution of the Pepper Weevil Anthonomus eugenii Using the Ensemble Approach
by Kaitong Xiao, Lei Ling, Ruixiong Deng, Beibei Huang, Qiang Wu, Yu Cao, Hang Ning and Hui Chen
Insects 2025, 16(8), 803; https://doi.org/10.3390/insects16080803 (registering DOI) - 3 Aug 2025
Viewed by 42
Abstract
The pepper weevil Anthonomus eugenii is a devastating pest native to Central America that can cause severe damage to over 35 pepper varieties. Global trade in peppers has significantly increased the risk of its spread and expansion. Moreover, future climate change may add [...] Read more.
The pepper weevil Anthonomus eugenii is a devastating pest native to Central America that can cause severe damage to over 35 pepper varieties. Global trade in peppers has significantly increased the risk of its spread and expansion. Moreover, future climate change may add more uncertainty to its distribution, resulting in considerable ecological and economic damage globally. Therefore, we employed an ensemble model combining Random Forests and CLIMEX to predict the potential global distribution of A. eugenii in historical and future climate scenarios. The results indicated that the maximum temperature of the warmest month is an important variable affecting global A. eugenii distribution. Under the historical climate scenario, the potential global distribution of A. eugenii is concentrated in the Midwestern and Southern United States, Central America, the La Plata Plain, parts of the Brazilian Plateau, the Mediterranean and Black Sea coasts, sub-Saharan Africa, Northern and Southern China, Southern India, Indochina Peninsula, and coastal area in Eastern Australia. Under future climate scenarios, suitable areas in the Northern Hemisphere, including North America, Europe, and China, are projected to expand toward higher latitudes. In China, the number of highly suitable areas is expected to increase significantly, mainly in the south and north. Contrastingly, suitable areas in Central America, northern South America, the Brazilian Plateau, India, and the Indochina Peninsula will become less suitable. The total land area suitable for A. eugenii under historical and future low- and high-emission climate scenarios accounted for 73.12, 66.82, and 75.97% of the global land area (except for Antarctica), respectively. The high-suitability areas identified by both models decreased by 19.05 and 35.02% under low- and high-emission scenarios, respectively. Building on these findings, we inferred the future expansion trends of A. eugenii globally. Furthermore, we provide early warning of A. eugenii invasion and a scientific basis for its spread and outbreak, facilitating the development of effective quarantine and control measures. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Graphical abstract

23 pages, 343 KiB  
Article
How Do China’s OFDI Motivations Affect the Bilateral GVC Relationship and Sustainable Global Economy?
by Min Wang
Sustainability 2025, 17(15), 7049; https://doi.org/10.3390/su17157049 - 3 Aug 2025
Viewed by 71
Abstract
The purpose of this paper is to analyze how China’s outward foreign direct investment (OFDI), driven by different motivations, affects the bilateral global value chain (GVC) relationship between the home country (China) and host countries, evaluating both bilateral GVC trade value and relative [...] Read more.
The purpose of this paper is to analyze how China’s outward foreign direct investment (OFDI), driven by different motivations, affects the bilateral global value chain (GVC) relationship between the home country (China) and host countries, evaluating both bilateral GVC trade value and relative GVC positions. Employing the OECD Trade in Value Added (TiVA) database combined with Chinese listed firm data, we found the following results: (1) Strategic asset-seeking OFDI strengthens the GVC relationship between China and host countries while enhancing China’s GVC position relative to host countries. (2) Efficiency-seeking OFDI increases the domestic value-added exported from host countries to China but does not improve China’s relative GVC position. (3) Natural resource-seeking OFDI enhances bilateral GVC trade volumes but has no significant impact on the relative GVC positions of China and host countries. (4) China’s OFDI, not driven by these motivations, generates a trade substitution effect between home and host countries. We also examined the heterogeneity of these effects. Our findings suggest that China’s OFDI fosters equitable and sustainable international cooperation, supports mutually beneficial GVC trade and host-country economic growth, and therefore, progresses toward Sustainable Development Goal (SDG) 8. Full article
21 pages, 1260 KiB  
Review
Comprehensive Overview Assessment on Legal Guarantee System of Wetland Carbon Sink Trading for One Belt and One Road Initiative
by Jingjing Min, Wanwu Yuan, Wei He, Pingping Luo, Hanming Zhang and Yang Zhao
Land 2025, 14(8), 1583; https://doi.org/10.3390/land14081583 - 3 Aug 2025
Viewed by 76
Abstract
The countries and regions along the Belt and Road are rich in wetland carbon sink resources, crucial for mitigating greenhouse gas emissions and achieving global emission reduction. This paper uses policy analysis and desk research to analyze the overview of wetland carbon sinks [...] Read more.
The countries and regions along the Belt and Road are rich in wetland carbon sink resources, crucial for mitigating greenhouse gas emissions and achieving global emission reduction. This paper uses policy analysis and desk research to analyze the overview of wetland carbon sinks in these countries. It explores the necessity of legal system construction for their carbon sink trading. This study finds that smooth trading requires clear property rights definition rules, efficient market trading entities, definite carbon sink trading price rules, financial support aligned with the Equator Principles, and support from biodiversity-compatible environmental regulatory principles. Currently, there are still obstacles in wetland carbon sink trading in the Belt and Road, such as property rights confirmation, an accounting system, an imperfect market trading mechanism, and the coexistence of multiple trading risks. Therefore, this paper first proposes to clarify the goal of the legal guarantee mechanism. Efforts should focus on promoting a consensus on wetland carbon sink ownership and establishing a unified accounting standard system; simultaneously, the relevant departments should conduct field investigations and monitoring, standardize the market order, and strengthen government financial support and funding guarantees. Full article
Show Figures

Figure 1

10 pages, 960 KiB  
Article
Study on the Vectoring Potential of Halyomorpha halys for Pantoea stewartii subsp. stewartii, the Pathogen Causing Stewart’s Disease in Maize
by Francesca Costantini, Agostino Strangi, Fabio Mosconi, Leonardo Marianelli, Giuseppino Sabbatini-Peverieri, Pio Federico Roversi and Valeria Scala
Agriculture 2025, 15(15), 1671; https://doi.org/10.3390/agriculture15151671 - 2 Aug 2025
Viewed by 146
Abstract
Pantoea stewartii subsp. stewartii (Pss) is a Gram-negative bacterium first documented in North America, and is the causal agent of Stewart’s disease in maize (Zea mays), especially in sweet corn. First identified in North America, it is primarily spread by insect [...] Read more.
Pantoea stewartii subsp. stewartii (Pss) is a Gram-negative bacterium first documented in North America, and is the causal agent of Stewart’s disease in maize (Zea mays), especially in sweet corn. First identified in North America, it is primarily spread by insect vectors like the corn flea beetle (Chaetocnema Pulicaria) in the United States. However, Pss has since spread globally—reaching parts of Africa, Asia, the Americas, and Europe—mainly through the international seed trade. Although this trade is limited, it has still facilitated the pathogen’s global movement, as evidenced by numerous phytosanitary interceptions. Recent studies in Italy, as indicated in the EFSA journal, reported that potential alternative vectors were identified, including Phyllotreta spp. and the invasive Asian brown marmorated stink bug (Halyomorpha halys); the latter tested positive in PCR screenings, raising concerns due to its broad host range and global distribution. This information has prompted studies to verify the ability of Halyomorpha halys to vector Pss to assess the risk and prevent the further spread of Pss in Europe. In this study, we explored the potential transmission of Pss by the brown marmorated stink bugs in maize plants, following its feeding on Pss-inoculated maize, as well as the presence of Pss within the insect’s body. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

33 pages, 1166 KiB  
Article
Evaluating Freshwater, Desalinated Water, and Treated Brine as Water Feed for Hydrogen Production in Arid Regions
by Hamad Ahmed Al-Ali and Koji Tokimatsu
Energies 2025, 18(15), 4085; https://doi.org/10.3390/en18154085 - 1 Aug 2025
Viewed by 89
Abstract
Hydrogen production is increasingly vital for global decarbonization but remains a water- and energy-intensive process, especially in arid regions. Despite growing attention to its climate benefits, limited research has addressed the environmental impacts of water sourcing. This study employs a life cycle assessment [...] Read more.
Hydrogen production is increasingly vital for global decarbonization but remains a water- and energy-intensive process, especially in arid regions. Despite growing attention to its climate benefits, limited research has addressed the environmental impacts of water sourcing. This study employs a life cycle assessment (LCA) approach to evaluate three water supply strategies for hydrogen production: (1) seawater desalination without brine treatment (BT), (2) desalination with partial BT, and (3) freshwater purification. Scenarios are modeled for the United Arab Emirates (UAE), Australia, and Spain, representing diverse electricity mixes and water stress conditions. Both electrolysis and steam methane reforming (SMR) are evaluated as hydrogen production methods. Results show that desalination scenarios contribute substantially to human health and ecosystem impacts due to high energy use and brine discharge. Although partial BT aims to reduce direct marine discharge impacts, its substantial energy demand can offset these benefits by increasing other environmental burdens, such as marine eutrophication, especially in regions reliant on carbon-intensive electricity grids. Freshwater scenarios offer lower environmental impact overall but raise water availability concerns. Across all regions, feedwater for SMR shows nearly 50% lower impacts than for electrolysis. This study focuses solely on the environmental impacts associated with water sourcing and treatment for hydrogen production, excluding the downstream impacts of the hydrogen generation process itself. This study highlights the trade-offs between water sourcing, brine treatment, and freshwater purification for hydrogen production, offering insights for optimizing sustainable hydrogen systems in water-stressed regions. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production in Renewable Energy Systems)
Show Figures

Figure 1

33 pages, 1619 KiB  
Article
Empowering the Intelligent Transformation of the Manufacturing Sector Through New Quality Productive Forces: Value Implications, Theoretical Analysis, and Empirical Examination
by Yinyan Hu and Xinran Jia
Sustainability 2025, 17(15), 7006; https://doi.org/10.3390/su17157006 - 1 Aug 2025
Viewed by 186
Abstract
Achieving sustainable development goals remains a core issue in global development. In response, China has proposed the development of new quality productive forces (NQPFs) through innovative thinking, emphasizing that fostering NQPFs is both an intrinsic requirement and a pivotal focus for advancing high-quality [...] Read more.
Achieving sustainable development goals remains a core issue in global development. In response, China has proposed the development of new quality productive forces (NQPFs) through innovative thinking, emphasizing that fostering NQPFs is both an intrinsic requirement and a pivotal focus for advancing high-quality development. Concurrently, the intelligent transformation of the manufacturing sector serves as a critical direction for China’s economic restructuring and upgrading. This paper places “new quality productive forces” and “intelligent transformation of manufacturing” within the same analytical framework. Starting from the logical chain of “new quality productive forces—three major mechanisms—intelligent transformation of manufacturing,” it concretizes the value implications of new quality productive forces into a systematic conceptual framework driven by the synergistic interaction of three major mechanisms: the mechanism of revolutionary technological breakthroughs, the mechanism of innovative allocation of production factors, and the mechanism of deep industrial transformation and upgrading. This study constructs a “3322” evaluation index system for NQPFs, based on three formative processes, three driving forces, two supporting systems, and two-dimensional characteristics. Simultaneously, it builds an evaluation index system for the intelligent transformation of manufacturing, encompassing intelligent technology, intelligent applications, and intelligent benefits. Using national time-series data from 2012 to 2023, this study assesses the development levels of both NQPFs and the intelligent transformation of manufacturing during this period. The study further analyzes the impact of NQPFs on the intelligent transformation of the manufacturing sector. The research results indicate the following: (1) NQPFs drive the intelligent transformation of the manufacturing industry through the three mechanisms of innovative allocation of production factors, revolutionary breakthroughs in technology, and deep transformation and upgrading of industries. (2) The development of NQPFs exhibits a slow upward trend; however, the outbreak of the pandemic and Sino-US trade frictions have caused significant disruptions to the development of new-type productive forces. (3) The level of intelligent manufacturing continues to improve; however, from 2020 to 2023, due to the impact of the COVID-19 pandemic and Sino-US trade conflicts, the level of intelligent benefits has slightly declined. (4) NQPFs exert a powerful driving force on the intelligent transformation of manufacturing, exerting a significant positive impact on intelligent technology, intelligent applications, and intelligent efficiency levels. Full article
Show Figures

Figure 1

26 pages, 2081 KiB  
Article
Tariff-Sensitive Global Supply Chains: Semi-Markov Decision Approach with Reinforcement Learning
by Duygu Yilmaz Eroglu
Systems 2025, 13(8), 645; https://doi.org/10.3390/systems13080645 - 1 Aug 2025
Viewed by 179
Abstract
Global supply chains often face uncertainties in production lead times, fluctuating exchange rates, and varying tariff regulations, all of which can significantly impact total profit. To address these challenges, this study formulates a multi-country supply chain problem as a Semi-Markov Decision Process (SMDP), [...] Read more.
Global supply chains often face uncertainties in production lead times, fluctuating exchange rates, and varying tariff regulations, all of which can significantly impact total profit. To address these challenges, this study formulates a multi-country supply chain problem as a Semi-Markov Decision Process (SMDP), integrating both currency variability and tariff levels. Using a Q-learning-based method (SMART), we explore three scenarios: (1) wide currency gaps under a uniform tariff, (2) narrowed currency gaps encouraging more local sourcing, and (3) distinct tariff structures that highlight how varying duties can reshape global fulfillment decisions. Beyond these baselines we analyze uncertainty-extended variants and targeted sensitivities (quantity discounts, tariff escalation, and the joint influence of inventory holding costs and tariff costs). Simulation results, accompanied by policy heatmaps and performance metrics, illustrate how small or large shifts in exchange rates and tariffs can alter sourcing strategies, transportation modes, and inventory management. A Deep Q-Network (DQN) is also applied to validate the Q-learning policy, demonstrating alignment with a more advanced neural model for moderate-scale problems. These findings underscore the adaptability of reinforcement learning in guiding practitioners and policymakers, especially under rapidly changing trade environments where exchange rate volatility and incremental tariff changes demand robust, data-driven decision-making. Full article
(This article belongs to the Special Issue Modelling and Simulation of Transportation Systems)
Show Figures

Figure 1

26 pages, 4289 KiB  
Article
A Voronoi–A* Fusion Algorithm with Adaptive Layering for Efficient UAV Path Planning in Complex Terrain
by Boyu Dong, Gong Zhang, Yan Yang, Peiyuan Yuan and Shuntong Lu
Drones 2025, 9(8), 542; https://doi.org/10.3390/drones9080542 - 31 Jul 2025
Viewed by 254
Abstract
Unmanned Aerial Vehicles (UAVs) face significant challenges in global path planning within complex terrains, as traditional algorithms (e.g., A*, PSO, APF) struggle to balance computational efficiency, path optimality, and safety. This study proposes a Voronoi–A* fusion algorithm, combining Voronoi-vertex-based rapid trajectory generation with [...] Read more.
Unmanned Aerial Vehicles (UAVs) face significant challenges in global path planning within complex terrains, as traditional algorithms (e.g., A*, PSO, APF) struggle to balance computational efficiency, path optimality, and safety. This study proposes a Voronoi–A* fusion algorithm, combining Voronoi-vertex-based rapid trajectory generation with A* supplementary expansion for enhanced performance. First, an adaptive DEM layering strategy divides the terrain into horizontal planes based on obstacle density, reducing computational complexity while preserving 3D flexibility. The Voronoi vertices within each layer serve as a sparse waypoint network, with greedy heuristic prioritizing vertices that ensure safety margins, directional coherence, and goal proximity. For unresolved segments, A* performs localized searches to ensure complete connectivity. Finally, a line-segment interpolation search further optimizes the path to minimize both length and turning maneuvers. Simulations in mountainous environments demonstrate superior performance over traditional methods in terms of path planning success rates, path optimality, and computation. Our framework excels in real-time scenarios, such as disaster rescue and logistics, although it assumes static environments and trades slight path elongation for robustness. Future research should integrate dynamic obstacle avoidance and weather impact analysis to enhance adaptability in real-world conditions. Full article
Show Figures

Figure 1

47 pages, 1179 KiB  
Article
Rethinking Sustainable Operations: A Multi-Level Integration of Circularity, Localization, and Digital Resilience in Manufacturing Systems
by Antonius Setyadi, Suharno Pawirosumarto and Alana Damaris
Sustainability 2025, 17(15), 6929; https://doi.org/10.3390/su17156929 - 30 Jul 2025
Viewed by 416
Abstract
The escalating climate crisis and global disruptions have prompted a critical re-evaluation of operations management within manufacturing and supply systems. This conceptual article addresses the theoretical and strategic gap in aligning resilience and sustainability by proposing an Integrated Sustainable Operational Strategy (ISOS) framework. [...] Read more.
The escalating climate crisis and global disruptions have prompted a critical re-evaluation of operations management within manufacturing and supply systems. This conceptual article addresses the theoretical and strategic gap in aligning resilience and sustainability by proposing an Integrated Sustainable Operational Strategy (ISOS) framework. Drawing on systems theory, circular economy principles, and sustainability science, the framework synthesizes multiple operational domains—circularity, localization, digital adaptation, and workforce flexibility—across macro (policy), meso (organizational), and micro (process) levels. This study constructs a conceptual model that explains the interdependencies and trade-offs among strategic operational responses in the Anthropocene era. Supported by multi-level logic and a synthesis of domain constructs, the model provides a foundation for empirical investigation and strategic planning. Key propositions for future research are developed, focusing on causal relationships and boundary conditions. The novelty of ISOS lies in its simultaneous integration of three strategic pillars—circularity, localization, and digital resilience—within a unified, multi-scalar architecture that bridges fragmented operational theories. The article advances theory by redefining operational excellence through regenerative logic and adaptive capacity, responding directly to SDG 9 (industry innovation), SDG 12 (responsible consumption and production), and SDG 13 (climate action). This integrative framework offers both theoretical insight and practical guidance for transforming operations into catalysts of sustainable transition. Full article
Show Figures

Figure 1

33 pages, 7374 KiB  
Article
Exploration of Carbon Emission Reduction Pathways for Urban Residential Buildings at the Provincial Level: A Case Study of Jiangsu Province
by Jian Xu, Tao Lei, Milun Yang, Huixuan Xiang, Ronge Miao, Huan Zhou, Ruiqu Ma, Wenlei Ding and Genyu Xu
Buildings 2025, 15(15), 2687; https://doi.org/10.3390/buildings15152687 - 30 Jul 2025
Viewed by 268
Abstract
Achieving carbon emission reductions in the residential building sector while maintaining economic growth represents a global challenge, particularly in rapidly developing regions with internal disparities. This study examines Jiangsu Province in eastern China—a economic hub with north-south development gradients—to develop an integrated framework [...] Read more.
Achieving carbon emission reductions in the residential building sector while maintaining economic growth represents a global challenge, particularly in rapidly developing regions with internal disparities. This study examines Jiangsu Province in eastern China—a economic hub with north-south development gradients—to develop an integrated framework for differentiated carbon reduction pathways. The methodology combines spatial autocorrelation analysis, logarithmic mean Divisia index (LMDI) decomposition, system dynamics modeling, and Tapio decoupling analysis to examine urban residential building emissions across three regions from 2016–2022. Results reveal significant spatial clustering of emissions (Moran’s I peaking at 0.735), with energy consumption per unit area as the dominant driver across all regions (contributing 147.61%, 131.82%, and 147.57% respectively). Scenario analysis demonstrates that energy efficiency policies can reduce emissions by 10.1% while maintaining 99.2% of economic performance, enabling carbon peak achievement by 2030. However, less developed northern regions emerge as binding constraints, requiring technology investments. Decoupling analysis identifies region-specific optimal pathways: conventional development for advanced regions, balanced approaches for transitional areas, and subsidies for lagging regions. These findings challenge assumptions about environment-economy trade-offs and provide a replicable framework for designing differentiated climate policies in heterogeneous territories, offering insights for similar regions worldwide navigating the transition to sustainable development. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

21 pages, 2965 KiB  
Article
Inspection Method Enabled by Lightweight Self-Attention for Multi-Fault Detection in Photovoltaic Modules
by Shufeng Meng and Tianxu Xu
Electronics 2025, 14(15), 3019; https://doi.org/10.3390/electronics14153019 - 29 Jul 2025
Viewed by 237
Abstract
Bird-dropping fouling and hotspot anomalies remain the most prevalent and detrimental defects in utility-scale photovoltaic (PV) plants; their co-occurrence on a single module markedly curbs energy yield and accelerates irreversible cell degradation. However, markedly disparate visual–thermal signatures of the two phenomena impede high-fidelity [...] Read more.
Bird-dropping fouling and hotspot anomalies remain the most prevalent and detrimental defects in utility-scale photovoltaic (PV) plants; their co-occurrence on a single module markedly curbs energy yield and accelerates irreversible cell degradation. However, markedly disparate visual–thermal signatures of the two phenomena impede high-fidelity concurrent detection in existing robotic inspection systems, while stringent onboard compute budgets also preclude the adoption of bulky detectors. To resolve this accuracy–efficiency trade-off for dual-defect detection, we present YOLOv8-SG, a lightweight yet powerful framework engineered for mobile PV inspectors. First, a rigorously curated multi-modal dataset—RGB for stains and long-wave infrared for hotspots—is assembled to enforce robust cross-domain representation learning. Second, the HSV color space is leveraged to disentangle chromatic and luminance cues, thereby stabilizing appearance variations across sensors. Third, a single-head self-attention (SHSA) block is embedded in the backbone to harvest long-range dependencies at negligible parameter cost, while a global context (GC) module is grafted onto the detection head to amplify fine-grained semantic cues. Finally, an auxiliary bounding box refinement term is appended to the loss to hasten convergence and tighten localization. Extensive field experiments demonstrate that YOLOv8-SG attains 86.8% mAP@0.5, surpassing the vanilla YOLOv8 by 2.7 pp while trimming 12.6% of parameters (18.8 MB). Grad-CAM saliency maps corroborate that the model’s attention consistently coincides with defect regions, underscoring its interpretability. The proposed method, therefore, furnishes PV operators with a practical low-latency solution for concurrent bird-dropping and hotspot surveillance. Full article
Show Figures

Figure 1

21 pages, 2854 KiB  
Article
Unseen Threats at Sea: Awareness of Plastic Pellets Pollution Among Maritime Professionals and Students
by Špiro Grgurević, Zaloa Sanchez Varela, Merica Slišković and Helena Ukić Boljat
Sustainability 2025, 17(15), 6875; https://doi.org/10.3390/su17156875 - 29 Jul 2025
Viewed by 197
Abstract
Marine pollution from plastic pellets, small granules used as a raw material for plastic production, is a growing environmental problem with grave consequences for marine ecosystems, biodiversity, and human health. This form of primary microplastic is increasingly becoming the focus of environmental policies, [...] Read more.
Marine pollution from plastic pellets, small granules used as a raw material for plastic production, is a growing environmental problem with grave consequences for marine ecosystems, biodiversity, and human health. This form of primary microplastic is increasingly becoming the focus of environmental policies, owing to its frequent release into the marine environment during handling, storage, and marine transportation, all of which play a crucial role in global trade. The aim of this paper is to contribute to the ongoing discussions by highlighting the environmental risks associated with plastic pellets, which are recognized as a significant source of microplastics in the marine environment. It will also explore how targeted education and awareness-raising within the maritime sector can serve as key tools to address this environmental challenge. The study is based on a survey conducted among seafarers and maritime students to raise their awareness and assess their knowledge of the issue. Given their operational role in ensuring safe and responsible shipping, seafarers and maritime students are in a key position to prevent the release of plastic pellets into the marine environment through increased awareness and initiative-taking practices. The results show that awareness is moderate, but there is a significant lack of knowledge, particularly in relation to the environmental impact and regulatory aspects of plastic pellet pollution. These results underline the need for improved education and training in this area, especially among future and active maritime professionals. Full article
Show Figures

Figure 1

21 pages, 5536 KiB  
Article
Analyzing and Forecasting Vessel Traffic Through the Panama Canal: A Comparative Study
by Mitzi Cubilla-Montilla, Anabel Ramírez, William Escudero and Clara Cruz
Appl. Sci. 2025, 15(15), 8389; https://doi.org/10.3390/app15158389 - 29 Jul 2025
Viewed by 209
Abstract
The Panama Canal, inaugurated in 1914, continues to play a pivotal role in global maritime connectivity. In 2016, the Canal underwent a significant expansion, reshaping maritime transit by accommodating larger vessels and reinforcing its strategic importance in international trade. The objective of this [...] Read more.
The Panama Canal, inaugurated in 1914, continues to play a pivotal role in global maritime connectivity. In 2016, the Canal underwent a significant expansion, reshaping maritime transit by accommodating larger vessels and reinforcing its strategic importance in international trade. The objective of this study is to identify a suitable time series statistical model to forecast the number of vessels transiting the Panama Canal. The three approaches employed were the following: the Autoregressive Integrated Moving Average (ARIMA) model, the Holt–Winters (HW) exponential smoothing method, and the Neural Network Autoregressive (NNAR) model. The models were compared based on forecasting errors to evaluate their predictive accuracy. Overall, the NNAR model exhibited slightly better predictive performance than the SARIMA (1,0,1) (0,1,1) model in terms of error, with both outperforming the Holt–Winters model by a significant margin. Full article
Show Figures

Figure 1

27 pages, 8755 KiB  
Article
Mapping Wetlands with High-Resolution Planet SuperDove Satellite Imagery: An Assessment of Machine Learning Models Across the Diverse Waterscapes of New Zealand
by Md. Saiful Islam Khan, Maria C. Vega-Corredor and Matthew D. Wilson
Remote Sens. 2025, 17(15), 2626; https://doi.org/10.3390/rs17152626 - 29 Jul 2025
Viewed by 404
Abstract
(1) Background: Wetlands are ecologically significant ecosystems that support biodiversity and contribute to essential environmental functions such as water purification, carbon storage and flood regulation. However, these ecosystems face increasing pressures from land-use change and degradation, prompting the need for scalable and accurate [...] Read more.
(1) Background: Wetlands are ecologically significant ecosystems that support biodiversity and contribute to essential environmental functions such as water purification, carbon storage and flood regulation. However, these ecosystems face increasing pressures from land-use change and degradation, prompting the need for scalable and accurate classification methods to support conservation and policy efforts. In this research, our motivation was to test whether high-spatial-resolution PlanetScope imagery can be used with pixel-based machine learning to support the mapping and monitoring of wetlands at a national scale. (2) Methods: This study compared four machine learning classification models—Random Forest (RF), XGBoost (XGB), Histogram-Based Gradient Boosting (HGB) and a Multi-Layer Perceptron Classifier (MLPC)—to detect and map wetland areas across New Zealand. All models were trained using eight-band SuperDove satellite imagery from PlanetScope, with a spatial resolution of ~3 m, and ancillary geospatial datasets representing topography and soil drainage characteristics, each of which is available globally. (3) Results: All four machine learning models performed well in detecting wetlands from SuperDove imagery and environmental covariates, with varying strengths. The highest accuracy was achieved using all eight image bands alongside features created from supporting geospatial data. For binary wetland classification, the highest F1 scores were recorded by XGB (0.73) and RF/HGB (both 0.72) when including all covariates. MLPC also showed competitive performance (wetland F1 score of 0.71), despite its relatively lower spatial consistency. However, each model over-predicts total wetland area at a national level, an issue which was able to be reduced by increasing the classification probability threshold and spatial filtering. (4) Conclusions: The comparative analysis highlights the strengths and trade-offs of RF, XGB, HGB and MLPC models for wetland classification. While all four methods are viable, RF offers some key advantages, including ease of deployment and transferability, positioning it as a promising candidate for scalable, high-resolution wetland monitoring across diverse ecological settings. Further work is required for verification of small-scale wetlands (<~0.5 ha) and the addition of fine-spatial-scale covariates. Full article
Show Figures

Figure 1

Back to TopTop